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derived indices
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Abstract 

Empirical analyses were common methods for forest biomass estimation. Lately, satellite images are popularly used to 
study different attributes of forest vegetation. Sentinel-2 image provides a significant improvement in spectral cover-
age, spatial resolution and temporal frequency in assessing forest biomass. This study examined the potential use of 
multispectral (MS) bands, vegetation indices and biophysical variables derived from Sentinel-2 images in modeling 
above-ground biomass (AGB) in tropical afro-montane forest of the Yayu biosphere reserve. A coupled method of 
remote sensing and statistics was applied to establish a biomass estimation model using spectral data generated from 
Sentinel-2 image and AGB data measured from the field. Multispectral bands, vegetation indices and biophysical vari-
ables were extracted from the Sentinel-2 image. Forest stand parameters such as DBH and tree height were measured 
from sampling plots to calculate AGB using allometric equations. The strength of correlation between the measured 
biomass and the MS bands, indices and biophysical variables were examined using Pearson’s product-moment correla-
tion coefficients. A regression analysis was iteratively applied to identify the determinant variables for predicting AGB. 
The prediction results were validated based on the magnitude of coefficients of determination between the observed 
and the predicted values and the magnitude of the Root Mean Square Error (RMSE). A strong correlation (r ranging 
from 0.65 to 0.74) was observed between the biophysical variables from Sentinel-2 image and the measured AGB from 
the field. The MS Band 4 (red band), vegetation variables LAI, FCOVER and FAPAR, and band combination index IRECI 
yielded better results and are good predictor variables for forest AGB. The model goodness of fit between the observed 
and predicted AGB showed a coefficient of determination (r2) of 0.74 and RMSE of 0.16 ton C/pixel, which shows strong 
performance of the prediction model. Vegetation indices derived from Sentinel-2 imagery are good predictors of AGB in 
tropical afro-montane forests. Sentinel-2 image has improved the reliability of biomass estimation from remotely sensed 
data. Since field sampling plots were few in this study, the level of accuracy will likely improve with more number of field 
sample measurements.
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Background
Above-ground biomass in forest ecosystems plays 
an important role in the global carbon cycle and cli-
mate change mitigation by reducing atmospheric CO2 

concentration (Alkama and Cescatti 2016; Georgia et  al. 
2017). Holding 40% of the global terrestrial carbon, sus-
tainable management of tropical forests is crucial for 
mitigating climate change and conserving biodiversity 
(Canadell and Raupach 2008; Mauya et  al. 2015; Schuit 
et al. 2021). Data on forest productivity assessment, total 
biomass production, growth prediction and ecosystem 
services valuation are essential for forest management 
planning and utilization (Zianis and Mencuccini 2004; 
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Soenen et  al. 2010). However, data accuracy and collec-
tion methods have remained serious methodological chal-
lenges (Powell et al. 2010). Accurate data on forest biomass 
are needed for appropriate management decision making 
and monitoring. Data accuracy is a key factor for forest 
carbon accounting for successful implementation of car-
bon market mechanisms such as the REDD+ (Herold et al. 
2011). Techniques that facilitate rapid and accurate forest 
biomass estimation across spatial and temporal scales are 
very useful in reducing the level of uncertainty in carbon 
stock assessments and for informing strategic forest man-
agement plans (Soenen et  al. 2010; Mascaro et  al. 2011; 
Pan et al. 2011; Dou and Yang 2018).

Above-ground biomass and carbon stock estimation 
methods in forest ecosystems have evolved from the 
destructive direct measurements to the non-destructive 
indirect measurements using empirical equations and 
remotely sensed vegetation attributes (Table  1) (Brown 
1993; Vashum and Jayakumar 2012). The methods have 
their own merits and demerits. The direct harvesting 
method measures biomass from oven dry weight of tree/
shrub components (stems, branches, leaves, twigs) in the 
forest (Brown et al. 1989; Brown 1993; Hughes et al. 1999, 
MoA 2000). Although such data is the most accurate, the 
method is laborious, time consuming, expensive and not 
feasible for large area application. For large and protected 
forests, allometric equations are suitable and popularly 
applied globally (Brown 1997; Segura and Kanninen 2005; 
Navar 2009; Pearson et  al. 2005). The allometric method 
is non-destructive but it has limitations in accuracy and 
often designed for specific site conditions or species types 
(Navar 2009; Pearson et al. 2005).

The other non-destructive and reliable method is applica-
tion of remote sensing. Since the launch of resource scan-
ning satellites, remote sensing has been increasingly used 
for land use land cover mapping (Forkuor et al. 2017) and 
for forest biomass estimation (Steininger 2000; Lu et  al. 
2014). Satellite sensors measure vegetation parameters that 
are correlated with biomass such as height, crown size, den-
sity, volume, leaf area index and other attributes (Isbaex 
and Coelho 2020). By combining remote sensing data with 
field sample measurements and based on the strength of the 
relationship (Pertille et al. 2019), spatially explicit estimates 
of forest biomass can be generated for a large area through 
modeling (McRoberts et al. 2013; Castillo et al. 2017; Chen 
et al. 2018; Pandit et al. 2018). The coupled method estab-
lishes predictive models by selecting best predictor variables 
that can be applied for mapping and monitoring of forest 
biomass and carbon at multiple scales (Castillo et al. 2017). 
Such models are popularly used in forest vegetation stud-
ies (Dou and Yang 2018; Chen et al. 2018) and can also be 
applied for estimating nutrients in herbaceous biomass in 
rangelands (Ramoelo et al. 2015).

Various remote sensing products from optical sensors, 
radio and light detection platforms are used for biomass 
estimation. However, widespread application of the prod-
ucts is limited by many factors such as low accessibility or 
high cost, low resolutions (spatial, spectral and temporal), 
cloud and canopy penetration capacity, and data saturation 
problems (Lu 2006; Timothy et al. 2016; Chen et al. 2018). 
For instance, Landsat images are freely accessible and 
widely used for vegetation classification and biomass esti-
mation (Lyon et al. 1998; Timothy et al. 2015; Georgia et al. 
2017), but the data saturation problem causes under-esti-
mation of forest biomass from such images (Lu et al. 2014; 
Pandit et  al. 2018). In multispectral images, vegetation 
indices can be derived from the reflectance information 
in the visible, near infrared and shortwave infrared bands 
(Isbaex and Coelho 2020). Images with broad band widths 
and low spectral resolutions are insensitive to differences 
in plant characteristics and they are less reliable for above-
ground biomass estimation for very diverse types of sub-
tropical forests (Mutanga and Skidmore 2004; Pandit et al. 
2018). Hence, high resolution data in narrow band width 
are very useful to overcome data saturation, improve reli-
ability and accuracy. The Sentinel-2 platform has multi-
spectral instrument (MSI) sensor that yields images with 
better spectral coverage (e.g., red-edge band, shortwave 
infrared bands), high spatial resolution (e.g., 10  m, 20  m 
60 m) (Shoko and Mutanga 2017), and increased temporal 
frequency compared to the Landsat series (Gómez 2017; 
Pandit et al. 2018; Sun et al. 2019; Isbaex and Coelho 2020).

The Sentinel-2 image is freely accessible from the Euro-
pean Space Agency (ESA) hub, and has improved the 
application of the coupled modeling of biomass from field 
measured data with vegetation indices, spectral bands 
and biophysical variables (Zhang et al. 2017; Castillo et al. 
2017). The red-edge band in Sentinel-2 images is most 
suitable for assessing and mapping vegetation characteris-
tics (Ramoelo et al. 2015; Shoko and Mutanga 2017; Per-
tille et al. 2019). One of the advantages of Sentinel-2 image 
is the high spatial resolution (< 10 m) that can be approxi-
mated or resampled to the size of plots in field measured 
inventory data, which contributed to improving the accu-
racy of the model predictions (Isbaex and Coelho 2020). 
A study by Chrysafis et al. (2017) on the relationships of 
growing stock volume and Sentinel-2 indices in the Medi-
terranean forest reported a strong performance of the pre-
diction model with R2 = 0.63 and RMSE (root mean square 
error) of 63.11 m3  ha−1. Inclusion of Sentinel-2 texture 
matrices in the estimation of above-ground biomass in a 
sub-tropical forest of Nepal yielded a very high model per-
formance with R2 = 0.99 and RMSE of 4.51 Mg ha−1 (Pan-
dit et al. 2018). The general literature on coupled modeling 
of field measured data with Sentinel-2 indices show an 
improvement and robust outcomes on the accuracy of 
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the estimated biomass with high goodness of fit and low 
RMSE (Castillo et al. 2017; Chen et al. 2019).

In Ethiopia, forest biomass quantification methods 
have been largely done with direct measurement of oven 
dry weight of biomass of tree components (MoA 2000). 
This has gradually developed into plot-based measure-
ment of tree parameters and application of general allo-
metric equations (Yohannes et  al. 2015; Siraj 2019). For 
the lowland woodlands, species-specific equations have 
been developed for some species during the national bio-
mass inventory project (MoA 2000) that serve to quantify 
above-ground biomass in lowland vegetation. However, 
above-ground biomass estimation in the dry and moist 
montane forest ecosystems is done using general allo-
metric equations developed for sites with similar rainfall 
regimes and forest vegetation types (Pearson et al. 2005; 
Melese et  al. 2014;  Yohannes et  al. 2015; Dibaba et  al. 
2019). The allometric methods have limitations in data 
accuracy, applicability for inaccessible terrains and raises 
questions on representativeness of the forest ecosystems 
(Zianis and Mencuccini 2004; Shrestha 2011; Vashum 
and Jayakumar 2012). The protected forests, biosphere 
reserves and the last remaining intact Afro-montane 
forests in the country are located in dissected and inac-
cessible mountainous terrains, where physical access 
is limited (Kebede et  al. 2013). Proper accounting and 
reporting of the forest biomass and carbon sequestration 
in those forests is essential to meet the Nationally Deter-
mined Commitment on emission reduction and for the 
successful implementation of the Reduced Emission from 
Deforestation and Forest Degradation (REDD+) program 
in the country (MEFCC 2016). Therefore, this study has 
the following objectives (i) to investigate the relation-
ship between field measured biomass data and vegetation 
indices, biophysical variables and spectral bands derived 
from Sentinel-2 Multispectral image, (ii) to identify best 
predictor variables through correlation and regression 
analysis, and (iii) to develop above-ground biomass pre-
diction model using best estimator vegetation variables 
(iv) to produce forest carbon stock map using the devel-
oped model. The novelty of this work is the application 
of Sentinel-2 image for estimating biomass in a tropi-
cal Montane forest in Ethiopia, which is an addition to 
knowledge on the methods of forest biomass estimation.

Materials and methods
Description of the study area
The Yayu afro-montane forest is found in the Illubabor 
Zone, southwest of the country at about 550 km from the 
capital, Addis Ababa. The geographic location is between 
8° 4′ 56.05″–8° 24′ 40.46″ N latitude and 35° 44′ 53.85″–36° 
5′ 12.23″ E longitudes (Fig. 1). Large part of the Yanu afro-
montane forest is protected as a Forest Biosphere Reserve. 

The forest is part of the last remaining intact patches of 
natural forests in the southwest region. The forest has mul-
tiple economic, social and environmental benefits. It pro-
vides non-timber forest products, mainly spices, honey, 
and herbal medicine to rural communities for their live-
lihoods. The forest contains one of the largest forest bio-
mass in the country and hence significantly contributes 
to climate change mitigation. Besides, the Yayu forest is 
one of the last remaining montane-rainforests containing 
wild Coffee arabica gene pool populations in Ethiopia. The 
forest site is effectively serving as an in situ conservation 
forest for the wild Coffee arabica population gene pool 
(Gole et al. 2008; Schuit et al. 2021). Coffee makes the larg-
est share of living for the local communities. The climate 
is characterized by hot and humid tropical climate with a 
mean annual temperature of 25 °C, varying between 12.7 
and 26.1  °C. The region receives high mean annual rain-
fall of about 2100 mm, with high annual variability ranging 
from 1400 to 3000 (Gole et al. 2008).

The topography is complex with undulating hills and 
valleys dissected by several small streams draining into 
the Geba and Dogi Rivers. The elevation ranges between 
1217  m.a.s.l at the valley bottom to 2583  m.a.s.l at the 
highest point in the watershed (Fig. 2). The valley gorges 
and the mountains are not accessible and have very steep 
slopes. The dense and large patches of the forests are found 
in the valleys and on mountains, which makes is difficult to 
conduct a ground inventory of the forests.

Land use land cover classification
Before conducting the field sample measurement, the 
land use land cover of the study area was classified using 
a Landsat-8 dry season imagery acquired in Febru-
ary, 2018, which was downloaded from the open access 
Global Land Cover Facility (GLCF) (GIS Resources 2013). 
The forest land covered about 62%, which is the largest in 
the landscape followed by the cultivated agricultural land 
occupying about 30% of the total area (Fig.  3). The rest 
of the landscape is covered with shrub lands (3%), set-
tlements (2.7%) and wetlands (2.3%) (Fig.  3). Although 
the forest area is designated as a National Forest Priority 
Area and the Yayu Biosphere reserve is established within 
the forest landscape, the local communities are highly 
dependent on the forest mainly for harvesting natural 
coffee, spices and honey production. Thus, the Yayu bio-
sphere reserve forest has three functional zones allow-
ing farmers to harvest non-timber forest products in the 
transition and buffer zones while leaving the core zone as 
access-restricted conservation zone, which is primarily 
located in the valleys and mountains. As shown in Fig. 3, 
the dark green areas are the dense forests designated as 
core zones in the inaccessible high altitude steep moun-
tains and in the low altitude river valleys in the Yayu 
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forest. The landscapes in the middle altitude areas are the 
buffer and transition zones, in which agricultural cultiva-
tion is practiced with strict management actions (Gole 
et al. 2008).

Field sampling and measurement of tree parameters
The forest map of the study area was extracted from the 
land use land cover map produced using the Landsat-8 
image. A total of 20 field sampling plots were randomly 
drawn from the forest map in ArcGIS 10.2 platform. The 
coordinates of the random plots were used as references 
to locate the plots on the ground within the transitional, 
buffer and core zones of the Biosphere reserve forest by 
using a hand held Garmin III GPS. The size of each plot 
was 20 m × 20 m (400 m2) and the boundaries were delin-
eated using a measuring tape. In each plot, all trees with 
a diameter of ≥ 5 cm and a height of > 1.3 m were identi-
fied, recorded and measured for diameter at breast height 
(DBH) and total height (H). The DBH was measured using 
diameter tape while height was measured using Sunnto 
clinometer.

Above‑ground biomass and carbon stock estimation 
from field measured data
There is well established relationship between measurable 
tree parameters and forest stand parameters (e.g., volume, 
biomass and density) for natural vegetation types in the 
tropics, which are difficult for direct measurements (Husch 
et al. 2003). Based on intensive sampling and analysis, allo-
metric equations are often developed and globally used to 
estimate forest biomass from tree parameter data (Pearson 
et al. 2005). The above-ground biomass and carbon stock 
in the Yayu forest was quantified by selecting suitable allo-
metric equation that is applicable to the Yayu tropical afro-
montane forest. The equation was established for tropical 
forests and it has been widely applied (Chave et al. 2004) to 
quantify biomass in tropical dry afro-montane forests that 
have similar climatic conditions to that of the Yayu forest. 
The equation uses DBH and height measured from the 
sampling plots as well as specific wood density of each spe-
cies to convert the wood volume into biomass. The specific 
wood density data, which is the dry mass of a unit volume 
of fresh wood of a tree, was obtained from a tropical spe-
cies wood density database source (Gisel et al. 1992).

Fig. 1  Location map of the study area, Yayu forest, in the South Western region of Ethiopia
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where AGB is Above-ground biomass (g), ρ is specific 
wood density (g  cm−3), D2 is diameter at breast height 
(DBH) (cm), H is total height of a tree (m).

The above-ground biomass was converted into carbon 
equivalent using the biomass conversion factor or carbon 
fraction value of 0.47 (IPCC 2006).

where, C is carbon stock (g), and CF is carbon fraction of 
above-ground biomass.

Sentinel‑2 image pre‑processing
The Sentinel-2 satellite imagery, taken in the dry sea-
son of February 2018, was downloaded from the open 
access European Space Agency (ESA 2019) hub. The 
raw image was pre-processed using the Sentinel Appli-
cation Platform (SNAP) and quantum GIS (QGIS) 
Software. The transformation from radiance to surface 
reflectance was done by applying the Dark Object Sub-
traction (DOS) method using the semi-automatic clas-
sification plugin in QGIS software. The DOS method 
removes the darkest pixel in each band that might be 

(1)AGB = 0.0673×

(

ρD
2
H

)0.976

(2)C = AGB× CF

affected by atmospheric scattering (Chavez 1988). A 
radiometric correction was done to reduce atmos-
pheric and sun angle effects (Baillarin et  al. 2012) and 
to make the optical image a Level-2A product with bot-
tom-of atmosphere reflectance. The Sentinel-2 Multi-
spectral instrument (MSI) with swath width of 290 km 
was Ortho-rectified to UTM Zone 37N projection and 
combined with the Shuttle Radar Topographic Mission 
(SRTM) 3 s digital elevation model to improve the accu-
racy. The processed image was then resampled the 10 m 
bands into 20  m resolution. The high resolution 10  m 
bands, the blue, green, red and near infrared bands, 
were resampled into a 20 m pixel size resolution using 
the ArcGIS software, so as to correspond with the 20 m 
vegetation sampling plot size of the field data meas-
urement. The pre-processed and resampled Sentinel-2 
image was then used for deriving vegetation indices 
(VIs) and biophysical variables (BPVs) from combina-
tion of the multi-spectral bands (Fig. 4).

Vegetation indices (VI) extraction and mapping
In a remotely sensed data, a vegetation index is a spectral 
transformation of two or more bands designed to enhance 
the contribution of vegetation properties and allow reli-
able spatial and temporal inter-comparisons of terrestrial 

Fig. 2  Digital elevation model (DEM) map of the Yayu forest showing the highest and lowest elevation points in the study forest
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photosynthetic activity and canopy structural variations 
(Huete et  al. 2000; Castillo et  al. 2017; Taddesse et  al. 
2020). Vegetation indices extracted from Satellite data 
have emerged as important tools in monitoring, mapping 
and managing terrestrial vegetation as the indices pro-
vide radiometric measurement of the quantity, structure 
and condition of vegetation, and effectively serve as useful 
indicators of seasonal and inter-annual variations (Isbaex 
and Coelho 2020).

There are many VIs with similar functionality and 
most of them use the inverse relationship between red 
and near-infrared reflectance associated with healthy 
green vegetation (Pertille et  al. 2019). According to Ban-
nari et  al. (1995), VIs are normally classified based on a 
range of attributes such as the number of spectral bands 
(2 or greater than 2); the method of calculations (ratio or 
orthogonal), depending on the required objective; and the 
historical development (as first generation VIs or second 
generation VIs). In order to compare the effectiveness of 
different VIs, Lyon et  al. (1998) classified seven types of 
VIs based on their computational methods (Subtraction, 

Division or Rational Transform). The selection of pertinent 
VIs improved with the advancement in hyper-spectral 
remote sensing technology and currently high resolution 
reflectance spectrums are available for multispectral VIs 
analysis (Isbaex and Coelho 2020).

The five vegetation indices in Table 2 were selected based 
on their performance of biomass estimation in previous 
studies suing Sentinel-2 images (Castillo et al. 2017; Pandit 
et al. 2018; Chen et al. 2018). The VIs were computed and 
mapped from the resampled multispectral bands and their 
combinations in ArcGIS and QGIS platforms based on the 
spectral values (Fig. 5). The bands 1, 9, and 10 with 60 m 
pixel size were excluded from the computation because of 
the low resolution.

Biophysical variables (BPVs) extraction and mapping
Vegetation surface biophysical or canopy properties 
provide an understanding of the physics of the interac-
tions between solar radiation and vegetation elements 
(Asrar et al. 1989; Dou and Yang 2018). Vegetation sur-
face parameter relates vegetation attribute to its spectral 

Fig. 3  Land use land cover map of the Yayu forest in the study area, showing the forests distributed in the high altitude parts of the mountain and 
in the valley gorges
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Fig. 4  Methodological flow chart showing the data sources, analytical procedures and final outputs

Table 2  List of selected multispectral bands, derived VIs and BPVs from Sentinel-2 image

Multispectral bands and description

 B2 Blue, 490 nm (10 m) _Resampled to 20 m

 B3 Green, 560 nm (10 m) _Resampled to 20 m

 B4 Red, 665 nm (10 m) _Resampled to 20 m

 B5 Red edge, 705 nm (20 m)

 B6 Red edge, 749 nm (20 m)

 B7 Red edge, 783 nm (20 m)

 B8 Near Infrared, 842 nm (10 m) _Resampled to 20 m

 B8a Near Infrared, 865 nm (20 m)

 B11 Short Wave IR, 1610 nm (20 m)

 B12 Short Wave IR, 2190 nm (20 m)

Vegetation indices (VIs)

 IRICI (Inverted Red-Edge Chlorophyll Index) (Band 7 − Band 4)/(Band 5/Band 6)

 NDVI (Normalized Difference Vegetation Index) (Band 8 − Band 4)/(Band 8 + Band 4)

 TNDVI (Transformed Normalized Difference Vegetation Index) [(Band 8 − Band 4)/(Band 8 + Band 4) + 0.5]1/2

 NDVI45 (Normalized Difference Vegetation Index with band 4 and 5) (Band 5 − Band 4)/(Band 5 + Band 4)

 SAVI (Soil Adjusted Vegetation Index) (Band 8 − Band 4/Band 8 + Band 4 + 0.5) * 1.5

Biophysical variables (BPVs)

 LAI Leaf area index

 FCOVER Fraction of vegetation cover

 FPARA​ Fraction of Absorbed Photosynthetically Active Radiation

 Cab Chlorophyll content in the leaf
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signature or reflectance value thereby providing reason-
able estimates of vegetation properties across spectral, 
spatial and temporal scales (Asrar et al. 1989). The meas-
urements of vegetation attributes include leaf area index 
(LAI), green leaf area index (GLAI), percent green cover 
or fractional green cover, chlorophyll content, green bio-
mass and fraction of absorbed photo-synthetically active 
radiation (FAPAR). According to Widlowski et al. (2004), 
biophysical variables describe the spatial distribution of 

vegetation state and dynamics, thus, are useful for bio-
mass estimation. The four biophysical variables (Table 2) 
were selected based on their performance for biomass 
estimation in other studies (Castillo et  al. 2017; Chen 
et al. 2018). The biophysical variables were computed by 
the SNAP toolbox using the Biophysical variable proces-
sor (SNAP 2016). The attribute maps were produced in 
ArcGIS and QGIS software based on the surface reflec-
tance values of each attribute (Fig. 6).

Fig. 5  Maps of the vegetation indices showing the highest and lowest spectral values computed from combination of bands indicating 
distribution of green vegetation
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Extraction of the pixel values of predictor variables
The pixel values for each variable derived from the Senti-
nel-2 image were extracted using zonal statistics in Arc-
GIS. The field plot geographical location (latitude and 
longitude) points were used as references to match the pix-
els as shown in Fig. 7. The extracted pixel values for each 
predictor variable are shown in Tables 3 and 4. The values 
were exported in CSV (comma separated variable) data 
formats for correlation and regression analysis in SPSS 
software.

Data analysis
The forest biomass data measured from the field plots and 
the extracted values for the predictor variables from the 
Sentinel-2 images were organized into a spreadsheet with 
a CSV format. A pairwise Pearson’s product-moment cor-
relation test was conducted to determine the correlation of 
the observed above-ground biomass and the predictor var-
iables from the Sentinel-2 image using SPSS v.20 software. 

The predictor variables that showed significant correlation 
with the measured biomass data were selected for regres-
sion analysis. A regression test was iteratively performed 
between the measured biomass and the significantly cor-
related predictor variables in order to develop a regression 
model for biomass prediction.

The prediction model was then evaluated based on the 
magnitude of the Root Mean Square Error (RMSE) and 
value of the coefficient of determination (r2). The r2 was 
preferred because it has a standard measure of values 
ranging from 0 to 1. The r2 also shows the percentage of 
the variability explained by the model (Husch et al. 2003). 
This helps to understand the relationship between the 
independent variables (indices) and the dependent varia-
ble (biomass) (Peters 2007). The best prediction model was 
developed by selecting the variables with high r2 and a low 
RMSE values. The equation developed from the regres-
sion model was then applied to estimate the AGB by using 

Fig. 6  Maps of the vegetation biophysical variables showing the highest and lowest surface reflectance values of the vegetation canopy and its 
spatial distribution
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a Field sample plots distribu�on 
over the study area

b Field sample plot overlaid on a pixel

Fig. 7  Pixel values extraction by overlaying field samples plots on Sentinel-2 image pixels in ArcGIS platform

Table 3  Pixel values extracted from selected bands of Sentinel-2 image and AGB measured from plots

Plot no Latitude Longitude Area (m2) AGB (ton) B2 B3 B4 B5 B6 B7 B8 B8a B11 B12

1 0147368 0931779 400 0.20 0.1 0.09 0.08 0.1 0.17 0.2 0.2 0.23 0.19 0.1

2 0145903 0932027 400 0.98 0.09 0.08 0.06 0.09 0.21 0.27 0.2 0.29 0.14 0.07

3 0147329 0934143 400 0.49 0.09 0.08 0.06 0.1 0.17 0.2 0.23 0.23 0.18 0.1

4 0147023 0934962 400 0.24 0.09 0.08 0.06 0.09 0.19 0.22 0.23 0.25 0.17 0.09

5 0150452 0925206 400 0.10 0.09 0.08 0.06 0.09 0.17 0.2 0.2 0.24 0.16 0.09

6 0147389 0929212 400 0.93 0.09 0.08 0.05 0.08 0.18 0.22 0.17 0.24 0.11 0.05

7 0147854 0927192 400 0.86 0.09 0.08 0.06 0.08 0.17 0.2 0.19 0.23 0.13 0.06

8 0155815 0923434 400 0.81 0.09 0.08 0.07 0.09 0.17 0.2 0.21 0.22 0.16 0.09

9 0150437 0922525 400 0.19 0.1 0.08 0.07 0.09 0.16 0.19 0.18 0.21 0.17 0.09

10 0149495 0922560 400 0.40 0.1 0.09 0.07 0.09 0.14 0.16 0.21 0.18 0.15 0.09

11 0149,358 0922303 400 0.62 0.1 0.09 0.06 0.1 0.17 0.19 0.25 0.23 0.18 0.1

12 0151628 0937211 400 0.39 0.09 0.08 0.06 0.09 0.18 0.22 0.23 0.25 0.17 0.09

13 0147518 0926112 400 1.10 0.09 0.08 0.06 0.09 0.18 0.22 0.25 0.24 0.14 0.07

14 0147484 0926386 400 0.62 0.09 0.08 0.06 0.08 0.15 0.17 0.17 0.2 0.13 0.06

15 0145704 0922617 400 0.48 0.1 0.09 0.06 0.09 0.18 0.23 0.25 0.25 0.15 0.08

16 0146176 0922736 400 0.46 0.1 0.08 0.07 0.09 0.18 0.21 0.2 0.24 0.17 0.09

17 0146521 0922727 400 0.38 0.1 0.09 0.07 0.09 0.17 0.21 0.2 0.23 0.16 0.08

18 0163083 0926702 400 0.34 0.09 0.08 0.06 0.08 0.16 0.18 0.19 0.2 0.16 0.09

19 0822091 0917444 400 0.69 0.08 0.07 0.05 0.07 0.15 0.19 0.19 0.22 0.11 0.05

20 0151444 0937851 400 0.75 0.09 0.07 0.06 0.08 0.15 0.19 0.17 0.21 0.13 0.07
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the vegetation indices. The significance of the model was 
assessed from the P-value at α = 0.05.

where AGBo is observed AGB value, AGBp is predicted 
AGB value, and n is number of samples

Results
Above‑ground biomass from field measurements
The highest amount of AGB was recorded from the sample 
plots located in the core zone of the Yayu forest biosphere 
reserve (Table 5). The core zone is access-restricted and far 
from the sources of disturbances. Large sized canopy trees 
are present in this part of the forest compared to the buffer 
and transition zones (Annex 1). The field measured tree 
data from the respective plots shows that the number and 
size category of trees is relatively high compared to those 
recorded from the buffer and transitions zones (Gole et al. 
2008; Schuit et al. 2021). The least amount of the AGB was 
recorded in the plots located in the disturbed and semi-
disturbed forest, which is the buffer and transition zones 
of the biosphere reserve (Table 5) (Gole et al. 2008). This is 
perhaps directly linked to the degree of human impact on 
the forest since the core zone is protected while the buffer 
and transition zones are open for community access that 
might lead to selective removal of mature trees from the 
forest (Schuit et al. 2021).

(3)RMSE =

√

∑n
i=1

(AGBo− AGBp)

n

Correlation between AGB and the predictor variables 
from the Sentinel‑2 image
The result of the correlation analysis between the meas-
ured above-ground biomass and the predictor variables 
extracted from the Sentinel-2 images showed a strong 
correlation between the observed AGB and most of the 
vegetation indices, with correlation coefficient (r) values 
ranging from 0.36 to 0.74. Among the predictor variables, 
NDVI (r = 0.36), IRECI (r = 0.5), NDVI45 (r = 0.40), LAI 
(r = 0.74), FAPAR (r = 0.7), FCOVER (r = 0.64) and Cab 
(r = 0.69) were strongly correlated with the AGB (Table 6). 
The IRECI from the vegetation indices and LAI from 
the biophysical variables were best correlated with the 
observed/measured AGB. Among the different predictor 
variables, the biophysical variables were found strongly 
correlated with the above-ground biomass (r = 0.65–0.74).

Relationship between measured above‑ground biomass 
and derived indices
The results from the linear regression analysis revealed 
that there is a positive linear relationship between forest 
above-ground biomass and the spectral vegetation indi-
ces extracted from the Sentinel-2 satellite images (Fig.  8; 
r2 = 0.017–0.27). Similarly, the forest above-ground bio-
mass has showed a strong and linear relationship with 
the surface reflectance biophysical variables drawn from 
the satellite images (Fig. 9; r2 = 0.42–0.54). From the MSI 
bands, Band 4 performed better than other Sentinel-2 

Table 4  Pixel values of vegetation indices extracted from Sentinel-2 image and AGB measured from plots

Plot no Latitude Longitude Area (m2) AGB(ton) TNDVI NDVI45 SAVI IRECI NDVI LAI FAPAR FCOVER Cab

1 0147368 0931779 400 0.20 0.15 0.14 0.25 0.24 0.46 0.21 0.4 0.32 0.55

2 0145903 0932027 400 0.98 0.17 0.18 0.29 0.31 0.56 0.32 0.52 0.41 0.79

3 0147329 0934143 400 0.49 0.19 0.18 0.33 0.34 0.58 0.3 0.5 0.41 0.76

4 0147023 0934962 400 0.24 0.19 0.18 0.32 0.32 0.57 0.27 0.46 0.39 0.68

5 0150452 0925206 400 0.10 0.16 0.18 0.27 0.26 0.52 0.26 0.45 0.36 0.62

6 0147389 0929212 400 0.93 0.14 0.18 0.24 0.39 0.52 0.38 0.57 0.46 1

7 0147854 0927192 400 0.86 0.15 0.18 0.27 0.28 0.53 0.31 0.5 0.4 0.73

8 0155815 0923434 400 0.81 0.16 0.18 0.28 0.26 0.52 0.26 0.46 0.37 0.63

9 0150437 0922525 400 0.19 0.13 0.15 0.22 0.19 0.44 0.19 0.35 0.28 0.47

10 0149495 0922560 400 0.40 0.16 0.14 0.27 0.2 0.5 0.21 0.38 0.31 0.49

11 0149358 0922303 400 0.62 0.21 0.17 0.34 0.31 0.59 0.29 0.48 0.4 0.68

12 0151628 0937211 400 0.39 0.19 0.19 0.32 0.31 0.57 0.28 0.49 0.4 0.73

13 0147518 0926112 400 1.10 0.21 0.18 0.35 0.36 0.61 0.35 0.57 0.46 0.91

14 0147484 0926386 400 0.62 0.13 0.13 0.23 0.22 0.49 0.25 0.42 0.33 0.62

15 0145704 0922617 400 0.48 0.21 0.17 0.34 0.33 0.59 0.31 0.52 0.43 0.8

16 0146176 0922736 400 0.46 0.16 0.16 0.27 0.27 0.51 0.26 0.45 0.37 0.64

17 0146521 0922727 400 0.38 0.15 0.13 0.25 0.24 0.48 0.24 0.42 0.34 0.59

18 0163083 0926702 400 0.34 0.15 0.15 0.26 0.24 0.52 0.22 0.37 0.31 0.56

19 0822091 0917444 400 0.69 0.17 0.17 0.3 0.33 0.61 0.36 0.54 0.42 0.97

20 0151444 0937851 400 0.75 0.14 0.16 0.24 0.26 0.51 0.29 0.47 0.36 0.76
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bands (r = − 0.44 and r2 = 0.2), which is selected for devel-
oping the AGB prediction regression model. The best 
predictor variables for the biomass prediction model 
development were selected based on the strength of the 
relationship between the indices and the measured above-
ground biomass.

Modeling AGB biomass prediction from vegetation indices
From the regression analysis, the variables with high values 
of coefficient of determination were selected for the above-
ground biomass prediction. The variables with low values 

of coefficient of determination and those showing multi-
collinearity were excluded from the model. Only five vari-
ables were selected to develop the model and the remaining 
were excluded because of very low values of coefficient of 
determination and presence of multi-collinearity (Table 7). 
Predictor variables with multi-collinearity can cause high 
variance in regression analysis and should be excluded from 
the modeling (Chen et al. 2018). As a result, LAI, FCOVER 
and FAPAR from the biophysical variables, IRECI from the 
vegetation indices and Band 4 from the MSI bands were 
selected for the model development (Table  7). The results 

Table 5  Forest above-ground biomass estimated from field sample plot measurements

* Refers to plots located in the core zone of the biosphere reserve forest and ** refers to plots located in the buffer and transition zone of the biosphere reserve forest

Sample plot no UTM location Plot area Above-ground biomass

Latitude (m) Longitude (m) Area (m2) Kg plot−1 ton plot−1

1** 0147368 0931779 400 196.66 0.19666

2 0145,903 0932027 400 975.2 0.9752

3 0147329 0934143 400 489.16 0.48916

4** 0147023 0934962 400 237.39 0.23739

5** 0150452 0925206 400 104.46 0.10446

6* 0147389 0929212 400 927.31 0.92731

7* 0147854 0927192 400 859.69 0.85969

8* 0155815 0923434 400 807.59 0.80759

9** 0150437 0922525 400 194.95 0.19495

10 0149495 0922560 400 403.98 0.40398

11 0149358 0922303 400 617.37 0.61737

12 0151628 0937211 400 390.43 0.39043

13* 0147518 0926112 400 1104.14 1.10414

14 0147484 0926386 400 618.4 0.6184

15 0145704 0922617 400 481.18 0.48118

16 0146176 0922736 400 461.42 0.46142

17 0146521 0922727 400 383.69 0.38369

18 0163083 0926702 400 337.88 0.33788

19 0822091 0917444 400 686.18 0.68618

20 0151444 0937851 400 754.02 0.75402

Table 6  Correlation between field measured above-ground biomass and selected vegetation index predictor variables

AGB (ton plot−1) IRECI NDVI NDVI
45

LAI FAPAR FCOVER Cab B4

AGB (ton plot−1) 1.00

IRECI 0.52 1.00

NDVI 0.36 0.89 1.00

NDVI45 0.40 0.88 0.98 1.00

LAI 0.74 0.90 0.92 0.94 1.00

FAPAR 0.71 0.92 0.86 0.96 0.98 1.00

FCOVER 0.65 0.96 0.97 0.95 0.95 0.98 1.00

Cab 0.69 0.94 0.91 0.94 0.90 0.92 0.88 1.00

B4 − 0.44 − 0.67 − 0.65 − 0.60 − 0.78 − 0.68 − 0.66 − 0.74 1.00
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show that the biophysical variables are better suited for 
developing forest biomass prediction model compared to 
other types of vegetation indices (Table 7).

Based on the above regression results, the biomass pre-
diction equation was developed to estimate the above-
ground biomass of the forest vegetation using Sentinel-2 
image extracted variables as shown in equation below.

where B4 is Band 4, LAI is Leaf area index, IRECI is 
Inverted Red-Edge Chlorophyll Index, FCOVER is Frac-
tion of vegetation cover, FAPAR is Fraction of Absorbed 
Photo-synthetically Active Radiation. These indices can 
be derived from any Sentinel-2 image and can be used 
to predict forest above-ground biomass using the pre-
diction equation in a tropical afro-montane forest. The 

(4)
AGB =(20.176 ∗ B4)+ (6.633 ∗ FCOVER)

− (6.180 ∗ FAPAR)+ (13.452 ∗ LAI)

− (6.307 ∗ IRECI)− 2.282

prediction model was validated using the measured or 
observed values of above-ground biomass from the field 
(Table  8). The measure of the goodness of fit between 
the observed and predicted values showed a strong lin-
ear relationship with a coefficient of determination of 
r2 = 0.73 (Fig. 10).

Discussion
The significance of the coupled modeling approach for 
biomass estimation relates to the field measured data from 
representative samples (Zhao et  al. 2021). Although the 
numbers of sample plots were small, they represented the 
different layers of vegetation in the Yayu biosphere reserve 
(Annex 1). The plot measurement results corresponded 
with the forest biosphere strata of the Yayu forest, depict-
ing the forest canopy structure in the different manage-
ment zones of the forest. The core zones have high canopy 
trees with relatively dense standing stock (Gole et al. 2008). 
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Fig. 8  Linear relationship between observed AGB and spectral vegetation indices extracted from Sentinel-2 MSI
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Fig. 9  Linear relationship between observed AGB and vegetation biophysical variables extracted from Sentinel-2 MSI

Table 7  Linear regression result of the observed AGB with selected predictor variables

a Predictors: (Constant), B4, FCOVER, IRECI, LAI, FAPAR
b Dependent variable: AGB_T

Model summary

Model R R2 Adjusted R2 Std. error of the estimate

1 0.856a 0.733 0.638 0.1714926

Coefficientsb

Model Unstandardized coefficients Standardized coefficients t-value Sig

B Std. error Beta

1

 (Constant) − 2.282 0.905 − 2.522 0.024

 IRECI − 6.307 3.138 − 1.195 − 2.010 0.064

 LAI 13.452 6.069 2.433 2.217 0.044

 FAPAR − 6.180 7.340 − 1.364 − 0.842 0.414

 FCOVER 6.633 7.471 1.172 0.888 0.390

 B4 20.176 12.105 0.507 1.667 0.118
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The magnitude of the Biomass measured from those plots 
located in the buffer zone was lower than those measured 
from plots located in the core zone. Unlike the buffer and 
transition zones, the core zone is protected for biodiver-
sity reserve and conservation (Gole et al. 2008; Schuit et al. 
2021). The core zone is inaccessible, and the size and den-
sity of trees is relatively high compared to the transition 
zones. On the contrary, the buffer and transition zones are 
freely accessible for agricultural production and it is man-
aged for coffee cultivation (Schuit et  al. 2021). Trees are 
sparse and hence, biomass density is low. The structural 
stratification and management zonation of the vegetation 
has corresponded with the surface reflectance characteri-
zation of the forest in the Sentinel-2 images, which was 
very well illustrated in the vegetation indices maps (Figs. 5 
and 6). This has positively contributed to signature sam-
pling and classification accuracy.

The average measured biomass per unit area agrees with 
results reported in earlier studies for similar afro-montane 
forest types in the Central highlands of Ethiopia (Yohannes 
et  al. 2015; Dibaba et  al. 2019; Eshetu and Hailu 2020). 
These studies used similar coupled methods of sample plot 
measurements and allometric equations for the biomass 
estimation. Among the different vegetation indices derived 
from the Sentinel-2 image, only IRECI showed strong cor-
relation with the measured biomass values. This is because 

IRECI uses the red-edge bands (Band 6 and Band 7) that 
are well related to healthy vegetation biomass (Castillo 
et  al. 2017; Isbaex and Coelho 2020). On the contrary, 
most of the vegetation biophysical variables were strongly 
correlated with the measured biomass. This suggests 
that vegetation biophysical indices or surface reflectance 
attributes are better predictor variables for above-ground 
biomass estimation than the other vegetation indices and 
multispectral bands (Taddesse et  al. 2020). A study by 
Chen et al. (2018) revealed that the vegetation biophysical 
variables of Sentinel-2 were the most relevant and impor-
tant predictors for explaining the observed variability of 
AGB. This is possibly because the Sentinel-2 product has 
comparatively large spatial coverage and high resolution 
to perform efficiently for estimation of biomass than other 
open-source sensor data products (Juniansah et al. 2018). 
LAI was found to be the single most important predictor 
by showing strong correlation with measured biomass. 
Similar observation has been reported by Castillo et  al. 
(2017). LAI is known to be a very good indicator of vegeta-
tion density and can accurately describe state of vegetation 
compared to other canopy variables (Dusseux et al. 2015; 
Castillo et al. 2017). Those variables with high coefficient 
of determination (i.e., most of the vegetation biophysical 
indices) and those without multi-collinearity (e.g., LAI, 
FCOVER, FAPAR, IRECI and Band 4) were found to be 
suitable predictors of biomass in the regression model. 
This is consistent with a study by Pandit et al. (2018), who 
reported that Sentinel-2 images yielded reliable estimates 
of forest biomass and carbon stock using prediction algo-
rithms, after observing a strong relationship between 
selected vegetation biophysical variables and measured 
biomass from the forest with a high measure of goodness 
of fit (R2 = 0.81). This also agrees with the model goodness 
of fit between the predicted and observed values in this 
study (Fig. 10).

Using the raster calculator of ArcGIS and the forest layer 
thematic map, the above-ground biomass was mapped by 
applying the prediction model (Fig.  11). The result cor-
responded very well with the biosphere structural zones 
(Gole et al. 2008). The highest amount of the AGB is in the 
range of 6 to 10 ton per pixel or 150 to 250 t ha−1, which 
are those areas closer to the core conservation zone of the 
forest biosphere reserve. In the transitional and the buffer 
zone of the forest, where access roads are available and 
where agricultural activities are permitted, the concentra-
tion of biomass is below 6 ton per pixel (Fig. 11). Within 
the core zone, a predicted value of biomass higher than 10 
ton per pixel (250 t  ha−1) has been recorded in scattered 
pocket areas of the forest reserve. These spots are located 
in the steepest and most inaccessible parts of the forest, 
in which anthropogenic activities are restricted and very 
minimum.

Table 8  Values of the observed and predicted above-ground 
biomass

Plot code Latitude (m) Longitude 
(m)

Observed 
AGB (ton/
plot)

Predicted 
AGB (ton/
pixel)

1 0147368 0931779 0.20 0.29

2 0145903 0932027 0.98 0.78

3 0147329 0934143 0.49 0.45

4 0147023 0934962 0.24 0.29

5 0150452 0925206 0.10 0.39

6 0147389 0929212 0.93 0.91

7 0147854 0927192 0.86 0.90

8 0155815 0923434 0.81 0.60

9 0150437 0922525 0.19 0.18

10 0149495 0922560 0.40 0.40

11 0149358 0922303 0.62 0.56

12 0151628 0937211 0.39 0.36

13 0147518 0926112 1.10 0.89

14 0147484 0926386 0.62 0.50

15 0145704 0922617 0.48 0.66

16 0146176 0922736 0.46 0.60

17 0146521 0922727 0.38 0.50

18 0163083 0926702 0.34 0.14

19 0822091 0917444 0.69 0.94

20 0151444 0937851 0.75 0.67



Page 17 of 22Muhe and Argaw ﻿Environmental Systems Research            (2022) 11:5 	

y = 0.7385x + 0.1444
R² = 0.7386

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Pr
ed

ict
ed

 A
GB

 (t
on

/p
ix

el
)

Observed AGB 
Fig. 10  Scatter plot showing goodness of fit between the observed and predicted values of the above-ground biomass

Fig. 11  Map of the predicted values of the above-ground biomass of Yayu forest biosphere reserve
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spectral and spatial resolution, is found to be very suitable 
for biomass estimation in the tropical high forest areas.

Conclusion
Forest biomass and carbon stock estimation using 
remotely sensed data are becoming more reliable due to 
improvements in spectral and spatial resolutions of prod-
ucts from different sensors. Recently, Sentinel-2 optical 
data are increasingly applied for estimating above-ground 
biomass and other vegetation attributes. This study tested 
the potential application of Sentinel-2 derived vegetation 
indices for modeling of above-ground biomass estimation 
in a tropical afro-montane forest. The results showed that 
biophysical variables (canopy surface reflectance values) 
are strongly correlated with forest above-ground biomass 
compared to the multispectral bands and band combina-
tion vegetation indices. Multispectral band 4 (red band), 
the biophysical variables LAI, FAPAR, FCOVER and 
the vegetation index IRECI showed high coefficient of 

Fig. 12  Map of the predicted carbon stock in the biosphere reserve of Yayu forest

The above-ground forest biomass was converted to 
the carbon equivalent using carbon conversion factor 
(a default value of CF = 0.47) and mapped using the ras-
ter calculator in ArcGIS. The carbon stock map is simi-
lar to the biomass distribution map and the inaccessible 
areas were found to have higher amount of carbon stock 
with a value of 7.05  ton/pixel or 176.25  t  ha−1. Likewise, 
the lowest amount of carbon stock, i.e., 2.82  ton/pixel or 
70.5 t ha−1, was recorded in the accessible and transitional 
zone of the biosphere reserve forest (Fig. 12).

The interesting finding in this study is that the biophysical 
variables derived from the Sentinel-2 images are found to be 
the most important predictors of the forest biomass vegeta-
tion. The predicted carbon stock maps well corresponded 
with the values recorded from the field measurements. 
These variables are directly related to the photosynthetic 
activity of the plants and the canopy structure, which deter-
mine the primary productivity of the forest ecosystems 
(Taddesse et al. 2020). The Sentinel-2 image, with its high 
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determination with low margin of error. These variables 
are good predictors for modeling forest above-ground 
biomass estimation using Sentinel-2 imagery. The results 
demonstrated that Sentinel-2 imagery is highly suit-
able for above-ground biomass estimation. From the low 
margin of error we can conclude that Sentinel-2 image 

Annex 1. Sample plots number 1 and 4 in the buffer zone, and plots 6 and 8 located in the core zone 
of the biosphere reserve forest with species recorded and measured tree parameters except density

Plot ID: 1 
Lat.: 0147368 
Long.: 0931779

Species name Tree parameters

Plot no Tree Tag Family Genus Species DBH (cm) Height (m) Density* (g/cm3)

1 204 Moraceae Ficus sur 37.7 14 0.441

1 205 Moraceae Ficus sur 35.7 14 0.441

1 206 Fabaceae Millettia ferruginea 23.8 14 0.738

1 207 Fabaceae Millettia ferruginea 20.1 16 0.738

1 209 Fabaceae Albizia grandibracteata 17.1 13 0.534

1 210 Euphorbiaceae Bridelia micrantha 30.3 14 0.54

1 211 Myrsinaceae Maesa lanceolata 12.6 8 0.676

1 212 Fabaceae Millettia ferruginea 17.3 15 0.738

1 213 Fabaceae Albizia grandibracteata 20 14 0.534

1 215 Boraginaceae Ehretia cymosa 26.5 11 0.56

1 216 Rubiaceae Rothmannia urcelliformis 12.1 2 0.642

Located in the buffer zone * wood density is taken from secondary source (database)

Plot ID: 4 
Lat.: 0147023 
Long.: 0934962

Species name Tree parameters

Plot no Tree Tag Family Genus Species DBH (cm) Height (m) Density (g/cm3)

4 1746 Euphorbiaceae Bridelia micrantha 15.5 9 0.54

4 1747 Euphorbiaceae Sapium ellipticum 18.4 28 0.576

4 1748 Euphorbiaceae Sapium ellipticum 16.5 10 0.576

4 1749 Euphorbiaceae Macaranga capensis 47.6 14 0.416

4 1750 Myrtaceae Syzygium guineense 19.9 2 0.712

4 1751 Fabaceae Albizia schimperiana 18.8 7 0.53

4 1752 Rhizophoraceae Cassipourea malosana 13.5 6 0.673

4 1753 Myrtaceae Syzygium guineense 13.5 8 0.712

4 1755 Myrtaceae Syzygium guineense 15.3 7 0.712

4 1756 Myrtaceae Syzygium guineense 16.7 8 0.712

4 1757 Euphorbiaceae Sapium ellipticum 13.2 5 0.576

4 1758 Euphorbiaceae Sapium ellipticum 16.3 10 0.576

4 1759 Euphorbiaceae Sapium ellipticum 24.7 10 0.576

4 1760 Euphorbiaceae Sapium ellipticum 16.9 12 0.576

4 1761 Euphorbiaceae Sapium ellipticum 28.5 16 0.576

4 1762 Euphorbiaceae Sapium ellipticum 23.3 14 0.576

4 1763 Euphorbiaceae Sapium ellipticum 18.8 5 0.576

Located in the buffer zone

has improved the reliability of biomass estimation from 
remotely sensed data. Since the results in this study were 
achieved using measurements taken from limited number 
of field sampling plots, the level of accuracy of the results 
will likely improve with more number of field sample 
measurements.
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Plot ID: 6 
Lat.: 0147389 
Long.: 0929212

Species name Tree parameters

Plot no Tree Tag Family Genus Species DBH (cm) Height (m) Density (g/cm3)

6 1001 Icacinaceae Apodytes dimidiata 15.4 15.4 0.71

6 1002 Euphorbiaceae Bridelia micrantha 26.9 26.9 0.54

6 1003 Pittosporaceae Pittosporum viridiflorum 18.4 18.4 0.633

6 1004 Rubiaceae Vangueria apiculata 12.4 12.4 0.5

6 1005 Oleaceae Olea welwitschii 20.5 20.5 0.82

6 1006 Rubiaceae Vangueria apiculata 14.3 14.3 0.5

6 1007 Euphorbiaceae Bridelia micrantha 22.6 22.6 0.54

6 1008 Boraginaceae Ehretia cymosa 29.7 29.7 0.56

6 1009 Fabaceae Albizia grandibracteata 40.8 40.8 0.534

6 1010 Euphorbiaceae Bridelia micrantha 18.9 18.9 0.54

6 1011 Moraceae Ficus ovata 47.6 47.6 0.6

6 1012 Euphorbiaceae Bridelia micrantha 13 13 0.54

6 1013 Boraginaceae Ehretia cymosa 40.6 40.6 0.56

6 1016 Fabaceae Albizia grandibracteata 12.5 12.5 0.534

6 1017 Fabaceae Albizia grandibracteata 11.5 18.5 0.534

6 1018 Combretaceae Combretum paniculatum 18.5 17.5 0.56

Located in the core zone

Plot ID: 8 
Lat.: 0155815 
Long.: 0923434

Species name Tree parameters

Plot no Tree Tag Family Genus Species DBH (cm) Height (m) Density (g/cm3)

8 2385 Boraginaceae Ehretia cymosa 16.6 5 0.56

8 2386 Boraginaceae Ehretia cymosa 11.5 4 0.56

8 2387 Boraginaceae Ehretia cymosa 29.2 15 0.56

8 2388 Boraginaceae Ehretia cymosa 13.2 3 0.56

8 2389 Boraginaceae Ehretia cymosa 30 15 0.56

8 2390 Fabaceae Albizia schimperiana 27.6 15 0.53

8 2391 Fabaceae Albizia schimperiana 27.9 13 0.53

8 2392 Boraginaceae Cordia africana 26.2 12 0.482

8 2393 Boraginaceae Cordia africana 29.8 10 0.482

8 2394 Boraginaceae Cordia africana 37.6 20 0.482

8 2395 Fabaceae Albizia schimperiana 51.6 20 0.53

8 2396 Fabaceae Albizia schimperiana 51.4 20 0.53

8 2397 Fabaceae Albizia schimperiana 82.4 18 0.53

8 2398 Boraginaceae Ehretia cymosa 12.6 6 0.56

Located in the core zone

Abbreviations
AGB: Above-ground biomass; Cab: Chlorophyll content in the leaf; CF: Carbon 
fraction; CSV: Comma separated variable; DBH: Diameter at breast height; DOS: 
Dark Object Subtraction; ESA: European Space Agency; FAPAR: Fraction of 
Absorbed Photo-synthetically Active Radiation; FCOVER: Fraction of vegeta-
tion cover; IPCC: Intergovernmental Panel for Climate Change; IRECI: Inverted 
Red-Edge Chlorophyll Index; LAI: Leaf area index; Landsat: Land Use Satellite; 
LiDAR: Light Detection and Ranging; MEFCC: Ministry of Environment, Forestry 
and Climate Change; MoA: Ministry of Agriculture; MODIS: Moderate-resolution 
Imaging Spectro-radiometer; MS: Multispectral Instrument; SNAP: Sentinel 
Application Platform; QGIS: Quantum GIS; REDD: Reduced Emission from 

Deforestation and forest Degradation; RMSE: Root Mean Square Error; SPOT: 
Systeme probatoire d’observation de la terre.

Acknowledgements
The authors would like to thank all the anonymous reviewers who have posi-
tively examined the work and provided constructive comments that helped to 
improve the contents and structure of the paper. We thank the Environment 
and Coffee Forest Forum for allowing the researchers to use the sampling sites 
in the Yayu Forest Biosphere Reserve. The School of Earth Science at the College 
of Natural Science is highly appreciated for providing the GIS lab facility during 
the research.



Page 21 of 22Muhe and Argaw ﻿Environmental Systems Research            (2022) 11:5 	

Authors’ contributions
The authors contributed equally to the research design and writing of the 
manuscript. SM has collected and analyzed the field data, conducted image 
analysis and data analysis. MA designed the paper structure, composed the 
main text and mainly contributed to the final writing of the manuscript with 
successive revisions. All authors read and approved the final manuscript.

Authors’ information
Seid Muhe is a GIS and Remote Sensing expert, lecturer at Semera University, 
in the Department of Geography and Environmental Studies, in Semera Town, 
Ethiopia. Dr. Mekuria Argaw is an associate professor of Ecology and Environ-
mental Sciences, at the Center for Environmental Science, College of Natural and 
Computational Science, Addis Ababa University, Addis Ababa, Ethiopia.

Funding
No funding was provided to this research.

Availability of data and materials
The data set used/or analyzed during the current study are available with the 
authors. Data will be provided upon reasonable request to the corresponding 
author.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Authors declare that they don’t have competing interests.

Author details
1 Geography and Environmental Studies, Semera University, Semera, Ethiopia. 
2 Center for Environmental Science, Addis Ababa University, Addis Ababa, 
Ethiopia. 

Received: 23 October 2021   Accepted: 28 February 2022

References
Alkama R, Cescatti A (2016) Biophysical climate impacts of recent changes in 

global forest cover. Science 351:600–604. https://​doi.​org/​10.​1126/​scien​ce.​
aac80​83

Asrar G, Myneni R, Kanemasu T (1989) Measuring and modeling spectral charac-
teristics of a tall grass prairie. Remote Sens Environ 27(2):143–155. https://​
doi.​org/​10.​1016/​0034-​4257(89)​90014-X

Baillarin SJ, Meygret A, Dechoz C, Petrucci B, Lacherade S, Tremas T, Spoto F 
(2012) Sentinel-2 level 1 products and image processing performances. Int 
Geosci Remote Sens Symp 39(B1):197–202

Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. 
Remote Sens Rev 13(1–2):95–120

Brown S (1993) Tropical forests and the global carbon cycle: the need for sustain-
able land-use patterns. Agric Ecosyst Environ 46:31–44

Brown S (1997) Estimating biomass and biomass change of tropical forests: a 
primer. FAO Forestry Paper 134, Rome, Italy

Brown S, Gillespie AR, Lugo AE (1989) Biomass estimation methods for tropical 
forests with applications to forest inventory data. Forest Sci 35:881–902

Castillo JAA, Armando AA, Tek NM, Severino GS (2017) Estimation and mapping 
of above-ground biomass of mangrove forests and their replacement land 
uses in the Philippines using Sentinel imagery. ISPRS Jour of Photo and 
Remo Sensing 134:75–85. https://​doi.​org/​10.​1016/j.​isprs​jprs.​2017.​10.​016

Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. 
Science 320(5882):1456–1457. https://​doi.​org/​10.​1126/​scien​ce.​11554​58

Chave JR, Condit SA, Hernandez ASL, Perez R (2004) Error propagation and 
scaling for tropical forest biomass estimates. Philos Trans R Soc Lond Ser 
359(1443):409–420

Chavez PS (1988) An improved dark-object subtraction technique for atmos-
pheric scattering correction of multispectral data. Remote Sens Environ 
24(3):459–479

Chrysafis I, Mallinis G, Siachalou S, Patias P (2017) Assessing the relationships 
between growing stock volume and Sentinel-2 imagery in a Mediterranean 
forest ecosystem. Remo Sens Lett 8(6):508–517. https://​doi.​org/​10.​1080/​21507​
04X.​2017.​12954​79

Chen L, Ren C, Zhang B, Wang Z, Xi Y (2018) Estimation of forest above-ground 
biomass by geographically weighted regression and machine learning with 
sentinel imagery. Forests 9:1–20

Chen L, Wang Y, Ren C, Zhang B, Wang Z (2019) Assessment of multi-wavelength 
SAR and multispectral instrument data for forest aboveground biomass map-
ping using random forest kriging. Fores Ecol Manage 447:12–25. https://​doi.​
org/​10.​1016/j.​foreco.​2019.​05.​057

Dibaba A, Soromessa T, Workineh B (2019) Carbon stock of the various carbon pools 
in Gerba-Dima moist Afromontane forest, South-western Ethiopia. Carbon 
Balance Manage. https://​doi.​org/​10.​1186/​s13021-​019-​0116-x

Dou X, Yang Y (2018) Estimating forest carbon fluxes using four different data-
driven techniques based on long-term eddy covariance measurements: 
model comparison and evaluation. Sci Total Environ 627:78–94. https://​doi.​
org/​10.​1016/j.​scito​tenv.​2018.​01

Dusseux P, Hubert-Moy L, Corpetti T, Vertès F (2015) Evaluation of SPOT imagery for 
the estimation of grassland biomass. Int J Appl Earth Obs Geoinf 38:72–77

Eshetu EY, Hailu TA (2020) Carbon sequestration and elevational gradient: the case 
of Yegof mountain natural vegetation in North East, Ethiopia, implications for 
sustainable management. Cogent Food Agric 6(1):1733331. https://​doi.​org/​10.​
1080/​23311​932.​2020.​17333

European Space Agency, Sentinel online. https://​senti​nel.​esa.​int/​web/​senti​nel/​senti​
nel-​data-​access. Accessed 15 Oct 2019

Forkuor G, Dimobe K, Serme I, Tondoh J (2017) Landsat-8 vs. Sentinel-2: examining 
the added value of Sentinel-2’s red-edge bands to land-use and land cover 
mapping in Burkina Faso. Gisci Remote Sens 2:1–24. https://​doi.​org/​10.​1080/​
15481​603.​2017.​13701​69

Georgia G, Dimitris Z, Ioannis G, Kalliopi R, Vassilia K, Maria TS, Iain W, Giorgos M 
(2017) Vegetation biomass estimation with remote sensing: focus on forest 
and other wooded land over the Mediterranean ecosystem. Int J Remote Sens 
38(7):1940–1966. https://​doi.​org/​10.​1080/​01431​161.​2016.​12661​13

GIS Resources (2013) Global land cover facility. https://​gisre​sourc​es.​com/​tag/​global-​
land-​cover-​facil​ity-​glcf/. Accessed 8 Sept 2019

Gisel R, Sandra B, Jonathan C, Ariel E (1992) Wood densities of tropical tree species. 
New Orleans, Louisiana. https://​www.​srs.​fs.​usda.​gov/​pubs/​gtr/​gtr_​so088.​pdf. 
Accessed 28 Mar 2019

Gole TW, Borsch T, Denich M, Teketay D (2008) Floristic composition and environ-
mental factors characterizing coffee forests in southwest Ethiopia. Forest 
Ecol Manag 255:2138–2150. https://​doi.​org/​10.​1016/j.​foreco.​2007.​12.​028

Gómez M (2017) Joint use of Sentinel-1 and Sentinel-2 for land cover classifica-
tion: a machine learning approach. M.Sc thesis, Lund University, Lund, 
Sweden

Herold M, Román-Cuesta RM, Mollicone D, Hirata Y, Van Laake P, Asner GP, Souza 
C, Skutsch M, Avitabile V, MacDicken K (2011) Options for monitoring and 
estimating historical carbon emissions from forest degradation in the 
context of REDD+. Carbon Balance Manag 6(13):1–7

Huete A, Didan K, Miura T, Rodriquez EP, Gao X, Ferreria LG (2000) Overview of 
the radiometric and biophysical performance of the MODIS vegetation 
indices. Remote Sens Environ 83(5):195–213

Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient 
dynamics of secondary forests in a humid tropical region of Mexico. Ecol-
ogy 80:1897–1907

Husch B, Beers TW, Kershaw JA (2003) Forest mensuration, 4th edn. Wiley, 
Hoboken

Isbaex C, Coelho AM (2020) The potential of Sentinel-2 satellite images for 
land-cover/ land-use and forest biomass estimation: a review. IntechOpen. 
https://​doi.​org/​10.​5772/​intec​hopen.​93363

IPCC (2006) Guidelines for National Greenhouse Gas Inventories – A primer, 
Prepared by the National Greenhouse Gas Inventories Program: Eggleston 
HS, Miwa K, Srivastava N, Tanabe K (eds) Institute for Global Environmental 
Strategies, Japan

Juniansah A, Tama GC, Febriani KR, Baharain MN, Kanekaputra T, Wulandari 
WS, Kamal M (2018) Mangrove leaf area index estimation using Sentinel 2A 
imagery in Teluk Ratai, Pesawaran Lampung. In: IOP Conference series: earth 

https://doi.org/10.1126/science.aac8083
https://doi.org/10.1126/science.aac8083
https://doi.org/10.1016/0034-4257(89)90014-X
https://doi.org/10.1016/0034-4257(89)90014-X
https://doi.org/10.1016/j.isprsjprs.2017.10.016
https://doi.org/10.1126/science.1155458
https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1016/j.foreco.2019.05.057
https://doi.org/10.1016/j.foreco.2019.05.057
https://doi.org/10.1186/s13021-019-0116-x
https://doi.org/10.1016/j.scitotenv.2018.01
https://doi.org/10.1016/j.scitotenv.2018.01
https://doi.org/10.1080/23311932.2020.17333
https://doi.org/10.1080/23311932.2020.17333
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://doi.org/10.1080/15481603.2017.1370169
https://doi.org/10.1080/15481603.2017.1370169
https://doi.org/10.1080/01431161.2016.1266113
https://gisresources.com/tag/global-land-cover-facility-glcf/
https://gisresources.com/tag/global-land-cover-facility-glcf/
https://www.srs.fs.usda.gov/pubs/gtr/gtr_so088.pdf
https://doi.org/10.1016/j.foreco.2007.12.028
https://doi.org/10.5772/intechopen.93363


Page 22 of 22Muhe and Argaw ﻿Environmental Systems Research            (2022) 11:5 

and environmental science, vol 165, pp 012004. https://​doi.​org/​10.​1088/​1755-​
1315/​165/1/​012004

Kebede M, Kanninen M, Yirdaw E, Lemenih M (2013) Vegetation structural charac-
teristics and topographic factors in the remnant moist Afro-montane forest of 
Wondo Genet, south central Ethiopia. J Forest Res 24(3):419–430. https://​doi.​
org/​10.​1007/​s11676-​013-​0374-5

Lu D (2006) The potential and challenge of remote sensing-based biomass estima-
tion. Int J Remote Sens 27(7):1297–1328. https://​doi.​org/​10.​1080/​01431​16050​
04867​32

Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2014) A survey of remote sensing-based 
above-ground biomass estimation methods in forest ecosystems. Int J Digit 
Earth 9(1):63–105. https://​doi.​org/​10.​1080/​17538​947.​2014.​99052

Lyon JG, Yuan D, Lunetta RS, Elvidge CD (1998) A change detection experiment 
using vegetation indices. Photo Eng Remote Sens 64(2):143–150

Mascaro J, Detto M, Asner GP, Muller-Landau HC (2011) Evaluating uncertainty 
in mapping forest carbon with airborne LiDAR. Remote Sens Environ 
115(12):3770–3774. https://​doi.​org/​10.​1016/j.​rse.​2011.​07.​019

Mauya EW, Hansen E, Gobakken T, Bollandsås M, Malimbwi E, Næsset E (2015) 
Effects of field plot size on prediction accuracy of aboveground biomass 
airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. 
Carbon Balance Manag 10:1–14

McRoberts RE, Næsset E, Gobakken T (2013) Inference for lidar-assisted estimation 
of forest growing stock volume. Remote Sens Environ 128:268–275

MEFCC (Ministry of Environment, Forest and Climate Change) (2016) Ethiopia’s 
forest reference level submission to the United Nations framework convention 
for climate change. Addis Ababa

Melese B, Kelbessa E, Soromessa T (2014) Forest carbon stocks in woody plants of 
Arba Minch ground water forest and its variations along environmental gradi-
ents. Sci Technol Arts Res J 3(2):141–147. https://​doi.​org/​10.​4314/​star.​v3i2.​18

MoA (Ministry of Agriculture) (2000) Woody Biomass Inventory and Strategic 
Planning Project (WBISPP), Manual for woody biomass inventory. Ministry of 
Agriculture, Addis Ababa

Mutanga O, Skidmore AK (2004) Narrow band vegetation indices to over-
come the saturation problem in biomass estimation. Int J Remote Sens 
25:3999–4014

Navar J (2009) Allometric equations for tree species and carbon stocks for forests 
of Northwestern Mexico. For Ecol Manag 257:427–434

Pan Y, Birdsey R, Fang J, Houghton R, Kauppi P, Kurz W, Phillips O, Shvidenko A, 
Lewis SL, Canadell J (2011) A large and persistent carbon sink in the world’s 
forests. Science 333:988–993

Pandit S, Tsuyuki S, Dube T (2018) Estimating above-ground biomass in sub-
tropical buffer zone community Forests, Nepal, using Sentinel 2 data. 
Remote Sens 10(4):601

Pearson T, Wolker S, Brown S (2005) Source book for land use, land use change 
and forestry projects, Winrock International and the BioCarbon Fund, World 
Bank, USA

Pertille CT, Marcos FN, Larissa RT, Thiago F (2019) Biomass quantification of Pinus 
taeda L. from remote optical sensor data. Adv Forest Sci 6(2):603–610

Peters AJ (2007) Performance evaluation of spectral vegetation indices using a 
statistical sensitivity function. Remote Sens Environ 106(1):59–65

Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL 
(2010) Quantification of live aboveground forest biomass dynamics with 
Landsat time-series and field inventory data: a comparison of empirical mod-
eling approaches. Remote Sens Environ 114(5):1053–1068. https://​doi.​org/​10.​
1016/j.​rse.​2009.​12.​018

Ramoelo A, Cho M, Mathieu R, Skidmore A (2015) Potential of Sentinel-2 spectral 
configuration to assess rangeland quality. J Appl Remote Sens Environ 
124:516–533

Schuit P, Moat J, Gole TW, Challa ZK, Torz J, Macatonia S, Cruz G, Davis AP (2021) The 
potential for income improvement and biodiversity conservation via specialty 
coffee in Ethiopia. PeerJ 9:e10621. https://​doi.​org/​10.​7717/​peerj.​10621

Segura M, Kanninen M (2005) Allometric models for tree volume and total above-
ground biomass in a tropical humid forest in Costa Rica. Biotropica 37:2–8

Shoko C, Mutanga O (2017) Examining the strength of the newly-launched Sentinel 
2 MSI sensor in detecting and discriminating subtle differences between C3 
and C4 grass species. ISPRS J Photogr Remote Sens 129:32–40

Shrestha SK (2011) Carbon stock estimation using very high-resolution satellite 
imagery and individual crown segmentation (A case study of broadleaved 
and needle leaved forest of Dolakha, Nepal. MSc Thesis, ITC—University of 
Twente, Enschede

Siraj M (2019) Forest carbon stocks in woody plants of Chilimo-Gaji Forest, Ethiopia: 
implications of managing forests for climate change mitigation. S Afr J Bot 
127:213–219. https://​doi.​org/​10.​1016/j.​sajb.​2019.​09.​003

SNAP (2016) Sentinels Application Platform software ver. 4.0.0, European Space 
Agency

Soenen SA, Peddle DR, Hall RJ, Coburn CA, Hall FG (2010) Estimating aboveground 
forest biomass from canopy reflectance model inversion in mountainous 
terrain. Remote Sens Environ 114(7):1325–1337. https://​doi.​org/​10.​1016/j.​rse.​
2009.​12.​012

Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground 
biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157

Sun X, Guicai L, Meng W, Zemeng F (2019) Analyzing the uncertainty of estimating 
forest aboveground biomass using optical imagery and space-borne LiDAR. 
Remote Sens 11:722. https://​doi.​org/​10.​3390/​rs110​60722

Taddesse H, Zerihun A, Burud I, Terje G, Hans O, Øystein BD, Erik N (2020) Use of 
remotely sensed data to enhance estimation of aboveground biomass for 
the dry afro-montane forest in South-Central Ethiopia. Remote Sens 12:3335. 
https://​doi.​org/​10.​3390/​rs122​03335

Timothy D, Onisimo M, Riyad O (2015) Evaluating the utility of the medium-spatial 
resolution Landsat 8 multi-spectral sensor in quantifying aboveground 
biomass in Umgeni catchment, South Africa. ISPRS J Photo Remote Sens 
101:36–46

Timothy D, Onisimo M, Riyad O (2016) Quantifying aboveground biomass in African 
environments: a review of the trade-offs between sensor estimation accuracy 
and costs. Trop Ecol 57(3):393–405

Vashum KT, Jayakumar S (2012) Methods to estimate above-ground biomass and 
carbon stock in natural forests—a review. J Ecosyst Ecogr 2:116. https://​doi.​
org/​10.​4172/​2157-​7625.​10001​16

Widlowski JL, Pinty B, Gobron N, Verstraete MM, Diner DJ, Davis AB (2004) Canopy 
structure parameters derived from multi-angular remote sensing data for 
terrestrial carbon studies. Clim Change 67(2–3):403–415

Yohannes H, Soromessa T, Argaw M (2015) Carbon stock analysis along altitu-
dinal gradient in gedo for-est: implications for forest management and 
climate change mitigation. Am J Environ Prot 4(5):237–244. https://​doi.​org/​
10.​11648/j.​ajep.​20150​405.​14

Zhao M, Yang J, Zhao N, Liu L, Du L, Xiao X, Wilson JP (2021) Spatially explicit 
changes in forest biomass carbon of China over the past 4 decades: 
coupling long-term inventory and remote sensing data. J Clean Prod 
316:128274. https://​doi.​org/​10.​1016/j.​jclep​ro.​2021.​1282

Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest 
biomass. For Ecol Manage 187(2–3):311–332. https://​doi.​org/​10.​1016/j.​
foreco.​2003.​07.​00

Zhang T, Su J, Liu C, Chen WH, Liu H, Liu G (2017) Band selection in sentinel-2 
satellite for agriculture applications. 23rd International Conference on 
Automation and Computing (ICAC). https://​doi.​org/​10.​23919/​iconac.​2017.​
808199

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1088/1755-1315/165/1/012004
https://doi.org/10.1088/1755-1315/165/1/012004
https://doi.org/10.1007/s11676-013-0374-5
https://doi.org/10.1007/s11676-013-0374-5
https://doi.org/10.1080/01431160500486732
https://doi.org/10.1080/01431160500486732
https://doi.org/10.1080/17538947.2014.99052
https://doi.org/10.1016/j.rse.2011.07.019
https://doi.org/10.4314/star.v3i2.18
https://doi.org/10.1016/j.rse.2009.12.018
https://doi.org/10.1016/j.rse.2009.12.018
https://doi.org/10.7717/peerj.10621
https://doi.org/10.1016/j.sajb.2019.09.003
https://doi.org/10.1016/j.rse.2009.12.012
https://doi.org/10.1016/j.rse.2009.12.012
https://doi.org/10.3390/rs11060722
https://doi.org/10.3390/rs12203335
https://doi.org/10.4172/2157-7625.1000116
https://doi.org/10.4172/2157-7625.1000116
https://doi.org/10.11648/j.ajep.20150405.14
https://doi.org/10.11648/j.ajep.20150405.14
https://doi.org/10.1016/j.jclepro.2021.1282
https://doi.org/10.1016/j.foreco.2003.07.00
https://doi.org/10.1016/j.foreco.2003.07.00
https://doi.org/10.23919/iconac.2017.808199
https://doi.org/10.23919/iconac.2017.808199

	Estimation of above-ground biomass in tropical afro-montane forest using Sentinel-2 derived indices
	Abstract 
	Background
	Materials and methods
	Description of the study area
	Land use land cover classification
	Field sampling and measurement of tree parameters
	Above-ground biomass and carbon stock estimation from field measured data
	Sentinel-2 image pre-processing
	Vegetation indices (VI) extraction and mapping
	Biophysical variables (BPVs) extraction and mapping
	Extraction of the pixel values of predictor variables
	Data analysis

	Results
	Above-ground biomass from field measurements
	Correlation between AGB and the predictor variables from the Sentinel-2 image
	Relationship between measured above-ground biomass and derived indices
	Modeling AGB biomass prediction from vegetation indices

	Discussion
	Conclusion
	Acknowledgements
	References




