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Abstract 

Background:  Rainfall variability exceedingly affects agriculture in Ethiopia, particularly in the eastern region where 
rainfall is relatively scarce. Hence, understanding the spatiotemporal variability of rainfall is indispensable for planning 
mitigation measures during high and low rainfall seasons. This study examined the spatiotemporal variability and 
trends of rainfall in the West Harerge Zone, eastern Ethiopia.

Method:  The coefficient of variation (CV) and standardized anomaly index (SAI) were used to analyze rainfall variabil-
ity while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude 
of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) 
was also evaluated by Pearson correlation coefficient (r).

Results:  The annual rainfall CV during 1983–2019 periods is between 12 and 19.36% while the seasonal rainfall CV 
extends from 15–28.49%, 24–35.58%, and 38–75.9% for average Kiremt (June–September), Belg (February–May), and 
Bega (October–January) seasons, respectively (1983–2019). On the monthly basis, the trends of rainfall decreased in all 
months except in July, October, and November. However, the trends were not statistically significant (α = 0.05), unlike 
in November. On a seasonal basis, the trends of mean Kiremt and Belg seasons rainfall decreased while it increased 
in Bega season although it is not statistically significant. Moreover, the annual rainfall showed a non-significant 
decreasing trend. The findings also revealed that the correlation between rainfall and Pacific Ocean SST was nega-
tive for Kiremt while positive for Belg and Bega seasons. Besides, annual rainfall and Pacific Ocean SST was negatively 
correlated.

Conclusions:  High spatial and temporal rainfall variability was observed at the monthly, seasonal, and annual time 
scales. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in 
rainfall were decreased in most of the months. Besides, the trend of rainfall decreased in the annual, Belg and Kiremt 
season while increased in the Bega season. The study also indicated that the occurrence of droughts in the study area 
was associated with ENSO events like most other parts of Ethiopia and East Africa.
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Introduction
In recent decades, climate change and variability gen-
erate a significant impact on the environment, soci-
ety, and economy globally (IPCC 2007; Tierney et  al. 
2013; Birkmann and Mechler 2015; Wang et  al. 2018). 
Anthropogenic and natural factors are responsible for 
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the devastating climate change through the emission of 
greenhouse gases (GHGs). As a result, climate change is 
becoming a serious problem to ensure sustainable devel-
opment. Rainfall is one of the major climatic variables 
that affect both the spatial and temporal patterns of water 
availability for agriculture, industry, food security, hydro-
power water supply, and energy balance (Zhang et  al. 
2011; Pal et  al. 2017; Ayehu et  al. 2018; Weldegerima 
et  al. 2018). In many African countries, more than 85% 
of the population is engaged in rain-fed agriculture (Diro 
et  al. 2011; Mulugeta et  al. 2019). Due to this, they are 
exceedingly susceptible to anomalously high and/or low 
rainfall amounts (Anyah and Qiu 2012; IPCC 2018). The 
impact of climate change on the developing countries 
is higher than developed countries since their adaptive 
capacity is very low (IPCC 2014).

In East Africa, rainfall is characterized by its inter-
annual variability, which has contributed to the shocking 
droughts and floods; affecting the lives of many people 
(Cheung et al. 2008; Viste et al. 2013; Mekasha et al. 2014; 
Tierney et al. 2015). This situation increases the number 
of people who demand shelter and food aid from time 
to time. Due to this, climate change and/or climate vari-
ability have become the major global agenda which needs 
collective solutions to reduce its adverse impacts. Ethio-
pia is known for its high rainfall variability across space 
and time due to geographical location and topographic 
complexity (Mengistu et al. 2014; Worku 2015). In Ethio-
pia, spatial variations can be characterized by the rainfall 
seasonal cycle, amount, onset, and cessation times, and 
length of growing season (Segele and Lamb 2005). Moreo-
ver, rainfall can be temporally varied from days to decades 
in terms of the direction and magnitude of rainfall trends 
over regions and seasons (Jury and Funk 2013; Worku 
et  al. 2019). Reliable and appropriate seasonal rainfall 
trend analysis and rainfall forecasts are crucial for the 
mitigation of rainfall related disasters (Diro et al. 2011).

Analyses of spatiotemporal variability and trend of rain-
fall is vital for water resource management, agricultural 
production, and climate change mitigation measures 
(Ayalew et al. 2012; Zhao et al. 2015). More specifically, 
the occurrence of floods and droughts which are disas-
trous to the lives of many humans and properties could 
be reduced by applying early warning systems based on 
the information on annual, seasonal and monthly trends 
of rainfall. For this purpose, it requires consistent and 
spatially well-distributed long-term meteorological sta-
tion records. The distributions of meteorological stations 
in developing countries are scarce, unevenly distributed, 
have poor data quality and data discontinuities (Kat-
sanos et  al. 2016; Kimani et  al. 2017; Fenta et  al. 2018). 
These are also the limitations of meteorological stations 
in West Harerge Zone. To overcome these problems, 

long-term satellite-based rainfall estimates have become 
vital sources of rainfall data for sparse regions (Ayehu 
et al. 2018; Dinku et al. 2018; Fenta et al. 2018; Alemu and 
Bawoke 2019). Long-term satellite-based rainfall estimate 
can be used in complement or replace meteorological 
station data to get improved results.

Currently, understanding the spatial-seasonal varia-
tions of rainfall and its association with Pacific Ocean 
SST is very crucial to produce reliable weather and 
climate forecasts for users (Degefu et  al. 2017). Previ-
ous studies showed that El Niño/Southern Oscillation 
(ENSO) has a great influence on the inter-annual rain-
fall variability in Ethiopia. In 2015, the northern and 
central parts of Ethiopia were extremely affected by El 
Niño and the worst drought was occurred. During El 
Niño (La Niña), precipitation in equatorial east Africa 
might be positively or negatively affected by easterly 
(westerly) wind anomalies (Ratnam et  al. 2014). ENSO 
is the inter-annual fluctuation of the atmosphere-ocean 
system in the equatorial Pacific and it has three phases: 
warm (El Niño), cold (La Niña), and neutral (Chen 
et  al. 2014; Yu et  al. 2015; FAO 2019). Neutral condi-
tions occur when neither El Niño nor La Niña is pre-
sent. El Niño is a recurrent global atmospheric oceanic 
phenomenon associated with an increase in SST in the 
central tropical Pacific Ocean. It boosts the risk of heavy 
rainfall and flooding in some parts of the world and the 
risk of drought in some parts (FAO 2019). The SST of 
the tropical Pacific shows a discrepancy both spatially 
and temporally (Philip 2018) and a very high correlation 
exists between precipitation and SST (Wu et  al. 2008; 
Chen et al. 2014).

Several studies (Mohammed et  al. 2018; Moloro 
2018; Weldegerima et  al. 2018; Abegaz and Mekoya 
2020; Geremew et  al. 2020) have been conducted on 
the spatiotemporal variability and trends of rainfall 
in Ethiopia. However, there are limitations in West 
Harerge Zone. Most of the previous studies were con-
ducted based on meteorological stations rainfall data 
in eastern Ethiopia. In contrast, meteorological rain-
fall data and satellite-based rainfall estimates were 
used in the present study. West Harerge Zone is one 
of the most droughts prone areas of Ethiopia due to 
variations of rainfall intensity which can be linked to 
ENSO. Hence, the objective of this study was to inves-
tigate the spatiotemporal variability and trends of rain-
fall and its association with Pacific Ocean SST in West 
Harerge Zone of eastern Ethiopia. The findings from 
this study would be vital for future planning and devel-
opment measures such as flood control and protec-
tion; drought monitoring and early warning systems.
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Materials and methods
Description of the study area
The study area, West Harerge Zone, is located in east-
ern Ethiopia, approximately between 7° 51′– 9° 28′ N 
and 40° 01′−41° 34′ E (Fig.  1). It covers a total area of 
1689497.6 ha of land (Wondosen 2017) and its elevation 
ranges from 603 to 3075  m a.s.l (Fig.  1). Based on the 
traditional agroecological classifications of Ethiopia, the 
study area is categorized into three zones. These are trop-
ical (500–1500 m), sub-tropical (1500–2300 m), and tem-
perate (2300–3200 m) (OWWDSE 2010). There are two 
rainy seasons in this area, the main rainy season (Kiremt) 
spans from June to September and the short rainy sea-
son (Belg) extends from February to May. It has the mean 
monthly rainfall and an average temperature of 67.8 mm 
and 17.5 to 27.5 °C, respectively (MOA 2000).

Data types and sources
SST and rainfall data were  obtained from different 
sources. Time series monthly Pacific Ocean SST data 
(1984–2018) in the NINO 3.4 region were downloaded 
from the National Oceanic and Atmospheric Administra-
tion (NOAA) satellite mission website (http://www.cgd.
ucar.edu/cas/catal​og/climi​nd/TNI_N34/index​.html). The 
NINO 3.4 index mean SST was calculated by taking the 
spatial average SST within the NINO 3.4 region, which 
extends from 5° N to 5° S latitude and from 120° W to 

170° W longitude (in the Pacific Ocean) (Loua et al. 2019; 
Yin et  al. 2020). According to Babu (2009) and Zaroug 
(2010), NINO 3.4 SST data has characteristics of both 
NINO 3 and NINO 4. Accordingly, the Pacific Ocean 
SST of the NINO 3.4 region was used in this study.

Rainfall data were collected from remote sensing sat-
ellite estimates and from the National Meteorological 
Service Agency (NMSA) of Ethiopia. Most rainfall data 
from in-situ meteorological stations had short period 
records and a large percentage of missing data problems 
(1983–2019). Moreover, the spatial distributions of sta-
tions were scarce and not evenly dispersed in the study 
area. In such cases, Climate Hazards Group Infra-Red 
Precipitation with Stations (CHIRPS) satellite rainfall 
data (https​://data.chc.ucsb.edu/produ​cts/CHIRP​S-2.0/) 
are a vital source of rainfall data (Asfaw et al. 2018; Dinku 
et  al. 2018; Belay et  al. 2019). CHIRPS is a quasi-global 
dataset (covering the area between 50° N and 50° S) 
available from 1981 to present-day at 0.05° spatial reso-
lution (∼ 5.3 km) and it is produced using multiple data 
sources (Funk et al. 2015). In-situ meteorological station 
data for Asebe Teferi, Hirna, Bedesa, Gelemso, Meiso, 
Asebot, and Kora from the NMSA of Ethiopia were used 
(Table  1)  as a reference to evaluate the accuracy of the 
CHIRPS satellite rainfall product in West Harerge Zone. 
Missing values were handled by taking the average of the 
preceding and succeeding months for monthly missed 

Fig. 1  Location map of the study area

http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/index.html
http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/index.html
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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data but years with missed data were excluded from anal-
ysis in the station data (Traore et  al. 2014; Asfaw et  al. 
2018).

Validation of CHIRPS rainfall data
Satellite-based rainfall estimates provide well timed, 
repetitive, and cost-effective information at different time 
scales (Toté et al. 2015; Muthoni et al. 2019). Due to this, 
satellite-based rainfall products have been substantially 
used as complements to meteorological station data or 
by replacing it. However, they show different uncer-
tainties with techniques. These may arise from relative 
algorithm errors, spatiotemporal sampling errors, and 
satellite instruments themselves (Fenta et al. 2018; Alemu 
and Bawoke 2019; Belay et al. 2019). These may affect the 
accuracy and may result in a significant error when used 
for different applications. Accordingly, the validation of 
satellite rainfall data is required at different spatial and 
temporal scales (Ayehu et al. 2018; Dinku et al. 2018). The 
CHIRPS data product is developed by the United States 
Geological Survey (USGS) and the Climate Hazards 
Group (CHG) at the University of California (Knapp et al. 
2011; Funk et al. 2015).

Validation of the CHIRPS satellite rainfall data was per-
formed on the monthly, seasonal, and annual time scales 

for Asebe Teferi, Asebot, Bedesa, Hirna, Gelemso, Meiso, 
and Kora locations with the corresponding meteorologi-
cal gauge station data. The performance of CHIRPS rain-
fall data was assessed using different statistics (Table  2) 
(Dinku et al. 2018; Larbi et al. 2018; Goshime et al. 2019). 
Root mean square error (RMSE) (ranges from 0 to ∞), 
mean bias error (MBE) (ranges from − ∞ to ∞) and 
mean absolute error (MAE) (ranges from 0 to ∞) meas-
ures the average magnitude of estimation error and the 
perfect score for these statistics is zero. Positive and neg-
ative MBE value indicates an overestimation and under-
estimation of CHIRPS data products, respectively (Fenta 
et  al. 2018). Based on some previous studies the RMSE 
values between 0 and 100  mm are indicated as a good 
level of performance of the CHIRPS rainfall data (Ayehu 
et  al. 2018, Bayissa et  al. 2017, Gebremicael et  al. 2017, 
Nogueira et al. 2018).

Pearson Correlation Coefficient (r) measures the 
strength of the linear relationship between CHIRPS and 
meteorological station rainfall data (Alemu and Bawoke 
2019) and ranges from negative one to positive one, and 
values greater than 0.5 are considered as acceptable lev-
els of performance. The Nash–Sutcliff efficacy Coefficient 
(NSE) describes the relative magnitude of the variance of 
the residuals compared to the variance of the observed 

Table 1  Characteristics of in-situ meteorological stations and percentage of missing data

Station name Longitude (E) Latitude (N) Elevation (m) Period Missing data (%)

Asebe Teferi 40.87° 9.07° 1792 1987–2017 16.13

Asebot 40.66° 9.18° 1420 1996–2017 13.63

Bedessa 40.77° 8.91° 1703 1995–2017 4.35

Gelemso 40.53° 8.81° 1739 1987–2017 19.35

Hirna 41.10° 9.22° 1822 1987–2015 10.34

Kora 40.53° 9.10° 1239 1987–2016 16.66

Meiso 40.75° 9.23° 1400 1987–2016 6.66

Table 2  Statistical indicators, equation, range, and best value used in the study

Where n is the length of the time series, and i is the number of years. Gi and Si are the meteorological gauge rainfall value and CHIRPS rainfall value in the year i, 
respectively, and G and S are the mean meteorological gauge rainfall and the mean of CHIRPS rainfall, respectively

Statistic Equation Range Unit Best value

Pearson Correlation Coefficient 
(r)

r=

∑

n

i=1
(Gi−Ḡ)

(

Si−S̄
)

√
∑

n

i=1
(Gi−Ḡ)2

∑

n

i=1
(Si−S̄)2

− 1 to 1 None 1

Nash–Sutcliff efficacy Coefficient 
(NSE)

NSE = 1−
∑

n

i=1
(Gi−Si)2

∑

n

i=1
(Gi−Ḡ)2

− ∞ to 1 None 1

Root Mean Square Error (RMSE)
RMSE =

√
∑

n

i=1
(Si−Gi)2

n

0 to ∞ mm 0

Mean Absolute Error (MAE)
MAE = 1

n

n
∑

i=1

|Si − Gi| 0 to ∞ mm 0

Mean Bias Error (MBE)
MBE = 1

n

n
∑

i=1

(Si − Gi)
− ∞ to ∞ mm 0
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values of precipitation (Nash and Sutcliffe 1970) and it 
ranges from −  ∞ to 1. The NSE values between zero and 
one are generally viewed as acceptable levels of perfor-
mance, whereas values less than zero indicates that the 
meteorological station is a better estimate, which indi-
cates unacceptable performance, and zero indicates that 
the meteorological station is as good as the CHIRPS rain-
fall products.

Spatiotemporal variability and trend analysis of rainfall
The coefficient of variation (CV) and standardized anom-
aly index (SAI) were computed to analyze the temporal 
variability of rainfall.

i. Coefficient of Variation (CV)

Spatiotemporal variability of annual, seasonal, and 
monthly rainfall for each pixel was examined by calcu-
lating the coefficient of variation (CV) (Muthoni et  al. 
2019). CV was computed as:

where CV is the coefficient of variation of rainfall, σ  is 
the standard deviation of rainfall and x is the long-term 
mean of rainfall.

ii. Standardized Anomaly Index (SAI)

Standardized anomaly index (SAI) was used as a descrip-
tor of rainfall variability and it indicates the number of 
standard deviations that a rainfall event deviates from 
the average of the considered years (Funk et  al. 2015). 
It was also used to determine the frequency of dry and 
wet years in the record and used to assess the frequency 
and severity of droughts (Alemu and Bawoke 2019). 
It indicates the departure from the long-term mean 
with negative values representing periods of below-
normal rains (droughts) while positive values reflect 
above normal rains (flood risk) (Muthoni et  al. 2019). 
SAI value is classified as extremely wet (SAI > 2), very 
wet (1.5 ≤ SAI ≤ 1.99), moderately wet (1 ≤ SAI ≤ 1.49), 
near normal (− 0.99 ≤ SAI ≤ 0.99), moderately dry 
(− 1.49 ≤ SAI ≤ − 1), severely dry (− 1.99 ≤ SAI ≤ − 1.5) 
and extremely dry (SAI ≤ − 2) (Funk et  al. 2015) and 
it was computed using the following equation:

 where SAIi is the standardized anomaly index in a year i, 
Xi is the rainfall value in a year i; x is the long-term mean 
of rainfall and σ is the standard deviation of rainfall.

iii. Mann-Kendall Trend Test and Sen’s Slope Estimator

(1)CV(%) = (
σ

x
)100

(2)SAIi =
Xi− x

σ

The study analyzed the trends and magnitudes of rainfall 
changes using the Mann-Kendall (MK) trend test (Non-
parametric statistical test) and Sen’s Slope estimator in 
XLSTAT 2020. MK trend test is one of the most com-
monly used and preferred nonparametric tests for finding 
trends in time series hydro-climate (Gocic and Trajkovic 
2013; Ahmed et al. 2014; Feng et al. 2016). This method 
is less affected by missing values and uneven data distri-
bution, and it is less sensitive to outliers because it con-
siders ranks of the observations rather than their actual 
values (Kendall 1975; Poudel and Shaw 2016; Belay et al. 
2019). Therefore, the World Meteorological Organization 
(WMO) strongly recommends the MK trend test for gen-
eral use in trend analysis (Mitchell et al. 1966). It is used 
to confirm whether there is a statistically significant or 
insignificant trend in rainfall variability (Jain and Kumar 
2012).

According to the MK test, the null hypothesis (H0) 
of no trend, that is the observations Yi are randomly 
ordered in time, against the alternative hypothesis (H1), 
where there is a monotonic (increasing or decreasing) 
trend in the time series was tested. Based on (Mann 1945; 
Kendall 1975; Yue et al. 2002) the MK statistics S is com-
puted using the following formula;

 where Yi and Yj are sequential data values for the time 
series data of length n and

If the dataset is identically and independently distrib-
uted, then the mean of S is zero and the variance of S is 
given by

  

 where n is the length of the dataset, m is the number of 
tied groups (a tied group is a set of sample data having 
the same value) in the time series and ti is the number of 
data points in the ith group.

The Z statistics are calculated using the formula

(3)S =
n−1
∑

i=1

n
∑

j=i+1

Sign(yj− yi)

(4)Sign
�

yj− yi
�

=







1 if
�

yj− yi
�

> 0

0 if
�

yj− yi
�

= 0

−1 if
�

yj− yi
�

< 0

(5)
Var(S) =

1

18

[

n(n− 1)(2n+ 5)−
∑m

i=0
ti(ti− 1)(2ti+ 5)

]
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A significance level α = 0.05 was used to test either an 
upward or downward monotone trend. The decision for 
the two-tail test was made by comparing the computed Z 
with critical values. The null hypothesis is rejected when 
the absolute value of computed Z is greater than the criti-
cal values or the p-value is less than the selected signifi-
cance level (α = 0.05 or 0.1). Furthermore, when the null 
hypothesis is rejected, the direction of trends is upward 
for positive Z-value and downward for negative Z-value 
(Hamlaoui-Moulai et  al. 2013). If the null hypothesis is 
rejected, the result was said to be statistically significant.

Likewise, to assess the relative strength of the MK 
trend test in time series data, the rate of change of the 
trend was determined using Sen’s (1968) slope estima-
tor. As stated by Jain and Kumar (2012), Sen’s slope 
estimates are commonly used to determine the magni-
tude of trends in hydro-climate time series. It limits the 
influence of missing values or outliers on the slope in 
comparison with linear regression (Bouza-Deaño et  al. 
2008; Alemu and Bawoke 2019; Mekonen et  al. 2020). 
The magnitude of the monotonic trend in hydrologic 
time series was calculated by using the nonparametric 
Sen’s estimator of the slope using the following equation 
(Sen 1968).

 where β represents the median value of the slope values 
between data measurements yi and yj at the time steps i 
and j (i < j), respectively. The positive value of β indicates 
an increasing trend whereas the negative value of β indi-
cates a decreasing trend. The sign of β reflects data trend 
direction, whereas its value indicates the steepness of the 
trend (Alemu and Bawoke 2019).

Correlation analysis of the Rainfall and SST
The values of r reflects the degree and direction of the 
relationship between two variables (Guo et al. 2014; Qian 
et al. 2016; Tiruneh et al. 2018). In this study, r was used 
to test the association between rainfall and Pacific Ocean 
SST. A larger absolute value of r indicates a stronger 
correlation between the two variables (Qian et  al. 2016; 
Tiruneh et al. 2018). The absolute value of r was divided 
into a weak correlation (0 < |r| ⩽ 0.3), a low correlation 
(0.3 < |r| ⩽ 0.5), a moderate correlation (0.5 < |r| ⩽ 0.8), 
and a strong correlation (0.8 < |r| ⩽ 1) (Li et  al. 2014). 
In the present study, r was calculated using the following 
equation (Mu et al. 2013).

(6)Z =











S+1√
Var(S)

for S < 0

0 for S = 0
S−1√
Var(S)

for S > 0

(7)β = median

(

yj− yi

j− i

)

 where r is the correlation coefficient, n is the length of 
the time series, and i is the number of years during the 
analyzed periods (1984–2018). Xi and Yi are the rainfall 
and the SST in the year i, respectively, and X and Y are 
the mean rainfall and the mean of SST, respectively dur-
ing the studied periods.

Results and discussion
Validation of CHIRPS rainfall data
The results of the validation of CHIRPS rainfall data 
using meteorological gauge station data are presented in 
Table 3 at the monthly, seasonal and annual time scales. 
While comparison between CHIRPS and meteorological 
rainfall data at the monthly time scales at Asebe Teferi, 
Hirna, Bedesa, Gelemso, Meiso, Asebot, and Kora sta-
tions is shown in Fig. 2. The results showed a very good 
agreement between meteorological gauge station and 
CHIRPS rainfall on the monthly time scale. The r values 
ranges from 0.91 to 0.99, and NSE values ranges between 
0.82 and 0.98 for all stations (Table  3). At the monthly 
basis, MAE, MBE, and RMSE values showed good per-
formance of CHIRPS rainfall estimates in West Harerge 
Zone (Table 3). Monthly CHIRPS rainfall products were 
underestimated by about 1.2 mm, 2.5 mm, 5.3 mm, and 
11.4  mm for Meiso, Hirna, Asebot, and Bedesa loca-
tions, respectively. On the other hand, monthly CHIRPS 
rainfall data was overestimated at Gelemso, Asebe Tef-
eri, and Kora locations about 2.9  mm, 3.1  mm, and 
10.1 mm, respectively. Based on the statistical measures, 
the monthly CHIRPS rainfall products perform better 
at Hirna and Meiso locations (Table  3) than other sta-
tions. Overall, the monthly rainfall data extracted from 
CHIRPS products were strongly correlated with the rain-
fall data for selected gauge stations. This indicates that 
the performance of the monthly CHIRPS rainfall product 
is well in the study area. This result agrees with the find-
ings of Alemu and Bawoke (2019) in the Amhara region 
of Ethiopia.

Besides, CHIRPS rainfall for Bega (October - January) 
season showed good correspondence with gauge with r 
values ranging between 0.45 and 0.95, and NSE values 
between 0.21 and 0.87 for all stations. Similarly, CHIRPS 
rainfall data in the Belg season showed a very good agree-
ment with the gauge station data with r values between 
0.68 and 0.89, and NSE values ranging between 0.26 and 
0.74 for all station locations. In Kiremt season, good agree-
ment was observed with the gauge station data for Asebe 
Teferi, Bedesa, Gelemso, and Meiso station locations 
whereas the correlation coefficient is weak for Asebot 

(8)r=

∑n
i=1(Xi− X)(Yi− Y)

√

∑n
i=1(Xi− X)

2∑n
i=1(Yi− Y)

2
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(r = 0.26), Hirna (r = 0.32), and Kora (r = 0.36) station loca-
tions. The MAE and RMSE were small for most of the 
station locations relative to the gauge rainfall data in all 
seasons. This indicates that CHIRPS rainfall data was com-
parable to the gauge rainfall data in the study area. In the 
Bega season, CHIRPS rainfall data were overestimated at 
Asebe Teferi, Gelemso, Hirna, and Kora station locations 
whereas CHIRPS was underestimated at Asebot, Bedesa, 
and Meiso station locations in the study area. Similarly in 
Belg season, CHIRPS rainfall data were overestimated at 
Kora and Meiso station locations, while underestimated at 
Asebot, Bedesa, Asebe Teferi, Gelemso, and Hirna station 
locations. CHIRPS rainfall data were also overestimated at 
Kora and Gelemso station locations and underestimated 
at Asebot, Bedesa, Asebe Teferi, Meiso, and Hirna station 
locations during Kiremt season (Table  3). The result of 
this study is supported by the findings of Saeidizand et al. 

(2018) and revealed the presence of a good agreement 
between CHIRPS and gauge stations rainfall data in Iran 
during Belg, Bega, and Kiremt seasons.

On the annual time scale, a good agreement with 
the gauge station data was also observed with r val-
ues between 0.56 and 0.81 and NSE values between 
0.04 and 0.59 for all station locations, except Asebot 
(r = 0.37) and Hirna (r = 0.4). The MBE, MAE, and 
RMSE for Asebot and Hirna station locations were 
small relative to the gauge station rainfall (Table 3) and 
it was comparable to the gauge station data in the study 
area. On the annual time scale, CHIRPS rainfall data 
were underestimated at Asebot, Bedesa, Asebe Teferi, 
Meiso, and at Hirna station locations, while overesti-
mated at Kora and Gelemso station locations. Gener-
ally, as compared to previous studies (Ayehu et al. 2018; 
Dinku et al. 2018; Fenta et al. 2018; Alemu and Bawoke 

Table 3  Mean monthly, seasonal, and  annual time scale statistical analysis of  rainfall for  the  meteorological station 
and CHIRPS rainfall data

Monthly Time 
Scale

Asebe Teferi Asebot Bedessa Gelemso Hirna Kora Meiso

R 0.98 0.91 0.99 0.98 0.99 0.98 0.98

NSE 0.93 0.82 0.92 0.96 0.98 0.87 0.96

MAE 9.13 14.18 13.26 7.52 6.61 11.70 5.90

MBE 3.11 − 5.31 − 11.36 2.87 − 2.54 10.07 − 1.18

RMSE 12 20 17 12 10 15 8

Bega (October–January)

 R 0.87 0.90 0.77 0.84 0.95 0.45 0.80

 NSE 0.73 0.75 0.57 0.54 0.87 0.21 0.60

 MAE 10.37 8.14 13.23 9.07 5.15 9.33 10.16

 MBE 3.04 − 1.26 − 4.34 6.12 0.53 0.17 − 1.55

 RMSE 13 13 17 11 6 14 15

Belg (February–May)

 R 0.68 0.77 0.89 0.83 0.84 0.72 0.84

 NSE 0.45 0.55 0.74 0.68 0.69 0.26 0.68

 MAE 19.10 19.31 13.49 15.74 15.68 16.28 14.37

 MBE − 2.87 − 5.39 − 5.21 − 1 − 0.53 16.28 2.18

 RMSE 24 25 20 20 19 28 20

Kiremt (June–September)

 R 0.63 0.26 0.61 0.88 0.33 0.37 0.53

 NSE 0.31 0.02 0.08 0.727 0.04 0.07 0.25

 MAE 22.25 27.63 31.91 10.38 26.80 44.05 17.37

 MBE − 9.5 − 9.27 − 24.53 3.50 − 7.62 13.75 − 2.20

 RMSE 29 35 36 12 38 53 22

Annual Time Scale

 R 0.56 0.37 0.68 0.81 0.395 0.568 0.689

 NSE 0.29 0.021 0.035 0.594 0.017 0.092 0.46

 MAE 14.74 15.747 13.16 6.202 9.601 18.855 8.689

 MBE − 3.112 − 5.308 − 11.36 2.87 − 2.539 10.066 − 1.18

 RMSE 17 19 17 8 13 21 11
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Fig. 2  Graphical comparison of mean monthly CHIRPS and meteorological station rainfall in the West Harerge Zone
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2019) the CHIRPS rainfall products perform well for 
West Harerge Zone.

Distribution of rainfall
Long-term mean annual CHIRPS rainfall estimates 
(1983–2019) ranged between 528.913 and 1214.75  mm 
(Fig. 3b, c). This shows high spatial variability of rainfall 
over the area. The highest rainfall values were observed 
in the western, central, and northeastern parts of the 
study area. On the other hand, the lowest rainfall values 
were observed in the southeastern and northwestern 
parts of West Harerge Zone. The highest annual rainfall 
values (996–1214.75  mm) were recorded around Tulo, 
Goba Koricha, the northern part of Habro, the north-
eastern part of Mesela, southwestern part of Chiro Zuria 
district, the southeastern part of Anchar, and Doba dis-
trict (Fig.  3b). Meiso and the southeastern part of the 
Boke district received the lowest annual rainfall amount 
(528–706  mm). The highest annual rainfall values were 
observed in the highest elevation area and the lowest 
rainfall value was recorded in the lowest elevation area 
(Fig.  3a, b). This result is supported by the findings of 
Belay et al. (2019) who reported that mean annual rainfall 
and elevations are highly correlated in the Beles basin of 
Ethiopia.

The spatial distribution of rainfall for all seasons 
(1983–2019) is shown below (Fig.  4a–c). During the 
Bega season, the southern and central parts of the 
study area received maximum rainfall value while 
the northern part received the lowest rainfall value. 
Similarly, during Belg, the highest rainfall values 
were observed in the southern, central, and north-
eastern parts, whereas the lowest rainfall values were 
recorded in northern and northwestern parts of the 
study area. During Kiremt, the highest rainfall val-
ues were recorded in the western, central, and north-
eastern parts while the lowest rainfall values were 
recorded in the southeastern and northwestern parts 
of the study area. Kiremt season rainfall was almost 
followed the same spatial distribution as that of the 
annual rainfall. Furthermore, rainfall and elevation 
were highly correlated in this season.

Long-term mean monthly rainfall (1983–2019) is 
shown in Figs. 5 and 6. It revealed that April, May, July, 
August, and September were the wettest months, while 
January, February, November, and December were the 
driest months. Little rainfall was recorded in March, 
June, and October months. The highest value of rain-
fall was recorded in August and September months, 
while the lowest value of rainfall was recorded in Janu-
ary month (Fig.  6). Belay et  al. (2019) reported that 
June, July, August, and September were the main rainy 

months, and November, December, January, February, 
and March were the driest months in the Beles basin of 
Ethiopia.

Spatiotemporal variability and trends of rainfall in West 
Harerge Zone
Spatiotemporal variability of rainfall
The CV result calculated for each pixel (1983–2019) is 
shown in Fig. 7. Relatively highest inter-annual variabil-
ity (CV > 17%) was observed in the southern, northern, 
and southeastern parts of the study area. In contrast, 
less inter-annual variability (CV < 13%) was observed in 
the western and northeastern parts of the area (Fig.  7). 
The highest inter-annual variability was experienced in 
the northern part of Meiso, southeastern parts of Hawi 
Gudina, Boke, and Kuni district, and it reflects that there 
is greater contrast in annual rainfall values from year to 
year. The majority parts of Meiso, Hawi Gudina and Boke 
districts experience the characteristics of lowland areas 
and their livelihood strategy is mainly agro-pastoralism. 
Due to this, their crop production potential is relatively 
lower as compared to highland districts of West Harerge 
Zone. The high inter-annual rainfall variability in these 
areas affects crop production, soil fertility and boost crop 
infestation. This situation will aggravate the reduction of 
crop production and food security problem. Inter-annual 
variability of rainfall and mean annual rainfall amounts 
are almost inversely related (Fig.  7). This result agrees 
with the findings of Dawit et al. (2019) that revealed the 
inverse relationship between rainfall variability and mean 
annual rainfall in the Guna Tana Watershed, Upper Blue 
Nile basin of Ethiopia. The areas with low mean annual 
rainfall show high inter-annual variability in the study 
area.

The spatial distributions of the CV of seasonal rain-
fall are shown below (Fig. 8a–c). As compared to annual 
rainfall, seasonal rainfall had high inter-annual vari-
ability up to 75.9% with Bega rainfall. Besides, the CV 
in Kiremt rainfall (15% < CV < 28.5%) appeared relatively 
stable compared to the remaining seasons. The CV of 
Belg rainfall (24% < CV < 35.58%) was higher than Kiremt 
rainfall and it indicates higher inter-annual variability 
of Belg rainfall than Kiremt rainfall (Fig. 8a, b). The sea-
sonal characteristic of rainfall has a great influence on 
the production potential of crops in the rain-fed agricul-
tural systems since the availability of water in the soil is 
essential for the growth of crops. The maximum CV in 
Kiremt rainfall was observed in the southern part of the 
study area. The results of this study indicate that the 
effect of rainfall variability on crop production and food 
security in the southern part is higher than other parts 
of the study area. On the other hand, the maximum CV 
in Bega season was observed in the northern part of the 
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study area. Similarly, the highest values of the CV in Belg 
season were recorded predominantly in the northern 
and southeastern parts of the study area. The result of 
this study agrees with the findings of Asfaw et al. (2018); 
Mohammed et al. (2018) and Alemu and Bawoke (2019) 
who reported that less variability of rainfall was observed 
in the Kiremt season than other seasons in different parts 
of Ethiopia.

The spatial distribution of monthly rainfall CV (%) is 
shown in Fig.  9. The highest inter-monthly variability 
(CV > 100%) was observed in January, February, October, 
and November months. In contrast, less inter-monthly 
variability (CV < 30%) was observed in some parts of the 
June, July, August, and September months of the study 
area. The result of this study agrees with the findings 

of Belay et al. (2019), reported a small CV in June, July, 
August, and September months in the Beles basin of 
Ethiopia.

The annual rainfall anomaly (1983–2019) over the 
study area is shown in Fig.  10a. The rainfall anoma-
lies showed the presence of inter-annual variability of 
rainfall and the percentages of negative and positive 
anomalies were 56.76% and 43.24%, respectively. The 
highest positive anomaly (2.50) was observed in the 
year 1983 whereas the highest negative anomaly (2.36) 
was observed in the year 2015. Negative anomalies 
pronounced particularly in 1984, 1986–1988, 1991, 
1999–2005, 2008/2009, 2011/2012, 2015/2016, and 2017 
(Fig.  10a). These correspond to the historical drought 
years in Ethiopia due to El Niño and climate change. 

Fig. 3  Elevation (a), spatial distributions of long-term mean annual rainfall (mm) across the district (b) and spatial distributions of long-term mean 
annual rainfall (c) of West Harerge Zone (1983–2019)
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Consequently, there was a food shortage due to reduced 
crop production in Ethiopia, especially in northern, cen-
tral and eastern parts. This is because the majority of 
crop production in developing countries, including Ethi-
opia, depends on rain-fed agriculture. The result of this 
study agrees with the findings of Asfaw et  al. (2018) in 
Ethiopia. Furthermore, the results of the SAI analysis of 
seasonal rainfall of the study area (1983–2019) are shown 
in Fig. 10b–d. The percentage of negative anomalies was 
larger than positive anomalies in all seasons. Similar to 
annual rainfall, inter-annual variability of rainfall was 
observed in Belg, Kiremt, and Bega with negative anoma-
lies 59.46%, 54.05%, and 62.16%, respectively. The highest 
positive anomaly was observed in 1983, 2010, and 1997 

Fig. 4  Spatial distributions of mean average Kiremt rainfall (mm) (a) mean average Belg rainfall (mm) (b) and mean average Bega rainfall (mm) (c) of 
the West Harerge Zone (1983–2019)
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Fig. 5  Mean monthly rainfall of West Harerge Zone during 
1983–2019 periods
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in Kiremt, Belg, and Bega seasons, respectively. On the 
other hand, the highest negative anomaly was observed 
in 2015, 2009, and 2010 in Kiremt, Belg, and Bega sea-
sons, respectively. This result is supported by Alemu and 
Bawoke (2019), revealed that the percentage of negative 
anomalies exceeded that of positive anomalies in all sea-
sons except Kiremt in the Amhara region.

Trend analysis of rainfall
The result of the monthly rainfall MK trend-test analysis 
is shown in Table 4. The result showed a decreasing trend 
of rainfall in January, February, March, April, May, June, 
August, September, and December months (1983–2019). 
On the other hand, the result of this study revealed an 
increasing trend in July, October, and November months 
(Table 4). However, the trends were not statistically sig-
nificant at a significance level of α = 0.05 in all months 
except November (1983–2019). The result of this study 

Fig. 6  Spatial distributions of mean monthly rainfall of West Harerge Zone (1983–2019)

Fig. 7  Spatial distribution of CV (%) of annual rainfall in West Harerge 
Zone (1983–2019)
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agrees with the findings of Alemu and Bawoke (2019) in 
the Amhara region (1981–2017).

Mean seasonal rainfall showed a downward trend in 
Kiremt and Belg seasons, whereas there was an upward 
trend in the Bega season (Table 5; Fig. 11b–d). The agri-
culture sector of most sub-Saharan countries, including 
Ethiopia, is predominantly rain-fed and climate-sen-
sitive. Because of this, crop production and access to 
food are substantially affected by climate variability 
and/or climate change. The decreasing trend of rain-
fall in the main rainy season affects crop production 
and food security. The finding of this study can provide 
useful insight to adjust appropriate mitigation, coping 

and adaptation strategies by smallholder farmers. The 
mean seasonal rainfall was not statistically significant at 
α = 0.05 in mean Bega, Belg, and Kiremt rainfall (1983–
2019). Moreover, the mean annual rainfall showed a 
downward trend (Table 5; Fig. 11a) and it is not signifi-
cant at a significant level of α = 0.05. This result agrees 
with the findings of Viste et  al. (2013) in southern 
Ethiopia. Mulugeta et  al. (2019) also reported a non-
significant decreasing trend of annual rainfall in the 
Awash River basin (1902–2016). In contrast, Alemu and 
Bawoke (2019) reported a non-significant increasing 
trend in the annual and Kiremt while a non-significant 
decreasing trend during the Bega season (1981–2017) 

Fig. 8  Spatial distribution of CV (%) in Kiremt (a), Belg (b), and Bega (c) season rainfall in West Harerge Zone (1983–2019)
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in the Amhara region of Ethiopia. The reason could be 
related to climate change and variability although it 
needs further investigation.

Associations between rainfall and Pacific Ocean Sea 
surface temperature (SST)
Table 6 depicts that the correlation between mean Kiremt 
rainfall and NINO 3.4 SST was negative and statistically 
significant (at α = 0.05). On the other hand, the correla-
tion between mean values of rainfall and NINO 3.4 SST 
was positive in Belg and Bega seasons. This implies that 
SST decreased the amount of rainfall in Kiremt season 
and increased in Belg and Bega seasons across the study 
area over the last 35  years (1984–2018). Similarly, the 
correlation between mean annual rainfall and NINO3.4 
SST was negative in the study area. A study conducted 
by Tiruneh et  al. (2018) revealed that the correlation 
between SST anomalies and rainfall was negative and 
positive in Kiremt and Belg seasons, respectively in the 
Upper Awash basin. Similarly, the negative association 

between mean annual rainfall and mean annual SST 
anomaly was reported in the Upper Awash basin. Diro 
et al. (2010) showed that the equatorial Pacific SST shows 
a negative correlation with rainfall in various parts of 
Ethiopia during the Kiremt season. Moreover, an empiri-
cal study conducted by Seleshi and Camberlin (2006) 
revealed that warm ENSO periods (El Niño years) are 
typically associated with lower rainfall and drought years. 
In contrast, cold periods (La Niña years) are associated 
with higher rainfall amounts. According to Seleshi and 
Camberlin (2006), the highest negative rainfall anomaly 
and the highest positive SST anomaly correspond to 
severe drought years.

The historical droughts in Ethiopia were associ-
ated with ENSO events in the past (Fekadu 2015). The 
drought years in Ethiopia include 1984, 1987, 1991–
1992, 1993–94, 2002, 2009, 2012, 2015/16 (Asfaw et  al. 
2018; Mekonen et  al. 2020) either coincide or follow El 
Niño events shortly (Asfaw et  al. 2018). The finding of 
the present study agrees with the above result and the 

Fig. 9  Spatial distribution of monthly rainfall CV (%) of West Harerge Zone (1983–2019)
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rainfall anomalies for these drought periods were very 
low whereas the SST anomalies were very high (Fig. 12). 
La Nina decreases the amount of rainfall in the Belg sea-
son, unlike the Kiremit season, while El Nino increases 
the amount of rainfall in the Belg season and decreases 
the amount of rainfall in the Kiremt season (1974–2013) 

in Bilate River basin, Ethiopia (Moloro 2018). Besides, 
Yasuda et al. (2018) reported that the inter-annual varia-
bility of rainfall in East Africa was linked with the impact 
of Pacific Ocean SST.
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Fig. 10  Annual rainfall SAI (a), mean Kiremt rainfall SAI (b), mean Belg rainfall SAI (c), and mean Bega rainfall SAI (d) of West Harerge Zone (1983–
2019)
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Conclusions
This study has investigated the spatiotemporal variabil-
ity and trends of rainfall and its association with Pacific 
Ocean SST in West Harerge Zone of eastern Ethiopia 
using CHIRPS rainfall products and Pacific Ocean SST 
data. High spatial and temporal rainfall variability on the 
monthly, seasonal and annual time scales were observed 
across the study area. The seasonal rainfall showed high 
inter-annual variability in the dry season (Bega) than 
other seasons. Similarly, short rainy season (Belg) rainfall 
showed high inter-annual variability than the main rainy 
season (Kiremt). The trends of rainfall decreased but not 
statistically significant in most of the months during the 
studied periods (1983–2019). In contrast, the trends 
of rainfall increased insignificantly in July and October 
months. However, the trend of rainfall increased signifi-
cantly in November month. Besides, the trend of rainfall 
increased in Bega season and decreased in the annual, 
Kiremt and Belg seasons. But, the trends of rainfall were 
not significant at α = 0.05 significance level. Besides, 
NINO 3.4 SST showed a decreasing effect on the amount 
of rainfall in the Kiremt season and an increasing effect 
on the amount of rainfall in Belg and Bega seasons across 

the study area. Likewise, equatorial Pacific Ocean SST 
decreased the amount of rainfall in the annual time scale 
(1984–2018). The interaction between rainfall and Pacific 
Ocean SST was higher in the Kiremt season than Belg 
and Bega seasons. The Pacific Ocean SST is influenced by 
global warming which is caused by natural anthropogenic 
greenhouse gas emissions. The Pacific Ocean SST in turn 
affects the average rainfall amount of different parts of 
the world. This situation causes climate variability and/or 
climate change since rainfall is one of the major climate 
variables. Generally, the occurrence of droughts in the 
study area was associated with ENSO events like most 
other parts of Ethiopia and East Africa.

Policy implications
A very good understanding of the distribution, variabil-
ity, and trend of rainfall and its association with ENSO 
play an indispensable role in water availability, vegetation 
distribution, climate change adaptation and mitigation, 
planning farming practice, and assessment of drought. 
Hence, the findings of inter-annual variability, trend, 
and spatial distribution of rainfall in this study should 
be used to develop a better decision support system in 

Table 4  MK trend analysis of spatial average monthly rainfall in West Harerge Zone (1983–2019)

*significant at α = 0.05

Month Kendall’s tau S p-value Trend Significance Sen’s Slope 
(mm/year)

January − 0.08 − 54 0.49 Downward Insignificant − 0.05

February − 0.13 − 88 0.26 Downward Insignificant − 0.12

March − 0.06 − 38 0.63 Downward Insignificant − 0.30

April − 0.09 − 62 0.43 Downward Insignificant − 0.78

May − 0.05 − 30 0.71 Downward Insignificant − 0.36

June − 0.05 − 36 0.65 Downward Insignificant − 0.23

July 0.01 6 0.95 Upward Insignificant 0.01

August − 0.07 − 46 0.56 Downward Insignificant − 0.32

September − 0.06 − 38 0.63 Downward Insignificant − 0.20

October 0.03 20 0.81 Upward Insignificant 0.19

November 0.35 230 0.00* Upward Significant 0.38

December − 0.08 − 56 0.47 Downward Insignificant − 0.03

Table 5  MK trend analysis of areal average annual and mean seasonal rainfall (1983–2019) in West Harerge Zone

Kendall’s tau S p-value Trend Significance Sen’s Slope 
(mm/year)

Annual Rainfall − 0.09 − 62 0.43 Downward Insignificant − 1.46

Kiremit Rainfall − 0.09 − 60 0.44 Downward Insignificant − 0.28

Belg Rainfall − 0.18 − 122 0.11 Downward Insignificant − 0.61

Bega Rainfall 0.14 96 0.22 Upward Insignificant 0.19
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different development activities of West Harerge Zone. It 
would be vital in decision support systems and prepar-
ing strategic plans to adjust sowing and planting time, 

select drought-resistant crops, practice in-situ water 
conservation, practice small-scale irrigation and diver-
sifying incomes of smallholder farmers. Moreover, a 
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Fig. 11  Long-term annual (a), average Kiremt (b), Belg (c) and Bega (d) rainfall of West Harerge Zone (1983–2019)
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good understanding of rainfall is helpful in the hydro-
logical investigation, water resource, and energy develop-
ment activities. For this reason, the findings of this study 
should be used as a useful source of information on the 
spatiotemporal variability and trends of rainfall for cli-
mate risk management in and around the drought-prone 
regions of the study area. Moreover, effective coping and 
adaptation strategies should be established to combat the 
adverse impacts of climate change and/or variability in 
the study site, especially in agro-pastoralist areas. This is 

Table 6  Correlation coefficients between  rainfall and  SST 
(1984–2018) in West Harerge Zone

Correlation coefficients between rainfall and sea surface 
temperature (SST)

r p-value r2

Kiremt − 0.46 0.01 0.21

Belg 0.27 0.18 0.05

Bega 0.25 0.14 0.06

Annual − 0.17 0.33 0.03
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Fig. 12  Association between annual rainfall anomaly and SST anomaly (a), Kiremt rainfall anomaly and SST anomaly (b), Belg rainfall anomaly and 
SST anomaly (c) and Bega rainfall anomaly and SST anomaly (d)
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because the findings of this study revealed that agro-pas-
toralist areas received higher spatial rainfall variability.
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