Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604. https://doi.org/10.1126/science.aac8083
Article
CAS
Google Scholar
Asrar G, Myneni R, Kanemasu T (1989) Measuring and modeling spectral characteristics of a tall grass prairie. Remote Sens Environ 27(2):143–155. https://doi.org/10.1016/0034-4257(89)90014-X
Article
Google Scholar
Baillarin SJ, Meygret A, Dechoz C, Petrucci B, Lacherade S, Tremas T, Spoto F (2012) Sentinel-2 level 1 products and image processing performances. Int Geosci Remote Sens Symp 39(B1):197–202
Google Scholar
Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13(1–2):95–120
Article
Google Scholar
Brown S (1993) Tropical forests and the global carbon cycle: the need for sustainable land-use patterns. Agric Ecosyst Environ 46:31–44
Article
CAS
Google Scholar
Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome, Italy
Brown S, Gillespie AR, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci 35:881–902
Google Scholar
Castillo JAA, Armando AA, Tek NM, Severino GS (2017) Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Jour of Photo and Remo Sensing 134:75–85. https://doi.org/10.1016/j.isprsjprs.2017.10.016
Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320(5882):1456–1457. https://doi.org/10.1126/science.1155458
Article
CAS
Google Scholar
Chave JR, Condit SA, Hernandez ASL, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond Ser 359(1443):409–420
Article
Google Scholar
Chavez PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24(3):459–479
Article
Google Scholar
Chrysafis I, Mallinis G, Siachalou S, Patias P (2017) Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remo Sens Lett 8(6):508–517. https://doi.org/10.1080/2150704X.2017.1295479
Article
Google Scholar
Chen L, Ren C, Zhang B, Wang Z, Xi Y (2018) Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 9:1–20
Google Scholar
Chen L, Wang Y, Ren C, Zhang B, Wang Z (2019) Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. Fores Ecol Manage 447:12–25. https://doi.org/10.1016/j.foreco.2019.05.057
Article
Google Scholar
Dibaba A, Soromessa T, Workineh B (2019) Carbon stock of the various carbon pools in Gerba-Dima moist Afromontane forest, South-western Ethiopia. Carbon Balance Manage. https://doi.org/10.1186/s13021-019-0116-x
Article
Google Scholar
Dou X, Yang Y (2018) Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements: model comparison and evaluation. Sci Total Environ 627:78–94. https://doi.org/10.1016/j.scitotenv.2018.01
Article
CAS
Google Scholar
Dusseux P, Hubert-Moy L, Corpetti T, Vertès F (2015) Evaluation of SPOT imagery for the estimation of grassland biomass. Int J Appl Earth Obs Geoinf 38:72–77
Article
Google Scholar
Eshetu EY, Hailu TA (2020) Carbon sequestration and elevational gradient: the case of Yegof mountain natural vegetation in North East, Ethiopia, implications for sustainable management. Cogent Food Agric 6(1):1733331. https://doi.org/10.1080/23311932.2020.17333
Article
Google Scholar
European Space Agency, Sentinel online. https://sentinel.esa.int/web/sentinel/sentinel-data-access. Accessed 15 Oct 2019
Forkuor G, Dimobe K, Serme I, Tondoh J (2017) Landsat-8 vs. Sentinel-2: examining the added value of Sentinel-2’s red-edge bands to land-use and land cover mapping in Burkina Faso. Gisci Remote Sens 2:1–24. https://doi.org/10.1080/15481603.2017.1370169
Article
Google Scholar
Georgia G, Dimitris Z, Ioannis G, Kalliopi R, Vassilia K, Maria TS, Iain W, Giorgos M (2017) Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. Int J Remote Sens 38(7):1940–1966. https://doi.org/10.1080/01431161.2016.1266113
Article
Google Scholar
GIS Resources (2013) Global land cover facility. https://gisresources.com/tag/global-land-cover-facility-glcf/. Accessed 8 Sept 2019
Gisel R, Sandra B, Jonathan C, Ariel E (1992) Wood densities of tropical tree species. New Orleans, Louisiana. https://www.srs.fs.usda.gov/pubs/gtr/gtr_so088.pdf. Accessed 28 Mar 2019
Gole TW, Borsch T, Denich M, Teketay D (2008) Floristic composition and environmental factors characterizing coffee forests in southwest Ethiopia. Forest Ecol Manag 255:2138–2150. https://doi.org/10.1016/j.foreco.2007.12.028
Article
Google Scholar
Gómez M (2017) Joint use of Sentinel-1 and Sentinel-2 for land cover classification: a machine learning approach. M.Sc thesis, Lund University, Lund, Sweden
Herold M, Román-Cuesta RM, Mollicone D, Hirata Y, Van Laake P, Asner GP, Souza C, Skutsch M, Avitabile V, MacDicken K (2011) Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance Manag 6(13):1–7
Google Scholar
Huete A, Didan K, Miura T, Rodriquez EP, Gao X, Ferreria LG (2000) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(5):195–213
Google Scholar
Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1897–1907
Google Scholar
Husch B, Beers TW, Kershaw JA (2003) Forest mensuration, 4th edn. Wiley, Hoboken
Google Scholar
Isbaex C, Coelho AM (2020) The potential of Sentinel-2 satellite images for land-cover/ land-use and forest biomass estimation: a review. IntechOpen. https://doi.org/10.5772/intechopen.93363
Article
Google Scholar
IPCC (2006) Guidelines for National Greenhouse Gas Inventories – A primer, Prepared by the National Greenhouse Gas Inventories Program: Eggleston HS, Miwa K, Srivastava N, Tanabe K (eds) Institute for Global Environmental Strategies, Japan
Juniansah A, Tama GC, Febriani KR, Baharain MN, Kanekaputra T, Wulandari WS, Kamal M (2018) Mangrove leaf area index estimation using Sentinel 2A imagery in Teluk Ratai, Pesawaran Lampung. In: IOP Conference series: earth and environmental science, vol 165, pp 012004. https://doi.org/10.1088/1755-1315/165/1/012004
Kebede M, Kanninen M, Yirdaw E, Lemenih M (2013) Vegetation structural characteristics and topographic factors in the remnant moist Afro-montane forest of Wondo Genet, south central Ethiopia. J Forest Res 24(3):419–430. https://doi.org/10.1007/s11676-013-0374-5
Article
Google Scholar
Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27(7):1297–1328. https://doi.org/10.1080/01431160500486732
Article
Google Scholar
Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2014) A survey of remote sensing-based above-ground biomass estimation methods in forest ecosystems. Int J Digit Earth 9(1):63–105. https://doi.org/10.1080/17538947.2014.99052
Article
Google Scholar
Lyon JG, Yuan D, Lunetta RS, Elvidge CD (1998) A change detection experiment using vegetation indices. Photo Eng Remote Sens 64(2):143–150
Google Scholar
Mascaro J, Detto M, Asner GP, Muller-Landau HC (2011) Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens Environ 115(12):3770–3774. https://doi.org/10.1016/j.rse.2011.07.019
Article
Google Scholar
Mauya EW, Hansen E, Gobakken T, Bollandsås M, Malimbwi E, Næsset E (2015) Effects of field plot size on prediction accuracy of aboveground biomass airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance Manag 10:1–14
Article
CAS
Google Scholar
McRoberts RE, Næsset E, Gobakken T (2013) Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens Environ 128:268–275
Article
Google Scholar
MEFCC (Ministry of Environment, Forest and Climate Change) (2016) Ethiopia’s forest reference level submission to the United Nations framework convention for climate change. Addis Ababa
Melese B, Kelbessa E, Soromessa T (2014) Forest carbon stocks in woody plants of Arba Minch ground water forest and its variations along environmental gradients. Sci Technol Arts Res J 3(2):141–147. https://doi.org/10.4314/star.v3i2.18
Article
Google Scholar
MoA (Ministry of Agriculture) (2000) Woody Biomass Inventory and Strategic Planning Project (WBISPP), Manual for woody biomass inventory. Ministry of Agriculture, Addis Ababa
Google Scholar
Mutanga O, Skidmore AK (2004) Narrow band vegetation indices to overcome the saturation problem in biomass estimation. Int J Remote Sens 25:3999–4014
Article
Google Scholar
Navar J (2009) Allometric equations for tree species and carbon stocks for forests of Northwestern Mexico. For Ecol Manag 257:427–434
Article
Google Scholar
Pan Y, Birdsey R, Fang J, Houghton R, Kauppi P, Kurz W, Phillips O, Shvidenko A, Lewis SL, Canadell J (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993
Article
CAS
Google Scholar
Pandit S, Tsuyuki S, Dube T (2018) Estimating above-ground biomass in sub-tropical buffer zone community Forests, Nepal, using Sentinel 2 data. Remote Sens 10(4):601
Article
Google Scholar
Pearson T, Wolker S, Brown S (2005) Source book for land use, land use change and forestry projects, Winrock International and the BioCarbon Fund, World Bank, USA
Pertille CT, Marcos FN, Larissa RT, Thiago F (2019) Biomass quantification of Pinus taeda L. from remote optical sensor data. Adv Forest Sci 6(2):603–610
Article
Google Scholar
Peters AJ (2007) Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens Environ 106(1):59–65
Article
Google Scholar
Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114(5):1053–1068. https://doi.org/10.1016/j.rse.2009.12.018
Article
Google Scholar
Ramoelo A, Cho M, Mathieu R, Skidmore A (2015) Potential of Sentinel-2 spectral configuration to assess rangeland quality. J Appl Remote Sens Environ 124:516–533
Google Scholar
Schuit P, Moat J, Gole TW, Challa ZK, Torz J, Macatonia S, Cruz G, Davis AP (2021) The potential for income improvement and biodiversity conservation via specialty coffee in Ethiopia. PeerJ 9:e10621. https://doi.org/10.7717/peerj.10621
Article
Google Scholar
Segura M, Kanninen M (2005) Allometric models for tree volume and total above-ground biomass in a tropical humid forest in Costa Rica. Biotropica 37:2–8
Article
Google Scholar
Shoko C, Mutanga O (2017) Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J Photogr Remote Sens 129:32–40
Article
Google Scholar
Shrestha SK (2011) Carbon stock estimation using very high-resolution satellite imagery and individual crown segmentation (A case study of broadleaved and needle leaved forest of Dolakha, Nepal. MSc Thesis, ITC—University of Twente, Enschede
Siraj M (2019) Forest carbon stocks in woody plants of Chilimo-Gaji Forest, Ethiopia: implications of managing forests for climate change mitigation. S Afr J Bot 127:213–219. https://doi.org/10.1016/j.sajb.2019.09.003
Article
CAS
Google Scholar
SNAP (2016) Sentinels Application Platform software ver. 4.0.0, European Space Agency
Soenen SA, Peddle DR, Hall RJ, Coburn CA, Hall FG (2010) Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens Environ 114(7):1325–1337. https://doi.org/10.1016/j.rse.2009.12.012
Article
Google Scholar
Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157
Article
Google Scholar
Sun X, Guicai L, Meng W, Zemeng F (2019) Analyzing the uncertainty of estimating forest aboveground biomass using optical imagery and space-borne LiDAR. Remote Sens 11:722. https://doi.org/10.3390/rs11060722
Article
Google Scholar
Taddesse H, Zerihun A, Burud I, Terje G, Hans O, Øystein BD, Erik N (2020) Use of remotely sensed data to enhance estimation of aboveground biomass for the dry afro-montane forest in South-Central Ethiopia. Remote Sens 12:3335. https://doi.org/10.3390/rs12203335
Article
Google Scholar
Timothy D, Onisimo M, Riyad O (2015) Evaluating the utility of the medium-spatial resolution Landsat 8 multi-spectral sensor in quantifying aboveground biomass in Umgeni catchment, South Africa. ISPRS J Photo Remote Sens 101:36–46
Article
Google Scholar
Timothy D, Onisimo M, Riyad O (2016) Quantifying aboveground biomass in African environments: a review of the trade-offs between sensor estimation accuracy and costs. Trop Ecol 57(3):393–405
Google Scholar
Vashum KT, Jayakumar S (2012) Methods to estimate above-ground biomass and carbon stock in natural forests—a review. J Ecosyst Ecogr 2:116. https://doi.org/10.4172/2157-7625.1000116
Article
CAS
Google Scholar
Widlowski JL, Pinty B, Gobron N, Verstraete MM, Diner DJ, Davis AB (2004) Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies. Clim Change 67(2–3):403–415
Article
CAS
Google Scholar
Yohannes H, Soromessa T, Argaw M (2015) Carbon stock analysis along altitudinal gradient in gedo for-est: implications for forest management and climate change mitigation. Am J Environ Prot 4(5):237–244. https://doi.org/10.11648/j.ajep.20150405.14
Article
Google Scholar
Zhao M, Yang J, Zhao N, Liu L, Du L, Xiao X, Wilson JP (2021) Spatially explicit changes in forest biomass carbon of China over the past 4 decades: coupling long-term inventory and remote sensing data. J Clean Prod 316:128274. https://doi.org/10.1016/j.jclepro.2021.1282
Article
CAS
Google Scholar
Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest biomass. For Ecol Manage 187(2–3):311–332. https://doi.org/10.1016/j.foreco.2003.07.00
Article
Google Scholar
Zhang T, Su J, Liu C, Chen WH, Liu H, Liu G (2017) Band selection in sentinel-2 satellite for agriculture applications. 23rd International Conference on Automation and Computing (ICAC). https://doi.org/10.23919/iconac.2017.808199