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Abstract 

Background:  Nitrate contamination of groundwater often occurs in urban and industrial areas due to point and 
non-point sources of anthropological activities. Groundwater constitutes a a significant portion of the water supply 
system for Bahir Dar City in Ethiopia, though the level of groundwater pollution is not known. This study was con-
ducted to assess the the extent of the aquifer and groundwater pollution (nitrate) based on contaminant vulnerability 
risk mapping using the GIS integrated modified DRASTIC model. A field survey was conducted to collect samples 
from boreholes for nitrate analysis and to modify the DRASTIC model.

Results:  Compared to the original intrinsic vulnerability assessment, land use as external factors changed from 
moderate-high to high vulnerability class from 18 to 88%. The FR-APH modified model showed a good correlation 
(0.53) compared to the other methods. Based on the FR-APH modified model, about 31% of the area was under mod-
erate to high and high vulnerability range, 39% was under moderate vulnerability range while 30% was under low 
and moderate to low vulnerability range.

Conclusions:  The integrated vulnerability map showed high risk in the central part of the City due to the flat slope 
and shallow depth to groundwater. Besides, the sensitivity analysis indicated that the contribution of aquifer media 
and vadose zone to contaminant risk was found trivial. In general, groundwater at Bahir Darwas found vulnerable to 
nitrate contamination and needs proper management.
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Introduction
Groundwater is a potential alternative source of domestic 
water supply for the main cities, towns, and villages due 
to its less initial cost, better water quality, and availability 
throughout the year compared to surface water sources 
(Mengistu et  al. 2019; Nwobodo et  al. 2015). However, 
groundwater contamination by nitrate is increasing 
locally and globally in general (Hu et  al. 2005). A water 
quality study in Sub-Saharan countries by Lapworth 
et al. (Lapworth et al. 2017) showed that domestic waste 

contamination occurred in shallow wells, especially in 
highly populated cities. Among the major groundwa-
ter quality problems in Ethiopia, are high microbial and 
nitrate concentrations in shallow unconfined aquifers 
around major cities (Mengistu et al. 2019).

Regardless of challenges associated with contaminants, 
several research findings (Worqlul et  al. 2017; Siebert 
et  al. 2010; Gowing et  al. 2020) indicated that ground-
water will remain the main source of fresh water in the 
face of climate change and variability. People use ground-
water for drinking and domestic purposes using various 
extraction systems from the aquifer and its contribu-
tion to surface water sources (Schwartz 2003). However, 
groundwater contamination has significantly degraded 
due to population pressure and unwise water use without 
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considering the sustainability of ecosystem services 
(Morris et  al. 2006). Groundwater contamination is 
driven by different factors including hydrogeological var-
iations and human-induced activities (Iqbal et al. 2015). 
A significant contamination level has been induced 
through the disposal of human and animal wastes, haz-
ardous wastes, by-products of mining and oil operations, 
leaks from sanitary sewer lines and septic tanks, and agri-
cultural activities such as tillage, fertilizer, and chemi-
cal applications (Schwartz 2003). A rapid assessment 
of drinking water quality in Ethiopia by Dagnew (2007) 
showed that 32% of the wells were contaminated with 
nitrate. Besides, several research findings revealed that 
protecting groundwater resources is a wise approach and 
relatively cheaper than remediation and restoration of a 
contaminated aquifer (Al-Rawabdeh et  al. 2014; Neshat 
and Pradhan 2015a; Ceplecha et al. 2004; Li et al. 2014).

Along with springs, groundwater serves as the main 
source of domestic water supply for Bahir Dar City of 
Ethiopia (Oscar Veses 2016, Abiye and Kebede 2011). 
According to Goshu and Akoma (2011a), nitrate concen-
tration was high in Bahir Dar City shallow groundwater 
wells and showed a decreasing trend from the city center 
to the border, possibly due to anthropogenic effects from 
the population density or geological variation. Assess-
ment of groundwater contaminant risk and providing a 
vulnerability map is an essential pathway for managing 
groundwater and the environment (Yu et  al. 2010; Pis-
copo 2001), which allows managers to make evidence-
based decisions (Sener and Davraz 2013).

Several techniques exist to estimate groundwater vul-
nerability such as process-based simulation models, sta-
tistical methods, and overlay-index methods (Iqbal et al. 
2012). According to Aller et  al. (Aller 1985), DRASTIC 
is the most widely applied overlay index method for 
groundwater vulnerability assessment (Ghosh et al. 2020; 
Liang et al. 2019; Zouhri and Armand 2019; Rupert 2001; 
Bartzas et  al. 2015; Shrestha and Luo 2018). The model 
uses seven parameters of the natural system (depth to 
water, net recharge, aquifer media, soil media, topog-
raphy, the impact of vadose zone, and hydraulic con-
ductivity) to estimate the vulnerability of an aquifer to 
contamination (Al-Rawabdeh et  al. 2014). On the other 
hand, the DRASTIC model is open for improvement 
(Neshat and Pradhan 2015a; Afshar et al. 2007; Pacheco 
and Fernandes 2013; Rupert 2001) since the model uses 
parameter weights that are more subjective (Neshat and 
Pradhan 2015a).

Milkiyas et  al. (Tabor et  al. 2011) assessed the bacte-
riological and physicochemical quality of drinking water 
samples taken from consumers. Goshu et al. (2010) eval-
uated anthropogenic fecal pollution impact in Bahir Dar. 
Goshu and Akoma (2011b) conducted a water quality 

assessment of ground and surface water resources of 
Bahir Dar and peri-urban areas from different sources. 
However, the spatial variation of groundwater pollution 
related to hydrogeological and anthropogenic conditions 
is lacking. Therefore, the main objective of this study 
was to investigate the vulnerability of groundwater to 
nitrate contamination for Bahir Dar City using the modi-
fied DRASTIC model. The specific objectives included: 
a) producing intrinsic and specific vulnerability maps, 
b) investigating the spatial distribution of nitrate con-
tamination, and c) modifying the DRASTIC Vulnerability 
Index based on the observed nitrate concentration.

Material and methods
Description of the study area
This study was conducted in the Ethiopian highlands 
at the capital city of Amhara Regional State, Bahir Dar 
(11.50 to 11.530, and 37.40 to 37.530, and an altitude of 
1800 m above mean sea level). The city has a flat plateau 
earth structure (Fenta and Technology 2017) covering a 
total area of about 213 km2. The city borders Lake Tana, 
the largest freshwater lake in Ethiopia (Vijverberg et  al. 
2009), and the source of the Blue Nile river crossing the 
city middle way. The mean annual temperature in the 
study area is 26  °C and the annual precipitation ranges 
from 1200 to 1600 mm with the “ Woina Dega” or “sub-
tropical” agro-ecological zone (Mehari et al. 2015). Bahir 
Dar is one of the largest and fast-growing cities in Ethio-
pia (Fenta and Technology 2017, Goshu and Aynalem 
2017) with an estimated population size of about 294,749 
as of the 2014 census (Birara and Kassahun 2018). The 
city relies mostly on groundwater sources and springs for 
drinking water supply. The other source of drinking water 
supply for the city is Lake Tana.

Data type, source, and method of collection
The main data used for this study and their sources are as 
shown in Table 1.

DRASTIC model
In this study, the DRASTIC model was used to provide a 
reasonable estimate for the vulnerability of an aquifer to 
contamination with a relatively minimum data require-
ment (Al-Rawabdeh et  al. 2014). The model uses seven 
parameters of the natural system (i.e., depth to water, 
net recharge, aquifer media, soil media, topography, the 
impact of vadose zone, and hydraulic conductivity). Each 
parameter was then weighted from 1 to 5 where the most 
significant parameters had weights of 5 and the least sig-
nificant parameter (Al-Rawabdeh et  al. 2014; Piscopo 
2001; Rosen 1994). The rates and weights were multiplied 
for each parameter and added together to produce the 
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vulnerability index (Aller et  al. 1987a) as shown in the 
equation (Eq. 1).

where, D, R, A, S, T, I, and C are the seven parameters 
of the DRASTIC model, and the subscript r and w repre-
sented, respectively, the rating value and weighting of the 
factor depending on the influence of the contamination.

After computing the vulnerability index (VI), suscepti-
ble areas to groundwater contamination were identified 
(Wang et  al. 2007). Weights were assigned for various 
hydrological settings based on Aller (1985) and Secunda 
(1998) as shown in Table 2. The rate was assigned from 
1 (i.e., lower groundwater contamination potential) to 10 
(i.e., higher groundwater contamination potential) based 
on Aller (1985) for all parameters, except recharge, which 
was based on NRCS (2014) and Piscopo (2001) as shown 
in Table 3.

Depth to groundwater
The depth to the water table determines the depth of 
material through which the contaminant travels before it 

(1)
VI = DrDw+RrRw+ArAW+SrSW+TrTW+IrIW+CrCW

reaches the water table. This parameter was derived from 
22 groundwater wells’ water table data. The data were 
used to prepare the depth to water table layers based on 
Aller et  al. Aller et  al. (1987a). The depth to groundwa-
ter map was prepared through interpolation of the data 
using the inverse distance weight method (Tirkey et  al. 
2013; Nadiri et al. 2017) with grid size 30 m × 30 m. The 
inverse distance weight method is more suitable for non-
uniform borehole distribution and flat topography (Gil-
man and Bailey 2006).

Net recharge
The net recharge refers to the amount of water that pene-
trates the ground surface and reaches the water table that 
would potentially transport contaminants. Various data 
were used for the determination of the net recharge such 
as topography, rainfall, and soil permeability based on 
Piscopo (Piscopo 2001) as shown in the equation (Eq. 2). 
More net recharge is associated with more vulnerability 
to contamination.

(2)
Net Recharge = Slop(%)+ precipitation + Soilpermeability

Table 1  Data used in this study and their sources

Data type Source of data Spatial Resolution

Depth to the water table, Aquifer media, Geology, and 
Hydraulic Conductivity

Amhara Water Work and Drill Enterprise –

Soil Media Amhara Design and Supervision Works Enterprise 90 m × 90 m

Precipitation Ethiopia National Meteorology Agency –

Digital Elevation Model The National Aeronautics and Space Administration (NASA) Landsat 
Imager Resolution

30 m × 30 m

Land use Amhara Design and Supervision Works Enterprise 30 m × 30 m

Nitrate Water samples were collected from wells and analyzed in the labora-
tory for nitrate concentration

–

Table 2  Description and original weights of the intrinsic and specific model parameters (Babiker et al. 2005)

Model parameters Parameter description, original weight

Depth to water Represents the depth from the surface to the groundwater table levels, 5

Net Recharge Represents the amount of water that penetrates the ground surface and the water table responsible for contaminant trans-
port, 4

Aquifer media Refers to the saturated zone material properties, which controls the pollutant attenuation processes, 3

Soil media Refers to the uppermost weathered portion of the unsaturated zone and controls the amount of recharge that can infiltrate 
downward, 2

Topography Refers to the slope of the land surface, it dictates whether the runoff will remain on the surface to allow contaminant percola-
tion to the saturated zone, 1

Impact of vadose zone Refers to the unsaturated zone material; it controls the passage and attenuation of the contaminated material to the saturated 
zone, 5

Hydraulic conductivity Refers to the ability of the aquifer to transmit water, hence determining the rate of the flow of contaminant within the ground-
water system, 3
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Aquifer media
Aquifer media refers to the lithology of the saturated 
zone (Saidi et  al. 2009). Aquifer media governs the 
route and path length of the groundwater flow system. 
Anthropogenic and geologic conditions originating 
from contaminant sources, and water–rock interactions 
are among the major factors that control the chemical 
quality of groundwater (Şener et  al. 2017). The aqui-
fer media affects the effective surface area of material 
through which contaminant may meet the aquifer. An 
aquifer media layer was prepared from 17 groundwater 
well logs and classified based on Aller et al. (Aller et al. 
1987a).

Soil media
The soil media represent the top weathered portion of 
the unsaturated zone with significant biological activi-
ties (Aller et  al. 1987a). Soil type would significantly 
affect the amount of recharge that infiltrates into the 
water table and hence plays a vital role in the contami-
nant transport process. The soil data obtained from 
Amhara Design and Supervision Enterprise (ADSWE) 
was converted into grid coverage interpolated by the 
Inverse Distance Weight (IDW) method and classified 
based on Aller et al. (Aller et al. 1987a).

Topography (landscape slope)
Topography controls contaminant runoff and reten-
tion on the surface. Therefore, the greater the chance 
of infiltration, the higher the pollution potential associ-
ated with the landscape slope (Aller 1985). The slope in 
percent was calculated from the digital elevation model 

(DEM) using surface spatial analysis and classified 
based on (Aller et al. 1987a).

Impact of vadose zone
The vadose zone refers to the unsaturated or discon-
tinuously saturated zone above the water table (Piscopo 
2001). The depth and geology data from Amhara Water 
Work and Drill Enterprise (AWWDE) was computed 
using the equation (Eq. 3), and rated and classified based 
on (Aller et al. 1987a) to produce a vadose zone impact 
map.

Hydraulic conductivity
The hydraulic conductivity represents the ability of the 
aquifer to transmit water and controls the rate of con-
taminant migration from the source to the aquifer (Aller 
et  al. 1987b). It determines the speed of contaminant 
transfer into the groundwater and their times of resi-
dence and migration into the saturated zone (Zouhri and 
Armand 2019). The permeability and secondary porosity 
are the major factors that determine the water-bearing 
potential of an area. Unsaturated hydraulic conductivity 
and transmissibility were used to estimate the movement 
of contaminants into the aquifer and typical values were 
obtained from 13 pump wells test.

Land use
Intrinsic vulnerability refers to the vulnerability of 
groundwater to contaminants generated by human 
activities taking into account the inherent geological, 

(3)

Vadose zone Impact =
1

Totaldepth

n∑

i=1

DepthliRatinggli

Table 3  The relative weights and rates of DRASTIC parameters (Aller 1985) and (Secunda et  al. 1998) for various hydro-geological 
settings

Rating depth to the 
water table

Net recharge Aquifer media Soil media Topography Impact of vadose zone Hydraulic 
conductivity

Range (m) Range (mm/yr) Range Range Range (%) RANGE Range
(m/day)

10 0–1.5 Karst limestone Thin or absent 0–2 Karst limestone  > 80

9 1.5–4.5  > 250 Basalt Sandy 2–6 Basalt

8 175–250 Sand and gravel Peat Sand and Basalt 40–80

7 4.5–9 Shrinking Metamorphic/Igneous

6 100–175 Bedden sand-ston, Sandy loam Limstone/sandstone 30–40

5 9–15 Glacia till Loam 6–12

4 Weathered Silt loam 12–30

3 15–22 50–100 Metamorphic/igneous Clay loam 12–18 Sily/clay/shale

2 22–30 Massive shale Muck 4–12

1  > 30  < 50 Non-shrinking  > 18 Confining layer  < 4



Page 5 of 16Alamne et al. Environmental Systems Research            (2022) 11:8 	

hydrological, and hydrogeological characteristics of an 
area without considering the nature of the contaminants 
(Doerfliger et  al. 1999; Zwahlen 2003). On the other 
hand, specific vulnerability refers to the vulnerability of 
groundwater to particular contaminants or a group of 
contaminants taking into account the contaminant prop-
erties and their relationship with the various components 
of intrinsic vulnerability (Gogu and Dassargues 2000b).

Land use practices, particularly in agriculturally domi-
nated and anthropogenic areas evidenced to have a sig-
nificant effect on groundwater quality (Almasri and 
Kaluarachchi 2004; McKay 2001). The original DRASTIC 
model was modified by adding the land use parameter to 
assess the vulnerability parameters for the potential risk 
of groundwater contamination due to anthropogenic fac-
tors. The potential risk was calculated using the equation 
(Eq.  4) considering land use as external anthropological 
activity based on Al-Adamat (Al-Adamat et al. 2003). The 
potential risk was calculated based on Pacheco and Fer-
nandes (2013) as shown in Eq. 5.

Nitrate concentration assessment
Nitrate is highly soluble and does not readily sorb to solid 
surfaces, such as soil, thus allowing nitrate to have high 
mobility [22]. The mobility of nitrate makes it prone to 
leaching through the soil as it moves with infiltrating 
water into the subsurface [23]. Nitrate is widely used and 
considered an essential indicator of groundwater quality 
or contamination (Neshat and Pradhan 2015a). Ground-
water samples were collected from 24 wells located in dif-
ferent aquifers. A one-liter polyethylene bottle was used 
to collect the samples and laboratory analysis for nitrate 
was conducted using the spectrophotometric method Al-
Rawabdeh et  al. (2014) at Amhara Design and Supervi-
sion Enterprise (ADWWSE) laboratory. Groundwater 
samples were stored in a refrigerator until laboratory 
analysis to prevent deterioration and changes in water 
quality. The Inverse Distance Weight (IDW) interpola-
tion method was used to provide the spatial distribu-
tion of nitrate across the base. To validate and compare 
the derived results between groundwater vulnerability 
and nitrate concentration, Pearson’s correlation was used 
(Neshat and Pradhan 2015b). The Pearson’s correlation 
coefficient (r) serves as a measure of the linear depend-
ence between the vulnerability index and observed 
nitrate concentration was determined (Gheisari 2017) as 
shown in Fig. 7.

Probability‑based statistical model for rate adjustment
The frequency Ratio (FR) model was considered as 
a bivariate statistical method to modify the rates of 

(4)VSpecific = VIntrinsic + Lr

DRASTIC parameters based on the spatial distribu-
tion of contaminants and hydrogeological parameters 
as explained in Neshat and Pradhan (Neshat and Prad-
han 2015a). The FR model was based on observed rela-
tionships between the distribution of nitrates and the 
DRASTIC parameters (Yu et  al. 2010). Ranges of FR 
for each factor were computed from their relationships 
with the nitrate samples using the equation (Eq. 5).

where A is the area of a class or range for each DRAS-
TIC parameter, B is the total area of each parameter; C 
is the total number of nitrate occurrences in the class of 
each parameter, D is the number of the total nitrate in the 
study area, E is the percentage of area in the class of each 
parameter, and F is the percentage of nitrate in the class 
of each parameter (Fig. 1).

The observed nitrate measured at 24 monitoring 
wells from January to May 2020 every two weak was 
used to modify the rate of parameters in the DRASTIC 
model. A probability-based statistical ranking model 
was used for rate adjustment of vulnerability mapping 
in the study area. The rate of parameters was set based 
on the average amount of nitrate concentration in each 
class with the highest mean of nitrate concentration 
and the other rates were modified linearly based on the 
relation.

(5)FR =

A
B
C
D

=
E

F

Fig. 1  Location of Bahir Dar City, capital of Amhara Regional State in 
Ethiopia
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Map removal sensitivity analysis
Map removal sensitivity analysis represents the sensitiv-
ity associated with removing one or more maps (Lodwick 
et  al. 1990). Map removal sensitive analysis was per-
formed to evaluate and check if all necessary parameters 
were incorporated in the DRASTIC model (Gogu and 
Dassargues 2000a; Napolitano and Fabbri 1996). The map 
removal sensitivity measure, defined by Lodwick et  al. 
(Lodwick et al. 1990), is expressed in terms of variation 
index S as shown in the equation (Eq. 6).

where S is the sensitivity index, V is the unperturbed 
vulnerability index (original DVI calculated), V` is per-
turbed vulnerability index (calculation of DVI after map 
removal), and N and n are the numbers of data layers 
used to compute V and V` respectively.

Single parameter sensitivity analysis (SPSA)
In the modified DRASTIC model, subjectivity can affect 
the final evaluation results, as it is unavoidable in the 
selection of ratings and weights (Şener and Şener 2015). 
The sensitivity analysis validates the impact of each 
evaluation parameter on the groundwater vulnerability 
assessment (Liang et al. 2019). Single-parameter sensitiv-
ity analysis is a widely used method to assess the impact 
of selected parameters on groundwater vulnerability 
assessment (Napolitano and Fabbri 1996) and helps to 
understand the effect of subjectivity and weights allo-
cated to each parameter (Babiker et al. 2005; Gogu et al. 
2003). The single parameter sensitivity analysis was used 
and adopted in this study to evaluate the effect of each 
factor on the vulnerability index (Huan et al. 2012a). The 
single parameter sensitivity analysis (SPSA) is introduced 
by Napolitano and Fabbri (Napolitano and Fabbri 1996) 
as shown in the equation (Eq. 7):

where W refers effective weight of each parameter, Pr and 
Pw are the rating value and the weight of each parameter, 
respectively, and V is the overall vulnerability index.

Analytic hierarchy process (AHP)  The analytic hierar-
chy process (AHP) is a method coupled with the expe-
rience and knowledge of experts or users to determine 
the parameter and criteria (Neshat et al. 2014; Li et al. 
2018). The AHP method provides a hierarchical mecha-

(6)S =

(
V
N −

V‘
n

V

)
× 100

(7)W =
PrPw

V
× 100

nism for combining expert opinions to derive the stand-
ard weight of the criteria (Chakraborty et  al. 2011). 
The AHP proposed by Saaty (Saaty 1980) is a widely 
accepted method for multi-criteria decision-making 
purposes (Liang et  al. 2019; Vogel 2008; Saaty 2008; 
Duc 2006, Zhu and Dale 2001). The method serves as a 
measurement theorem that uses discrete and continu-
ous binary comparisons in multiple hierarchical struc-
tures (Güler and Yomralıoğlu 2017). The method uses a 
pairwise comparison of factors based on a relative scale 
which ranges from 1 to 9, where the higher and lower 
value refers to extreme importance and equal impor-
tance, respectively, (Saaty 1980). The quality of the over-
all set of pairwise comparisons is evaluated through the 
Consistency Ratio (CR) analysis (Elaalem et  al. 2011). 
Constructing a set of pairwise comparison matrices is 
the most important component of the AHP method, 
which permits the comparison between various criteria 
(Neshat and Pradhan 2015a) as shown in the equation 
(Eq. 8) as matrix ‘A’.

A uniform random test of a matrix is required to 
analyze whether the eigenvectors of the matrix are 
reasonable, including Consistency Index (CI) (Eq.  9), 
largest eigenvalue ( �max ) (Eq. 10), and consistency ratio 
(CR) (Eq.  11) based on (Saaty 1987). When CR = 0, 
the matrix has complete consistency, and as the CR 
increases, the consistency of the matrix becomes worse; 
When CR < 0.1, it is considered that the consistency 
condition is satisfied, indicating that the weight distri-
bution is reasonable (Saaty 1980).

where, RI is a random index, which was used to eliminate 
the inconsistency of the matrix caused by the influence of 
the number of matrices.

(8)A =





D R A S T I C Lu

D 1 2 3 4 5 3 3 7
R 1/2 1 2 3 4 2 2 5
A 1/3 1/2 1 2 3 2 1 4
S 1/4 1/3 1/2 1 2 2 1 4
T 1/5 1/4 1/3 1/2 1 1/2 1/3 2
I 1/3 1/2 1/2 1/2 2 1 1/2 3
C 1/3 1/2 1 1 3 2 1 3
Lu 1/7 1/5 1/4 1/4 1/2 1/3 1/3 1





.

(9)CI =
�max −m

m − 1

(10)�max =
1

n

n∑

i=1

A.W

W

(11)CR =
CI

RI
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Results and discussion
First, the rating of the seven parameters in the DRAS-
TIC model and their relation to groundwater con-
tamination are presented and discussed followed by 
intrinsic and specific vulnerability results. Second, 
the spatial distribution of nitrate and its correlation 
with intrinsic and specific vulnerability index is pre-
sented followed by results of rate modifications using 
observed nitrate concentration. Finally, the results of 
single parameters sensitivity analysis, map removal 
sensitivity analysis, and modification using the analyti-
cal hierarchical process are presented and discussed.

The DRASTIC parameters
Depth to groundwater (D) and Net Recharge (R)
The ranking of depth to groundwater varied from 1 (low) 
to 10 (high) (Fig.  2a). The depth to groundwater varied 
from 2 to 37  m over Bahir Dar city. The depth of the 
water table in the central part of the city and near the 
lake (Lake Tana) were less than 10  m indicating high 
susceptibility to contamination, whereas, the depth to 
the water table increases gradually to 37 m towards the 
boundary of the city indicating less vulnerability to con-
tamination (Zouhri and Armand 2019; Tilahun and 
Merkel 2010). This was due to the significant correlation 

Fig. 2  The rate and spatial distribution of vulnerability parameters: a Depth to the water table, b Recharge, c Aquifer Media, d Soil Media



Page 8 of 16Alamne et al. Environmental Systems Research            (2022) 11:8 

between depth to groundwater and the length of time 
required for nitrate contaminant to reach the groundwa-
ter (Ceplecha et  al. 2004; Tesoriero and Voss 1997). On 
the other hand, the net recharge ranking ranged from 8 
(~ 27%) to 10 (~ 73%). Most areas of Bahir Dar city were 
classified as high recharge areas due to a relatively high 
annual precipitation of 1451 mm (Kebede et al. 2006) and 
gentle landscape slopes (Mengistu 2003; Wegedie 2018). 
A higher recharge amount is associated with higher con-
taminant transport to the water table due to an increased 
movement of pollutants (Varol and Davraz 2010; Pedreira 
et al. 2015).

Land use and Topography
Land use ranking ranged from 4 (moderate, ~ 6%) to 8 
(high, ~ 10%) as shown in (Fig.  3d). Most of Bahir Dar 
city had moderate to high vulnerability due to urbani-
zation and associated activities. This includes wastes 
(industrial, municipal, and domestic solid and liquid 
wastes) that are being dumped with no centralized sew-
age system (Goshu et  al. 2010). Besides, agricultural 
activity such as the farming of crop, plant, and animal 
production around the city border (Wegedie 2018) pro-
vide input for groundwater contamination. That is from 
increased use of agricultural inputs such as manure, 

Fig. 3  The rate and spatial distribution of vulnerability parameters: a slope, b Impact of the vadose zone, c Hydraulic conductivity, d Land use of the 
study area
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fertilizers, and pesticides which have an increased con-
taminant loading potential (Goshu et al. 2010). On the 
other hand, topography or slope rankings in the city 
ranged from 1 (low) to 10 (high) as shown in Fig.  3a. 
The highest topographic vulnerability was in the flat 
areas of the city close to Lake Tana, while the foothill 
and mountainous areas had a lower vulnerability.

Soil and aquifer media
Soil media rankings in Bahir Dar city ranged from 3 to 
8 (Fig.  2d), depending on soil grain size distribution. 
Groundwater vulnerability associated with soil media in 
most parts of the city (~ 97%) was low because the soil 
type is dominated by clay and silt (i.e., low permeability). 
The dominant soil types in the study area were found clay 
(~ 52%) and silt (~ 45%). The rest of the soil types in the 
city include loam, sandy loam, sand, and gravel. The pres-
ence of fine-grain materials such as clay and silt within 
the soil cover decreases intrinsic permeability, and retard 
or prevents contaminant migration (Added and Hamza 
2000) as they increase contaminant travel time (Tilahun 
and Merkel 2010). On the other hand, Aquifer media 
ranking in the city range from 5 (moderate) to 8 (high) 
(Fig. 2c). The vulnerability zones were moderate to highly 
fractured vesicular basalt (high vulnerability).

The impact of vadose zone and hydraulic conductivity
The impact of the vadose zone ranged from 4 (moderate) 
to 9 (high) (Fig. 3b) based on Sheikhy Narany et al. (2014). 

Most areas of Bahir Dar city showed moderate to higher 
vadose zone vulnerability. The highest vulnerability was 
observed along the northwest part of the city because of 
the gravel size layer of the vadose zone. The vadose zone 
has a similar influence as that of soil cover on the con-
taminant potential of an aquifer depending on perme-
ability and the attenuation characteristics of the media 
(Zghibi et  al. 2016). Larger grain sizes, such as gravels 
depict higher permeability and lower ability to filter con-
tamination (Rahman 2008). On the other hand, hydraulic 
conductivity ranking in the city ranges from 1(low) to 10 
(high). Most of the city’s low rating values were due to the 
low rate of horizontal water flows through the aquifer as 
observed from pumping test data. The higher the hydrau-
lic conductivity, the faster the water and contaminants 
circulate in the aquifer (Zouhri and Armand 2019).

Intrinsic and potential vulnerability
The range of vulnerability index was between 105 to 182 
as shown in Fig.  4. The values were reclassified into 5 
classes based on Aller (Aller et al. 1987a). The DRASTIC 
map showed the vulnerability was predominately mod-
erate to low (32%) around the border (northeast) part of 
the city with some agricultural activities; moderate vul-
nerable (49%) in the middle part of the city which cov-
ered about 18% of the study area (Fig. 4). The DRASTIC 
Vulnerability Index (DVI) results were found low (105 
to 119), moderate to low (119 to 139), moderate (139 to 

Fig. 4  Intrinsic DRASTIC Index (left) and Area Percentage Distribution (right)
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159), moderate to high (159 to 1799), and high (179 to 
182) vulnerability based on Aller (Aller et al. 1987a).

The results of potential risk map showed that the 
majority of Bahir Dar city was in the range of moderately 
high to very highly vulnerable as shown in Fig.  5. The 
DVI results were moderate low (127 to 139), moderate 
(139 to 159), moderately high (159 to 179), high (179 to 
200), and very high (200 to 218) vulnerability. The central 
part of the city showed a higher vulnerability to contami-
nation due to the combined effects of shallow depth to 
groundwater (about 1.5 m from the surface), gentle slope, 
and other anthropological activities such as discharge of 
industrial and domestic sewage effluents, septic tanks, 
and high population density. However, it was categorized 
as moderate and moderate-high vulnerability towards the 
boundary of the city due to relatively deep groundwater 
water table, which reduced the vulnerability, but with 
more agricultural activities. Based on the specific vulner-
ability map, most of the area (~ 55%) falls under the mod-
erate-high vulnerability class and about 33% of the area 
was under the high vulnerability category. Compared to 
the intrinsic vulnerability, the area under moderate-high 
and high vulnerability class was increased from 18 to 88% 
for the specific vulnerability. This showed the significant 
effect of human activity on the vulnerability of ground-
water to contamination.

Spatial distribution of nitrate
A relatively higher nitrate concentration was observed 
towards the outer part of Bahir Dar city, near Lake Tana 
(Fig. 6) due to the influence of the built-up area and agri-
cultural activities. A similar result had been reported 

by Goshu and Akoma (2011a). The concentration in the 
northeast part of the city was higher because this area 
is near Lake Tana as the major solid and liquid wastes 
were disposed of. Besides, land use has a great contribu-
tion to the higher concentration of nitrate. Urban and 
agricultural areas are shown to contribute to nitrate con-
tamination in groundwater from fertilizers, manures, and 
septic systems (Tesoriero and Voss 1997). The groundwa-
ter contamination caused by diffuse nitrate sources may 
pose a risk to human health and the environment (Lake 
et  al. 2003). The use of artificial fertilizers, disposal of 
wastes, and changes in land use were the main factors 

Fig. 5  Potential risk map (left) and Percent Area Distribution (right)

Fig. 6  Nitrate spatial distribution map
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responsible for the progressive increase in nitrate lev-
els in groundwater supplies (WHO 1985). The observed 
nitrate concentration exceeded the maximum contami-
nant level (10 mg/l) of nitrate set by (Consortium 2000).

The Pearson correlation coefficient for the intrinsic 
and specific DRASTIC model was found 0.24 and 0.26, 
respectively, as shown in Fig.  7. The value showed that 
the Intrinsic DRASTIC model and the Specific DRASTIC 
could not properly represent the contamination potential 
and the vulnerability map. Hence, the model needs modi-
fication of the vulnerability map for a reasonable repre-
sentation of the contamination potential.

Level difference
The level difference between the nitrate concentration 
and groundwater vulnerability classification was used as 
a criterion for assessing the performance of the DRAS-
TIC model (Huan et  al. 2012b). The vulnerability index 
and nitrate classification were divided into the same 
number of classes and the level difference was obtained 
by calculating the absolute value of the two variables. 
According to Stigter et al. (2006), the vulnerability assess-
ment is classified as correct if the level difference is from 
−1 to 1, overestimated if the absolute value of the level 
difference is from 2 to 3, and extremely overestimated 
when the absolute value of the level difference is from 4 
to 5.” Based on to this classification (Fig.  8), 51% of the 
area is correctly estimated, 46% is overestimated and 3% 
is extremely overestimated.

Rate modification using nitrate concentration
The Modified specific DRADTIC index was reclas-
sified into 7 classes as shown in Fig.  9. In the modified 
FR-DRASTIC method, 16% of the area was laid under 
moderate vulnerability class, 30% moderate-high vulner-
ability class, 28% high vulnerability, and 24% under very 
high vulnerability class. About 1% of the area was catego-
rized as low or very low vulnerability to contamination. 
The Pearson’s correlation coefficient between observed 
nitrate and the modified intrinsic DRASTIC index was 
0.45 while the correlation between measured nitrate and 
modified specific vulnerability was 0.5. This showed that 
the rate modification improved the performance of the 
DRASTIC model for predicting the vulnerability index.

Fig. 7  Correlation between Intrinsic DRASTIC vulnerability index and NO3 (left) and Correlation between Specific DRASTIC vulnerability index and 
NO3 (right)

Fig. 8  The level difference between the DRASTIC model and NO3 
concentration
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Single parameter sensitivity analysis (SPSA)
Aquifer vulnerability methods require validation to 
reduce subjectivity in the selection of rating ranges 
and to increase reliability (Leal and Castillo 2003). 
Based on the results, net recharge had the highest 
effect in single-parameter sensitivity analysis based 
on the equation (Eq.  9) because it had the highest 
mean modified weight (5.8) among all other param-
eters whilst topography showed the least sensitivity 

(0.9). In addition, aquifer media, soil media, and 
impact of vadose less exceeded original weight and 
had the mean modified weight of 3.1, 2.1, and 5.1, 
respectively. The rest of the parameters showed lower 
weight compared to the original weight (Fig. 10). Fig-
ure  11 below shows the vulnerability map after the 
modification.
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where MRWDI is the modified rate weight DRASTIC 
index, the parameter subscript r and mod are the modi-
fied rate.

(12)

MRWDI = 4.2× Drmod+5.8× Rrmod+3.1× Armod

+2.1× Srmod+0.9× Trmod+5.1× Irmod

+2.5× Crmod + 4 × LUrmod

Sensitivity analysis and modification
The highest vulnerability to groundwater contamination 
was from the net recharge parameter (mean value of 9), 
followed by the aquifer media which has a mean value of 
6.5. Topography, depth to water, hydraulic conductivity, 
and land use has the following values in order 5.6, 5.3, 
5.2, and 5. The coefficient of variance of hydraulic con-
ductivity, topography, and depth of water was high; 61.6, 
61.4, and 61.3, respectively. On the other hand, aquifer 

Fig. 11  Reduced modified rate and modified weight (MRW) DRASTIC map (left) and area percentage (right)

Fig. 12  FR-AHP DRASTIC vulnerability map (left) and area percentage (right)
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and vadose zone were the least variables during multiple 
map removal sensitive analysis. Finally, the reduced mod-
ified weight and rate map was prepared by removing both 
aquifer and vadose (Fig. 12).

Analytical hierarchy process (AHP)
The consistency ratio for all parameters was less than 
0.1 for the pairwise comparison weight adjustment. This 
indicated the acquired expert opinion was consistent 
and suitable for implementation of the AHP—DRASTIC 
model for developing risk mapping. The Pearson corre-
lation between analytical hierarchy process DRASTIC 
Index and observed nitrate concentration was 0.53. This 
showed a better correlation than the DRASTIC Index 
and the other methods. The results were in agreement 
with Neshat and Pradhan (2015a). Incorporating the 
fuzzy set theory for the assignment of weights for each 
feature associated with the potential source of vulner-
ability allows human reasoning to be incorporated in the 
control algorithm, coping with the parameter’s impreci-
sion (Asadi et al. 2017). Based on the FR-APH modified 
model, 31% of the area was under moderate to high and 
high vulnerability range, 39% was under moderate vul-
nerability range while 30% was under low and moder-
ate to low vulnerability range (Fig. 12). Compared to the 
original DRASTIC method, the vulnerable areas under 
high and moderate to high class were highly increased. 
The DRASTIC weight is shown in Table 4.

Conclusion
Groundwater quality evaluation is critically impor-
tant for the protection and sustainable management of 
groundwater resources, which are variably vulnerable to 
ever-increasing human-induced physical and chemical 
pressures. Modeling and mapping of groundwater vul-
nerability were critical for groundwater management. 
The first intrinsic vulnerability showed most of the area 
(67%) rely on moderate or moderate-high vulnerabil-
ity class. In addition, to consider anthropological activ-
ity, the specific map was prepared by incorporating the 
land use feature. The specific vulnerability map showed 
that most of the area (~ 88%) showed moderate or mod-
erate to high vulnerability. Based on the FR-Modified 
model, most of the area (~ 82%) was under moderate to 
high, high, or very high vulnerability range while about 
81% was under moderate-high to very high range based 

on single parameters sensitivity analysis. Based on the 
FR-APH method, about 65% of the area was under the 
moderate to high or high vulnerability range. The result 
depicted that groundwater at Bahir Dar city is at the risk 
of contamination and hence needs management atten-
tion. A probability-based statistical model for the rate 
adjustment techniques improved the model. Besides, the 
incorporation of expert opinions and judgments in the 
FR-APH mothed further improved the model.
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