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Abstract 

It is a great challenge to obtain reliable gridded meteorological data in some data-scarce and complex territories like 
the Himalaya region. Less dense observed raingauge data are unable to represent rainfall variability in the Beas river 
basin of North-Western Himalaya. In this study four reanalyses (MERRA, ERA-Interim, JRA-55 and CFSR) and one global 
meteorological forcing data WFDEI have been used to evaluate the potential of the products to represent orographic 
rainfall pattern of Beas river basin using hydrology model. The modeled climate data have compared with observed 
climate data for a long term basis. A comparison of various rainfall and temperature products helps to determine uni-
formity and disparity between various estimates. Results show that all temperature data have a good agreement with 
gridded observed data. ERA-Interim temperature data is better in terms of bias, RMSE (Root Mean Square Error), and 
correlation compared to other data. On the other hand, MERRA, ERA-Interim and JRA-55 models have overestimated 
rainfall values, but CFSR and WFDEI models have underestimated rainfall values to the measured values. Variable Infil-
tration Capacity (VIC), a macroscale distributed hydrology model has been successfully applied to indirectly estimate 
the performance of five gridded meteorological data to represent Beas river basin rainfall pattern. The simulation 
result of the VIC hydrology model forced by these data reveals that the discharge of ERA-Interim has a good agree-
ment with observed streamflow. In contrast there is an overestimated streamflow observed for MERRA reanalysis esti-
mate. JRA-55, WFDEI, and CFSR data underestimate the streamflow. The reanalysis products are also poor in capturing 
the seasonal hydrograph pattern. The ERA-Interim product better represents orographic rainfall for the Beas river 
basin. The reason may be the ERA-Interim uses a four-dimensional variational analysis model during assimilation. The 
major drawback of MERRA is the non-inclusion of observed precipitation data during assimilation and modeling error. 
The poor performance of JRA-55, CFSR and WFDEI is due to the gauge rainfall data assimilation error. This research 
finding will help for broader research on hydrology and meteorology of the Himalayan region.
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Background
Rainfall and temperature data are considered as a signifi-
cant input for water resource management and hydro-
logical processes of the Himalayan river basin. The high 
altitude precipitation is mainly dependent on orogra-
phy. The other factors that control the variation of pre-
cipitation are space, time and altitude. The association of 

orography with broad atmospheric circulation system, 
zonal climate process and rate of local evapotranspira-
tion control the pattern of distribution and variability 
of mountain precipitation (Nesbitt and Anders, 2009). 
Therefore it is necessary to evaluate the precipitation 
estimates to understand the spatio-temporal distribu-
tion of mountain precipitation. Several studies (Bhat-
tacharya et  al. 2019; Tiwari et  al. 2018) have reported 
the advantage of using reanalysis temperature products 
for snowmelt modeling and simulation of streamflow in 
high altitude rugged terrain where observation networks 
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are inaccessible. A comparison of various reanalysis tem-
perature estimates with observation is needed to under-
stand the variability of temperature with altitude and to 
estimate suitable gridded temperature data as a proxy of 
observation stations for data- limited mountain regions. 
Ledesma and Futter (2017) have reported that the 
observed air temperature from a station is more realistic 
than rainfall. The spatial variation and error in the station 
air temperature are less as compared to precipitation. For 
the Himalayan river basin the major challenges are less 
spatial coverage of raingauge data, difficulty in data col-
lection and missing data. This will reduce the capability 
of raingauge stations to accurately capture the spatio-
temporal variability of rainfall (Liu and Zipser 2014; 
Palazzi et al. 2013). Due to data scarcity the management 
and assessment of water resources are much needed for 
remote regions (Buytaert et  al. 2012). The region where 
orography is complex and human settlement is less regu-
lar grids to be created by reanalysis and satellite retrievals 
to fill the lack of observations in an ungauged basin (Bai 
and Liu 2018). Many studies have suggested that higher 
frequency events better acquired by high spatial reso-
lution climate data (Ward et  al. 2011; Fuka et  al. 2014). 
The performance of satellite precipitation products in 
the mountain region is dependent on complex topogra-
phy, change of elevation, snow cover and seasonality. The 
reason of error in quantification of satellite precipitation 
events may be due to sampling error, error due to algo-
rithms and instruments. The satellite rainfall data also 
have limitations of their short length of record (Derin 
and Yilmaz 2014). To address these challenges of data-
scarce basin high-resolution global reanalysis data have 
been widely used for hydrology models around the world 
(Zhao et  al. 2010). Global forcing data developed using 
bias-correction (based on observation) of reanalysis data 
are also preferred nowadays for hydrological studies in 
mountain regions. The reanalysis products are gridded 
data at different spatial and temporal scales to represent 
the state of the atmosphere using the output of numeri-
cal atmospheric models, different data assimilation 
techniques and multiple observed datasets for multiple 
variables (humidity, temperature, solar radiation etc.) 
(Dee et al. 2011; Chen and Liu 2016). Climate reanalysis 
mechanic combines the model result with observation at 
regular grids. The reanalysis data are available for almost 
every region of the earth and a long term basis (Caroletti 
et al. 2019). Additionally the reanalysis products are not 
limited to topography and provide high-resolution pre-
cipitation at a quasi-global scale. The grid point distance 
of the reanalysis data is quasi-uniform. Therefore, the 
reanalysis estimates can be used to investigate the rainfall 
spatial variability on streamflow in mountain areas and 
provide long-term records (Lobligeois et  al. 2014; Zhao 

et al. 2013). The individual performance of different rea-
nalysis products depends on the assimilation of different 
portions of input observations, model physics, observing 
techniques, data assimilation schemes, available observa-
tions and resolutions (Lin et al. 2014; Haylock et al. 2008; 
Shea et  al. 1994, Bao and Zhang 2013). As a result, the 
applicability of the reanalysis products differs by region 
and evaluation plans (Essou et al. 2016a, b). The perfor-
mance of different reanalysis data on a regional and global 
scale has carried out by many studies. The studies reveal 
that the large-scale performance of these data is useful 
but shows considerable variability at the regional scale. 
For example, Janowiak et  al. (1998) have found a good 
agreement between National Centers of Environmental 
Prediction (NCEP) – National Center for Atmospheric 
Research (NCAR) and Global Precipitation Climatology 
Project (GPCP) raingauge-satellite combined data when 
compared at the global scale. However, these reanalysis 
data perform poorly on a regional scale. Lin et al. (2014) 
concluded that the seasonality of global Monsoon precip-
itation is correctly reproduced by MERRA (Modern-Era 
Retrospective Analysis for Research and Applications) 
and European Center for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim reanalysis data. Essou et al. 
(2016a, b) have compared the output of the hydrology 
model using global and regional reanalysis data in the 
United States. The reanalysis data show their potential 
to reproduce interannual variability of rainfall except for 
subtropical and humid continental regions. According to 
Hodges et  al. (2011) Climate Forecast System Reanaly-
sis (CFSR), MERRA and ERA-Interim perform better in 
Southern Hemisphere. So, it is necessary to review the 
efficiency of different reanalysis estimates in a particular 
region, especially in the mountain regions. Furthermore 
the measurement bias of precipitation between reanalysis 
and observed rainfall in the mountain regions is due to 
changing observation systems, low elevation stations and 
gauge undercatch problems (Fujiwara et  al. 2017; Ras-
mussen et  al. 2012; Li 1995). The researches reveal that 
the reanalysis products are improving with the develop-
ment of data assimilation method, numerical modeling 
and increased computing power. The assessment of vari-
ability, trend and uncertainty is therefore needed before 
using reanalysis products in the climate study (Parker 
2016). The representation of spatio-temporal processes 
by distributed hydrology model needs precipitation as 
the most important driver variable (Thiemig et al. 2013). 
The inferior quality of temperature and rainfall data due 
to observation and data processing error can be respon-
sible for poor model efficiency in generating streamflow. 
Nowadays the hydrology models have been used to evalu-
ate precipitation properties of the catchment by calibrat-
ing them to observed discharge. Due to high variability 
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and dependency on station network the discharge obser-
vations are also utilized to correct orographic precipita-
tion in the elevation zone. Several studies have conducted 
to evaluate the precipitation estimates based on stream-
flow simulation by hydrology modeling framework (Bai 
and Liu 2018; Sun et al. 2018; Li et al. 2015; Tong et al. 
2014a, b; Mei et al. 2016). These researches have assumed 
that the error of rainfall products can be communicated 
into the simulated discharge. Even many studies have 
suggested that the best accessible evidence for catch-
ment precipitation in the data-scarce basin is discharge 
which is superior to suggested meteorological observa-
tions (Duethmann et  al. 2013; Henn et  al. 2015; Sevruk 
and Mieglit 2002).

The structural error (incorrect description of pro-
cesses), the error generated by model parameters and 
input data error are the main reasons for modeling 
uncertainty. The uncertainties from various sources are 
a crucial challenge for hydrological simulation. There-
fore the improvement of hydrology models is needed to 
improve model efficiency and reduce uncertainty (Beven, 
2006; Clark et al. 2011). Energy-balance based distributed 
high-resolution hydrology model more precisely analyze 
the sensitivity of the hydrology cycle in snow and glacier-
fed river basin by following the process-based physical 
rules. The model’s grid-based configuration allows it to 
be coupled directly to land-surface schemes and high-
resolution climate models. The advantage of using the 
model over widely used temperature-index and degree-
day model is- (i) simulation of complex events like rain 
on snow, (ii) snowpack melting where the only tempera-
ture has no direct correlation with energy, (iii) different 
physical aspects of generating runoff and snow/glacier 
melt runoff, (iv) describing the glacio-hydrology physical 
processes to reduce parameter uncertainty (Walter et al. 
2005; Shrestha et al. 2015). The spatial variability of sub-
catchment elements is usually described by the distrib-
uted models using a node-link structure instead of spatial 
averaging (Zoppou, 2000) done by the lumped model to 
describe catchment behavior. One of the process-based 
distributed hydrology models is the Variable Infiltration 
Capacity (VIC) hydrology model. However very few stud-
ies have used VIC hydrology model to compare gridded 
rainfall dataset in the mountainous region (Yanto and 
Rajagopalan 2017; Tong et  al. 2014a, b; Islam and Dery 
2017). These studies prove that the streamflow quality 
depends on input forcing, model set up and capability.

The Beas river basin is a topographically complex, 
mountainous, high altitude and data-scarce Himalayan 
river basin. The elevation of the basin varies from 361 
to 6188 m. The gauge and discharge stations are located 
at elevations ranging from 436 m at pong dam to 904 m 
at Pandoh dam and 2050 m at Manali. For the Beas river 

basin 21% area above 4800 m exists above sea level. At 
this elevation little or no weather stations exists. For 
this reason, reliable snowfall measurements are scarce 
by the raingauges at this elevation. According to Kumar 
et al. (2007) no observation stations are located in the 
Eastern part of the basin. Therefore the reliable gridded 
reanalysis meteorological data can be used as a proxy of 
observation stations for the hydro-climatic assessment 
in the Beas river basin. The reanalysis temperature data 
can also be used as the best parameter for snowmelt 
modeling of upper Beas where 65% of area is covered 
with snow during Winter (Singh and Jain 2002) and no 
observations exist. Very few studies have conducted 
to evaluate the performance of observed, satellite and 
model-generated precipitation for the Beas river basin 
of NorthWestern Himalaya (Li et al. 2013; 2015; Li et al. 
2017). They have also applied conceptual and tempera-
ture index hydrology models using gridded precipi-
tation data for a short term basis. Most of the studies 
have estimated streamflow for a single location. The 
finding of those studies is the underestimated stream-
flow as compared to observed data. But no studies have 
examined various high-resolution gridded reanalysis 
data for process-based distributed hydrology models 
to investigate their capability to represent precipita-
tion patterns of the Beas river basin. The variability of 
reanalysis temperature and precipitation with observa-
tions has also not evaluated in previous research. This 
study focuses on these research gaps by assessment of 
various gridded reliable meteorological data. In this 
research a thorough assessment of five widely used 
reanalysis and global meteorological products [Mod-
ern-Era Retrospective Analysis for Research and Appli-
cations (MERRA), European Center for Medium-Range 
Weather Forecasts (ECMWF) ERA-Interim reanalysis, 
Japanese 55  year Reanalysis (JRA-55), Climate Fore-
cast System Reanalysis (CFSR) and WATCH forcing 
data methodology applied to ERA-Interim (WFDEI)] 
are undertaken by direct comparison of these products 
with observations and evaluating these estimates by 
utilizing the hydrology model in the data-scarce Beas 
river basin. The modeling approach has also used in 
this study to understand the variability of orographic 
precipitation in Beas. Moreover, streamflow using 
reanalysis products has estimated for different loca-
tions of different elevations to consider the effect of 
topography on discharge. The purpose of the study is 
to evaluate the quality of the reanalysis products for 
hydrology research using a process-based distributed 
Variable Infiltration Capacity hydrology model (VIC) 
and how well each data reproduces spatial rainfall pat-
terns for Beas river basin. One of the limitations of the 
study is the non-availability of point temperature data 
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from weather stations. Therefore, the global monthly 
observed gridded Climate Research Unit (CRU) tem-
perature data has been used for comparison purposes.

Study area
The area selected for the study is the Beas basin (up to 
Pong dam) lies in the North- Western part of the Indian 
Himalayan Region (Fig. 1). It has an elevation of 4361 m 
(14,308ft) and is situated at geographical co-ordinates 32° 
21′ 59″–31° 16′ 09″ N and 77° 05′ 08″ E–74° 58′ 31″ E. The 
catchment area of the basin is 12,417 km2. The snow-cov-
ered and glaciated portion of the basin in upper reaches 
contributes meltwater to streamflow. The Winter season 
of Beas river basin has an average maximum temperature 
of 14.1 °C to a minimum of 0.22 °C. The average rainfall 
during April-June has estimated to be 106.12 mm. Dur-
ing Summer, temperature varies from a maximum of 24.6 
̊ C to a minimum of 8.9  °C, and average rainfall during 
this season is 86.83  mm. The Monsoon months (June–
September) receive 70% of the annual rainfall. There is an 
occurrence of severe snowfall for this basin during Win-
ter. Whereas the basin gets small amounts of rain from 
October to November (Ahluwalia et al. 2015).

Data and methodology
Data used
The hydro-meteorological data play a crucial role in com-
puting streamflow, rainfall-runoff, and Beas river basin’s 

snow component. The hydro-meteorological data used 
as an input for the hydrology models are daily maximum, 
minimum temperature, rainfall, wind speed and stream-
flow. Daily observed point rainfall and streamflow from 
1990 to 2009 for raingauge stations are obtained from 
Bhakra Beas Management Board, Himachal Pradesh. The 
raingauge stations are Banjar, Bhuntar, Janjehal, Larji, 
Manali, Pandoh, Pong, and Sainj. The streamflow data for 
1990–2009 is obtained for the Pong dam, Pandoh dam, 
Thalout and Manali. The spatial distribution of precipita-
tion and temperature data over the Beas river basin dur-
ing different seasons has shown in Figs. 2 and 3. Instead of 
using an available huge number of data and surface fluxes 
layers only 4 parameters at daily scale has been used. The 
algorithm developed by Maurer et  al. (2002) has been 
used to calculate the meteorological data such as vapor 
pressure, incoming shortwave radiation and net long-
wave radiation for Variable Infiltration Capacity hydrol-
ogy model. The reanalysis and global meteorological 
data have used in this study are MERRA, ERA-Interim, 
JRA-55, CFSR and WFDEI. CFSR has a horizontal 
resolution of 38  km spanning the period of 1st January 
1979 to the present day (Saha et  al. 2014). CFSR has a 
3D-variational analysis scheme of the upper-air atmos-
pheric state with 64 vertical levels. The WFDEI Forcing 
data (Weedon et al. 2014) is produced from Watch forc-
ing data and ERA-Interim reanalysis data. The mechanic 
follows sequential interpolation to a 0.5° resolution, 

Fig. 1  Study area of Beas river Basin
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elevation correction and monthly-scale adjustments. The 
monthly-scale adjustment is based on CRU TS3.1/TS3.21 
and GPCCv5/v6 monthly precipitation observations for 
1979–2012. Global Modeling And Assimilation Office 
(GMAO) of the National Aeronautics and Space Admin-
istration (Rienecker et al. 2011) develops global MERRA. 
MERRA covers the satellite era (from 1979 to the pre-
sent). MERRA is generated from the Goddard Earth 
Observing System Model, version 5.2.0 (GEOS-5.2.0) and 
a data assimilation system based on a three-dimensional 
variational approach (3DVAR). The Japan Meteorologi-
cal Agency (JMA) conducted JRA-55 (Japanese 55-year 
reanalysis), the second Japanese global atmospheric 
reanalysis project. It covers 55  years, extending back to 
1958. Compared to it’s predecessor, JRA-55 is based on 
new Data Assimilation And Prediction System (DA) that 
improves many deficiencies found in the first Japanese 
reanalysis (Kobayashi et al. 2015). ERA-Interim is the lat-
est global atmospheric reanalysis produced by the Euro-
pean Centre for Medium-Wave Forecasts (ECMWF) and 
covers the period from 1st January 1979 to the present 
day (Dee et  al. 2011). MERRA and ERA-Interim have a 
high spatial resolution of 0.5 × 0.67° (Rienecker et  al. 
2011) and 0.75 × 0.75° (Dee et al. 2011). JRA-55 data also 
has a high spatial resolution of 1.25 × 1.25°. CFSR and 

WFDEI have a less spatial resolution (0.5 × 0.5°) than 
other reanalysis data. All the temperature and rainfall 
data are interpolated to 0.5˚ by bilinear interpolation to 
make consistency among all datasets. Table 1 gives infor-
mation on various reanalysis and global meteorological 
data sources.

The spatial data has used for the Variable Infiltration 
Capacity hydrology model are the Digital Elevation 
Model (DEM), LULC (Land use and land cover) and 
soil data. Elevation, basin and slope are derived from 
Aster DEM at 30 m resolution. Land use and land cover 
data (100  m) are obtained from Oak Ridge National 
Laboratory (ORNL) Distributed Active Archive Center 
(DAAC) for the year 2005 (Roy et al. 2015). The LULC 
product is comprised of water body, evergreen broad-
leaf forest, deciduous broadleaf forest, mixed forest, 
wasteland, grassland, shrubland, plantation, cropland, 
built-up and snow-ice classes. The other vegetation 
properties are taken from Global Land Data Assimi-
lation System (GLDAS) vegetation parameter data-
base. Soil map and information has obtained from the 
National Bureau of Soil survey and land use planning 
(NBSS&LUP) at 1:250 000 scale. The Elevation band 
parameter for the Variable Infiltration Capacity hydrol-
ogy model is obtained from DEM. The elevation bands 

Fig. 2  Spatial variation of gridded Precipitation during (a) Winter (December-February), (b) Summer (March–May), (c) Monsoon (June–August) and 
(d) post-Monsoon (September–November)
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up to ten have been used for the hydrology model. The 
elevation bands are used to derive elevation wise snow 
area fraction and glacier area fraction of each grid cell. 
Permanent snow line of the the basin lies above 5000 m 
and minimum snow line varies from 1800 to 2000  m 
(Aggarwal et al. 2016).

Gridded observed monthly temperature data for 
1990–2009 has collected from CRU TS 3.22 (Climate 

Research Unit time series). According to Harris et  al. 
(2014) CRU TS 3.22 extends from the year 1901–2013 
and is an interpolation of 0.5-degrees of latitude‐longi-
tude climate data.

DEM, slope, LULC (Land use and land cover) and 
soil map for Beas basin shown in Fig. 4. Elevation band 
parameter for the VIC hydrology model is obtained 
from DEM (Fig. 5).

Fig. 3  Spatial variation of gridded temperature during (a) Winter (December-February), (b) Summer (March–May), (c) Monsoon (June–August) and 
(d) post-Monsoon (September–November)

Table 1  Description of various reanalysis and global meteorological data

No Rainfall product Availability Period

1 MERRA​ Global (NASA Modeling and Assimilation Data and Information Services Center (MDISC) (https​://disc.sci.gsfc.
nasa.gov/mdisc​)

1979-present

2 ERA-Interim Global (ECMWF as part of Copernicus Climate Change Services)
(https​://apps.ecmwf​.int/datas​ets/data/inter​im-full-daily​/levty​pe=sfc/)

1979-present

3 JRA-55 Global (NCAR Computational Information Systems Laboratory (CISL) Research Data Archive (RDA; https​://rda.
ucar.edu)

1958–2012

4 CFSR Global (National Centers for Environmental Information (NCEI; www.ncdc.noaa.gov/data-acces​s/model​-data/
model​-datas​ets/clima​te-forec​ast-syste​m-versi​on2-cfsv2​)

1979–2009

5 WFDEI Global (Produced post-WATCH using WFD methodology applied to ERA-Interim data) obtained from the Inter-
national Institute for Applied Systems Analysis (ftp://rfdat​a:force​DATA@ftp.iiasa​.ac.at)

1901–2012

https://disc.sci.gsfc.nasa.gov/mdisc
https://disc.sci.gsfc.nasa.gov/mdisc
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://rda.ucar.edu
https://rda.ucar.edu
http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
ftp://rfdata:forceDATA@ftp.iiasa.ac.at
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Methodology used
It is a great challenge for interpolated coarse resolution 
reanalysis data to reproduce rainfall spatial pattern in the 
mountain regions. Due to the non-reliability of observed 
raingauge the basin-scale validation of precipitation is 
less studied. In this research an attempt has been made 
to understand the ability of reanalysis data as a proxy of 
observation and their ability to produce spatio-tempo-
ral rainfall patterns of the Himalayan Beas river basin. 
Figure  6. presents the methodology flowchart of this 
research. The below-mentioned methods have carried 
out using the following steps:

1.	 All the gridded reanalysis data, in NETCDF (Net-
work Common Data  Form) format has processed 
in Linux (Lovable intellect not using XP) platform 
and the rainfall data for each station has extracted 
according to latitude and longitude in notepad for a 
specific time period.

2.	 The temperature and rainfall data from ERA-
Interim, MERRA and JRA-55 reanalysis estimates 
have converted to 0.5-degree resolution by bilinear 
interpolation method to compare reanalysis, global 
meteorological and raingauge data. The validation 
of temperature data has done gridwise. Whereas 

point to pixel comparison has done for modeled and 
observed rainfall data. The evaluation of temperature 
and precipitation data has carried out at mothly and 
annual scale using various statistical indices.

3.	 The simulation of the VIC hydrology model has done 
using reanalysis and global meteorological data.

4.	 A comparison of simulated streamflow with observed 
discharge data has carried out using calibration and 
validation for five different raw and bias-corrected 
reanalysis products, which is similar to the research 
methodology of Bai and Liu 2018.

Data comparison: temperature and precipitation
Due to the coarser spatial resolution and assimilation of 
limited observations the quality of reanalysis tempera-
ture and precipitation is needed to be compared with 
observed climate data before applying for the hydrology 
model (Essou et  al. 2016a, b). In the present study the 
mean annual cycles and monthly climate data are calcu-
lated and compared for individual stations of the Beas 
river basin. For each climatic region bias, correlation and 
Root Mean Square Error (RMSE) are calculated between 
reanalysis, global meteorological data and observed 

Fig. 4  a DEM map, b Slope map, c LULC map, and d Soil map of Beas basin
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climate data. The bias for temperature and precipita-
tion has calculated for the Winter (December-February), 
Summer (March–May), Monsoon (June–August) and 
post-Monsoon (September–November) period. Over a 
given period of time bias is the difference between tem-
perature and precipitation data with observations. The 
overestimation and underestimation of rainfall and tem-
perature data with observation are estimated by bias. The 
positive bias indicates overestimation and negative bias 
indicates underestimation. In comparison a perfect fit 
is indicated by null bias. The formula of bias is given in 
Eq.  1. RMSE is a measure of the deviation between the 
model and observed climate data (Eq. 2). The correlation 
coefficient (r) calculates the strength of the relationship 
between the relative movements of observed and mod-
eled forcing data. A correlation of -1.0 indicates a perfect 
negative correlation while a correlation of 1.0 shows a 
perfect positive correlation (Eq. 3).

Pi is modeled data and Oi is observed data.
In this study grid to point comparison has been 

made to compare reanalysis and global meteorological 

(1)Bias (%) =
Pi − Oi

Oi

× 100

(2)RMSE =

√

1/n
∑

(Pi − Oi)2

(3)r =
n(
∑

Pi × Oi)−
(
∑

Pi
)

× (
∑

Oi)
√

[n
∑

O2
i − (

∑

Oi)2][n
∑

P2
i −

(
∑

Pi
)2

precipitation data with raingauge data. Bilinear inter-
polation has been used for comparing gridded rainfall 
with ground observation rainfall data for eight stations 
Banjar, Bhuntar, Janjehal, Larji, Manali, Pong dam, 
Pandoh dam and Sainj at monthly scale.

Variable infiltration capacity hydrology model
Variable Infiltration Capacity hydrology model (VIC) is a 
semi-distributed, grid-based macroscale hydrology model 
(Nijssen et  al. 1997; Liang et  al. 1994). VIC hydrology 
model uses grid wise daily inputs of vegetation param-
eter, snow parameter, soil parameter, elevation and daily 
meteorological forcing parameters. The VIC hydrology 
model considers the effect of vegetation, topography and 
soil at daily or sub-daily time steps. VIC, process-based 
hydrology model simulates surface runoff, evapotran-
spiration, baseflow, snowpack and other hydrologic pro-
cesses. A large number of parameters are required to 
run the VIC hydrology model i.e. vegetation, soil, eleva-
tion and meteorological forcing at each grid cell. The 
Beas river basin runoff not only dependant on precipi-
tation. The topography, soil and land cover also have a 
significant impact on runoff. The finer resolution inputs 
(topographic, land cover and forcing data) in distributed 
hydrology models can reduce simulation uncertainty 
(Haddeland et  al. 2002). Therefore the VIC hydrology 
model has implemented over the entire Beas river basin 
at spatial resolution 0.01 × 0.01°. The meteorological 
forcing (temperature and rainfall) data are converted to 
0.01˚ resolution from 0.5˚ resolution by interpolation. 
The soil, LULC and DEM are also converted to 0.01˚ 
resolution by resampling. The mosaic scheme is one of 

Fig.5  Elevation zone map of the basin
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the unique characteristics of the VIC hydrology model. 
The soil information of the VIC hydrology model of total 
depth 0 to 2.5  m is divided into three layers. The total 
number of soil parameters required for the VIC hydrol-
ogy model are initial soil moisture, bulk density, satu-
rated hydraulic conductivity, the thickness of layer, soil 
moisture fraction at wilting point and variable infiltration 
curve parameter (binfilt). The average annual air tempera-
ture, average annual precipitation, slope and average ele-
vation are the non-soil parameters in the soil parameter 
file. The vegetation parameter file for the VIC hydrol-
ogy model is generated based on LULC classes fractional 
area over a particular grid including it’s rooting depth. 
Information from Global Land Data Assimilation System 
(GLDAS) vegetation parameter database is used to collect 
information about other vegetation properties. For each 

grid vegetation information is derived from monthly Leaf 
area index (LAI) and ALBEDO for the period 2003–2008. 
A routing model has implemented in the VIC hydrology 
model where fractional values at each grid cell flow and 
flow direction are considered as input files. Surface runoff 
and baseflow are routed to basin outlet through stream 
network. Elevation band information in the VIC hydrol-
ogy model (fraction of grid area with their corresponding 
elevation) is needed for better representation of snow-
melt and snow accumulation. A snow model of two layer 
energy balance and a frozen soil/permafrost algorithm is 
used in the hydrology model for cold land implementa-
tion (Cherkauer and Lettenmaier 1999). The VIC hydrol-
ogy model is also integrated with a glacier scheme. The 
glacier scheme can simulate glacier runoff (mm) from the 
glaciated area, including liquid precipitation and snow/

Fig.6  Flowchart of methodology used in this study
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glacier melt water. In this study VIC model simulation 
has been done in energy balance mode to estimate snow-
melt/glacier melt runoff.

The selection of calibration parameters plays an impor-
tant role in controlling infiltration and baseflow factors 
that regulate the streamflow hydrograph. According to 
Nijssen et  al. (1997) the parameters to be adjusted dur-
ing calibration of the VIC hydrology model are infiltra-
tion parameter (b_inf ), the depth of the first and second 
soil layers (d1, d2), and three baseflow parameters (Ds, 
Ws, Dsmax). The parameter b_inf defines the shape of 
the variable infiltration capacity curve and the range has 
taken 0–0.4. Enhanced runoff production is due to an 
increase in b_inf. Whereas a reduced runoff is due to a 
decrease in b_inf. The soil thickness controls the soil 
moisture storage capacity. Thick soil depth has higher 
moisture storage capacity, less runoff, higher evapotran-
spiration and higher baseflow. The amount of water for 
transpiration and baseflow is controlled by the thick-
ness of the bottom soil layer (d2). The ranges for the 
first and bottom soil layer varies from 0.05–0.25  m and 
0.3–1.50  m. The maximum baseflow from the lowest 
soil layer (Dsmax) ranges from 0 to 30 depending on the 
soil’s hydraulic conductivity. Ds is the fraction of Dsmax 
where the rapidly increasing nonlinear baseflow starts. 
The value of Ds ranges from 0 to 1. Higher baseflow 
occurs due to a higher value of Ds. Ws is the fraction of 
the maximum soil moisture of the lowest soil layer. The 
higher value of Ws tends to delay the peak runoff. The 
calibration and validation have conducted for each rea-
nalysis and global meteorological data. The magnitude of 
different calibration parameters for the Pandoh dam and 
Thalout has shown in Figs. 7 and 8. The ranges of param-
eters vary for different rainfall data.

The agreement of simulated and observed streamflow 
during calibration and validation is judged by statistical 
parameters like: NSE (Nash Sutcliffe Efficiency), Coef-
ficient Of Determination (R2), Root Mean Square Error 
(RMSE) and PBIAS (Percentage Bias). R2 is the squared 
ratio between covariance and multiple standard devia-
tions of observation and modeled data. The R2 ranges 
between 0–1 and indicate the relation between predicted 
and observed dispersion. Nash Sutcliffe efficiency var-
ies between -∞ to 1 (perfect fit) (Moriasi et  al. 2007). 
PBIAS indicates the overestimation and underestima-
tion tendency of the simulated data with observed value 
(Gupta et al. 1999). The RMSE value indicates the match 
between observed and modeled data with perfect value 
0. The poor match is indicated by increased RMSE value 
(Moriasi et al. 2007). The lower the RMSE value the bet-
ter the model performance.

Qobs and Qsim are the average observed and simulated 
discharge. Qobs (t) and Qsim(t) are the observed and simu-
lated discharge at time t, N is the number of observation.

Results
Comparison of modeled and observed temperature
The 2-m average maximum, minimum and mean tem-
peratures for the Beas river basin are compared for 
ERA-Interim, JRA-55, MERRA, CFSR and WFDEI. All 
the rainfall products are interpolated to 0.5-degree res-
olution. Figure  9 shows the monthly maximum, mini-
mum and mean temperature of each reanalysis and 
global meteorological data. The monthly maximum 
temperature for ERA-Interim, JRA-55, MERRA, CFSR 
and WFDEI varies from 4.18–21.49  °C, 4.52–23.91  °C, 
6.56–25.86  °C, 1.82–20.73  °C and 7.07–24.47  °C. The 
ranges of minimum temperature for all climatic data 
are −  7.20–14.48  °C, −  1.2–15.74  °C, −  4.64–14.21  °C, 
− 3.84–14.64 °C and 2.08–15.23 °C respectively.

The mean temperature ranges for these data are 
− 0.74–17.10 °C, 2.07–19.19 °C, 1.32–19.04 °C, − 0.72–
17.53 °C and 2.49–19.68 °C. Figure 10 shows the seasonal 
mean bias of all climatic data with monthly average CRU 
temperature data for all grids. All temperature data have 
less bias as compared to observation. ERA-Interim and 
CFSR have a very small bias compared to other data.

The seasonal and annual spatial distributions of the 
mean temperature biases have presented in Figs.  11 
and 12. For MERRA the distribution of bias is between 
−  5.08–2.73  °C for all seasons. The bias of MERRA is 
warmer in the Western and North-Western parts of the 
Beas river basin (> 2  °C during Winter) and cooler in 
other regions. ERA-Interim has a cooler bias for both 
seasonally and annually. The bias of ERA-Interim tem-
perature for all seasons is between −  6.71–0.16  °C. For 
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JRA-55 a warmer bias for all seasons exists at Western 
and North-Western Beas river basin. Whereas for South-
ern Beas JRA-55 has a warmer bias (> 3 °C) during Winter 
and post Winter seasons. Eastern and North-Eastern part 
of the basin have a cooler bias for all seasons. The bias 
variation for JRA-55 is − 8.09–4.45 °C for all seasons. For 
CFSR during the post Winter and rainy season the South-
Western part of Beas experience a warmer bias (> 2  °C). 
Except for Summer season the Western and North-West-
ern part of river basin has a warmer bias. The bias distri-
bution for CFSR for all seasons is − 9.39–2.45 °C. WFDEI 
agrees well with observed temperature (−  0.5–0.5  °C) 
for all seasons. During the Winter season a warmer bias 
of WFDEI exists for the whole river basin. During Sum-
mer and post-Monsoon season whole basin experience 
a cooler bias for WFDEI (−  0.54–−  0.05  °C). In Fig. 11 
the spatial distribution of monthly temperature bias has 
presented. Figure  12 represents the annual temperature 
bias of the Beas river basin. For JRA-55 the middle por-
tion of the Beas basin has a warmer bias (0.50–1.40  °C) 
annually. The Eastern and North-Eastern portion of basin 
has a cooler bias for MERRA, JRA-55 and CFSR. For 
ERA-Interim a cooler bias observed for the whole basin 
(− 5.33 to − 0.9  °C). WFDEI has a warmer bias for the 
entire basin. There is a variation of biases for different 
seasons and different reanalysis data.

Figure  12 also shows the correlations between the 
annual temperature of the various data for the period 
1990–2009 and observations. The correlation of MERRA 
with observation is > 0.50 for the whole basin. The spatial 

pattern of correlation at Western, North-Western and 
mid portion of the basin is similar for both ERA-Interim 
and JRA-55 reanalysis data (> 0.70). ERA-Interim has 
a higher correlation (0.50–0.80) for all basin except a 
smaller portion of Southern basin (−  0.44). JRA-55 and 
CFSR have a small correlation in the North-Eastern part 
of the basin (< 0.30). However JRA-55, CFSR and WFDEI 
have correlation of 0.50–0.77, 0.50–0.67 and 0.52–0.77 
respectively for whole basin.

The RMSE value of WFDEI (Fig.  12) is less than 
other reanalysis products (< 0.50  °C). For CFSR the 
RMSE value is more for Eastern and North-Eastern 
parts of the Beas river basin (4.34–8.96 °C). The RMSE 
of JRA-55 is higher for the North-Western part of the 
basin (5.79–6.90  °C). In other parts of the basin the 
RMSE value of JRA-55 is between 0.48–3.09  °C. ERA-
Interim has RMSE value 3.61–5.07  °C in the North-
East and Mid-East part of the Beas river basin. A lower 
RMSE value of ERA-Interim between 0.98–2.67 °C has 
observed in other portions of the basin. MERRA has 
RMSE < 5 °C for the entire basin.

Comparison of modeled and observed rainfall products
MERRA, ERA-Interim, JRA-55, CFSR and WFDEI rain-
fall data have compared with observed rainfall data for 
raingauge stations Banjar, Bhuntar, Janjehal, Larji, Pan-
doh, Pong and Sainj. Figure  13 represents the average 
monthly rainfall variation for these five climatic products 
for the Beas river basin. MERRA, ERA-Interim, JRA-55, 
CFSR and WFDEI rainfall varies from 112.05–1307.19, 

Fig.7  Calibration Parameter for Pandoh dam
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33.89–1070.42, 25.58–704.83, 18.22–177.36 and 12.37–
207.70  mm/month. The average monthly rainfall of 
MERRA is higher followed by ERA-Interim, JRA-55, 
CFSR and WFDEI.

A comparison of mean monthly rainfall is presented 
in Fig. 14. All the rainfall products for all stations show a 
seasonal variation. However, MERRA followed by ERA-
Interim and JRA-55 highly overestimates observed rain-
fall for all stations. According to Fig. 16 the three rainfall 
products MERRA, ERA-Interim and JRA-55 overes-
timate the rainfall for the dry season. Because during 
December-February (Winter) and March–May (Sum-
mer) there is a high positive bias for these three rainfall 
estimates. The poor ability of reanalysis data to capture 
Summer convective precipitation for their spatial com-
plexity is likely the main reason for overestimated Sum-
mer precipitation. Whereas the overestimated Winter 
precipitation is due to mismeasurement of snowfall by 
raingauges compared to liquid precipitation (Rasmussen 
et al. 2012; Goodison et al. 1998) or likely for non-raining 
clouds due to warm tropical convective systems (Ashouri 
et al. 2015). Hence Monsoon season generates a substan-
tial bias. According to Bosilovich et al. (2008) the Mon-
soon season precipitation bias is likely for overestimated 
moisture content and observation system-generated pre-
cipitable water. The other season possesses a relatively 

low bias except MERRA in Banjar, Bhuntar, Larji and 
Sainj. However the MERRA rainfall bias for all stations 
is abnormally higher compared to other rainfall products 
for all seasons.

The mean annual comparison using statistical 
approaches has carried out in this study for modeled data 
with observed point rainfall data to quantify their perfor-
mances. Pearson’s correlation coefficient is used to evalu-
ate how well the estimates correspond to the observed 
data. Table  2 showing the monthly statistical indicators 
to understand the performance of the reanalysis prod-
ucts for eight raingauge stations. CFSR and WFDEI have 
a very good correlation coefficient ranges 0.80 to 0.86 
(except WFDEI at Banjar and CFSR at Pandoh (0.65)) as 
compared to MERRA, ERA-Interim and JRA-55. ERA-
Interim and JRA-55 have a moderate R2 value that var-
ies from 0.65–0.73 next to CFSR and WFDEI except for 
ERA at Sainj (0.60). MERRA shows a lower R2 value of 
0.60–0.65. All the reanalysis products correlate observed 
point rainfall data.

A higher bias and RMSE value have been observed for 
MERRA rainfall at a monthly scale compared to other 
rainfall estimates for all stations. Next to MERRA, ERA-
Interim and JRA-55 also possesses a higher RMSE for 
all stations. The CFSR and WFDEI data have low RMSE 
(15–50  mm  month−1) as compared to other products. 

Fig.8  Calibration Parameter for Thalout
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ERA-Interim precipitation has significantly higher over-
estimation next to MERRA. Overestimation of JRA-55 
rainfall also observed next to ERA-Interim. However the 
underestimation (negative bias) of CFSR and WFDEI pre-
cipitation has found when compared with observation.

Simulation of monthly streamflow
In this study the Variable Infiltration Capacity hydrol-
ogy model has been used to compare streamflow from 
observed, reanalysis and global meteorological data after 
finding overestimation/underestimation of reanalysis 
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products compared to observations. The ERA-Interim 
temperature data has used as meteorological input 
along with rainfall data from different reanalysis prod-
ucts for VIC hydrology model. The monthly simulation 
comparison results of streamflow for observed, reanaly-
sis and the global meteorological products at Manali, 
Thalout, Pong dam and Pandoh dam are presented in 
Figs. 17, 18, 19 and 20. The calibration period for Manali, 
Thalout, Pong dam and Pandoh dam are 1994–1999, 
1993–1997, 1992–1997 and 1994–1999. Whereas the 
period of validation for the above-mentioned stations 
are 2003–2009, 1999–2005, 2000–2009 and 2003–2009 
respectively. The accepted value for NSE is consid-
ered as 0.6 (Essou et al. 2016a, b). According to Moriasi 
et  al. (2007) the model performance is very good when 
PBIAS <  ± 10, good when ± 10 ≤ PBIAS ≤  ± 15, satis-
factory when ± 15 ≤ PBIAS ≤  ± 25 and unsatisfactory 
when PBIAS >  ± 25. If R2 considered alone for model 
evaluation criteria the major drawback is dispersion is 
quantified. Even the model underpredict or overpredict 
systematically the R2 value still results in very good and 
close to 1 (Krause et al. 2005). Thus NSE is better than R2 
for model evaluation. After comparing all model perfor-
mance criteria (Table  3) it has observed that the model 
performance is not good for the Pong dam due to res-
ervoir regulation impact on streamflow. The NSE and 
PBIAS range from − 2.30–0.30 and 82.47–26.34% for all 
reanalysis estimates. The RMSE value at Pong dam is also 
high compared to other discharge stations (98.92–265.31) 
during both calibration and validation. Therefore the 
performance of different reanalysis data has been evalu-
ated for three discharge stations Pandoh dam, Manali 
and Thalout. MERRA overestimates the streamflow for 
the these three locations during the simulation period. 
The PBIAS ranges from 26–65%. During the simulation 

period (0.46–0.70), the NSE value indicates the unsatis-
factory performance of MERRA for the Beas. JRA−55 
underestimates observed streamflow for the entire simu-
lation period. The reanalysis is also not able to properly 
follow the observed hydrograph pattern. The reason may 
be the dataset fails to reproduce spatial pattern precipi-
tation for the Beas river basin. However it tends to fol-
low the low flow pattern of observed hydrograph with 
slight underestimation. For Pandoh dam slight overes-
timation of low flow observed for JRA-55. The perfor-
mance of JRA-55 also not acceptable in terms of NSE 
(0.10–0.44) and PBIAS (−  50.00 to −  11.00%). CFSR 
and WFDEI heavily underestimate the streamflow (peak 
and low flow) for simulation. The model performances 
using these reanalysis products are not good due to 
poor quality rainfall estimates. The NSE and PBIAS val-
ues are inferior for these two products when compared 
to observed streamflow. The NSE and PBIAS for CFSR 
ranges −  0.65–0.13 and −  80.87 to −  56.74%. Whereas 
for WFDEI the value of NSE and PBIAS varies from 
− 1.16 to − 0.17 and − 93.75 to − 82.00%. The JRA−55, 
CFSR and WFDEI also have less ability to produce peak 
flow during Monsoon. Figure 15 also indicates that JRA-
55, CFSR and WFDEI data have poor seaonal cycles and 
miss most of the peak during Monsoon season. A good 
performance of the ERA-Interim dataset observed for 
the study basin for the whole simulation period. The NSE 
(0.73–0.77) and PBIAS (− 13.68 to 18.00) value indicate 
a good match of modeled and simulated flow using the 
ERA-Interim data. However the RMSE value of ERA-
Interim is less as compared to other reanalysis products. 
Additionally ERA-Interim data follows the hydrograph 
pattern properly (High flow and low flow). ERA-Interim 
is also able to simulate high peak of streamflow for all sta-
tions as compared to other rainfall products. However 
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overestimation of low flow for ERA-Interim observed for 
Thalout and Pandoh dam. The RMSE value at Manali is 
less than other portions of the basin for all products. 

Discussions
Temperature and precipitation from four reanalysis and 
global meteorological data are evaluated to examine 
their perspective to use as a substitute of observation. 
From the result it has observed that there is a good simi-
larity exists between reanalysis temperature products 
and observed temperature. There is also no high varia-
tion of temperature has observed between all reanalysis 
data. The radiosondes and satellite derived atmospheric 
temperature products have regularly assimilated with 
the reanalysis system which is the main reason for their 
good association with observed temperature (Essou 
et al. 2016a, b). However the seasonal and annual bias of 
temperature is high at the Western and North-Western 
portion of the Beas river basin for all reanalysis prod-
ucts. In contrast the Eastern and North-Eastern part of 
the basin has a cooler bias. The reason for differences 
between various reanalysis temperatures is the variability 
of land–atmosphere interaction and land surface scheme. 
Different SST (Sea surface temperature) datasets used in 
reanalysis data can be responsible for their discrepancy 
to some extent (Shah and Mishra 2014). The observed 
temperature pattern better represented by ERA-Interim 

regarding bias, RMSE and correlation which resembles 
the findings of Shah and Mishra (2014). Due to scarcity of 
direct snow measurement in snow/glacier covered East-
ern Beas the reanalysis temperature can also be a useful 
data source for estimating snowmelt runoff by energy 
balance based VIC hydrology model.

In data-scarce basin like Beas there is uncertainty in 
getting high quality of observed rainfall data (Rolland 
2003). The reason is the irregular distribution of weather 
stations, cold weather terrain, wind and massive snow-
fall. According to Barros et  al. (2004) in the Himalayan 
region like Beas precipitation varies between valleys and 
ridges. So, the variability at the scale of kilometers cannot 
be determined by a single raingauge station. There is a 
considerable difference when station rainguage data have 
compared with the associated pixel value of modeled 
gridded rainfall data. The non-availability of raingauge 
stations at high elevation can also cause underestimated 
precipitation at highland. Because of this there is a high 
need to investigate grid-based high-resolution reanalysis 
rainfall data as a substitute of point raingauge data for 
the Beas river basin. In this study MERRA, ERA-Interim, 
JRA-55, CFSR and WFDEI rainfall data have compared 
with point rainguage data for a long term basis. All the 
rainfall data have correlated observed rainfall in terms of 
R2 and NSE. CFSR and WFDEI reanalysis data underes-
timate observed rainfall due to the uncertainty of these 

Fig. 11  The mean seasonal temperature bias (°C) between modeled (reanalysis and global meteorological) and CRU observed gridded data for 
time period 1990–2009 for the Beas river basin. djf (December-February), mam (March–May), jja (June–August) and son (September–November)
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data. MERRA, ERA-Interim and JRA-55 overestimate 
observed rainfall. All the reanalysis and global mete-
orological estimates have a high spatial resolution. The 
inconsistency of spatial scale between grid-cell aver-
age value and observed data of raingauge stations could 
cause some degree of overestimation or underestimation 

of these coarse resolution reanalysis products (Maraun 
2013). The interpolation of MERRA, ERA-Interim and 
JRA-55 rainfall data to 0.5-degree spatial resolution can 
also induce error to the outcome which affects the vali-
dation result. The higher RMSE value for MERRA, ERA-
Interim and JRA-55 reanalysis products may be due to 

Fig. 12  The annual temperature (a) bias (°C) (b) correlation (c) RMSE (Root Mean Square Error) between modeled (reanalysis and global 
meteorological) and CRU observed gridded data for time period 1990–2009
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sensitivity of RMSE to heavy convective and local pre-
cipitation events in high altitude Beas river basin. Whole 
pixel estimation of rainfall during localized precipitation 
events can also cause error in gridded reanalysis prod-
ucts. Due to complex topography and high spatio-tem-
poral variability of rainfall the straight comparison of 
different reanalysis and global meteorological products 
upon raingauge is not possible for the Beas river basin. 
As a result the simulated discharge of the VIC hydrol-
ogy model has been evaluated in this research to indi-
rectly review the quality of these reanalysis estimates to 
reflect topographical complexity of rainfall. The capabil-
ity of these reanalysis data to capture the magnitude of 
mountain rainfall patterns also have evaluated through 
the modeling approach. The non-bias corrected rainfall 
data has used as hydrology input due to the poor quality 
of rainguage data. According to Essou et al. (2016a, b) the 
bias correction of reanalysis data with observation could 
introduce additional error in reanalysis data in data-
scarce mountain region. The result of the study brings 
out the difference in skill between different reanalysis 
data to reproduce orographic rainfall.

1.	 MERRA overestimates the observed raingauge data 
(Figs.  14, 16). The coarse resolution reanalysis also 

overestimates discharge when applied to the hydrol-
ogy model (Figs.  17, 18, 19, 20). The reason is the 
dependability of the reanalysis data on the weather 
forecast model’s mechanic to simulate precipita-
tion and not to assimilate surface precipitation data 
(Essou et al. 2016a, b). Due to limited ground obser-
vation the assimilation system of MERRA faces 
problems due to tropical continental precipitation. 
Another major reason for it’s recovery of perfor-
mance over land is cloudy conditions. The reanalysis 
data is also unable to properly parameterize land–
atmosphere interactions (Blacutt et al. 2015). There-
fore the higher uncertainty exists between observed 
and MERRA precipitation.

2.	 Next to MERRA a higher bias of ERA-Interim rain-
fall has observed upon raingauge data (Figs.  14, 
16). For coarse resolution reanalysis products like 
MERRA, ERA-Interim and JRA-55 the high pre-
cipitation likely comes from parameterized convec-
tion. The other reason may be the assimilation of a 
limited set of observations and limitation of param-
eterization during the process of precipitation gen-
eration (Beck et al. 2018). ERA-Interim uses less sur-
face observations as compared to JRA-55, CFSR and 
WFDEI reanalysis data. Shah and Mishra (2014) and 

Fig.14  Comparison of average monthly rainfall patterns (1990–2009) at different stations of the Beas river basin (a) Banjar (b) Bhuntar (c) Janjehal 
(d) Larji (e) Manali (f ) Pandoh (g) Pong and (h) Sainj from different rainfall data at the Beas river basin
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Ghodichore et  al. (2018) have also found the over-
estimated precipitation of ERA-Interim in North 
India as compared to observation. Hence, the satis-
factory result has been obtained after simulation of 
the model by ERA-Interim as it tends to follow the 
hydrograph pattern of observed streamflow regard-
ing other products (Figs. 17, 18, 19, 20). The perfor-
mance of ERA-Interim is also acceptable in terms of 
statistical parameters NSE, PBIAS and RMSE dur-
ing both calibration and validation periods. The rea-
nalysis performs well in streamflow simulation for 
complex terrain of Manali where reliable snowfall 
measurement is tough for gridded rainfall products. 
This proves that ERA-Interim reanalysis better rep-
resents kinetic precipitation of the Beas river basin. 
Bhattacharya et al. (2019) also found that the rainfall 

gradient of ERA-Interim is linearly correlated with 
altitude. The reason may be the ERA-Interim rea-
nalysis product uses a four-dimensional variational 
(4D-var) analysis model. The 4D-var is automatically 
adjusted to the bias of satellite observation of radi-
ance, modifies convective and boundary layer cloud 
schemes, increases the stability of the atmosphere 
and produces a small amount of rainfall (Dee et  al. 
2011). Additionally observations are more effectively 
used by 4D-var due to the extraction of details of 
mass field trends (Rabier et al. 1998, 2000). The ERA-
Interim also formulate a background error problem, 
improve the physical model and perform better in 
simulating various land surface schemes (Simmons 
et al. 2010; Olauson 2018).

Table 2  Summary of the monthly statistical indicators

Stations Statistical parameter MERRA​ ERA-Interim JRA-55 CFSR WFDEI

Banjar R2 0.65 0.68 0.70 0.70 0.65

BIAS(%) 423.28 260.62 117.21 − 21.76 − 33.59

RMSE 250.12 229.86 122.04 40.00 25.34

R 0.60 0.79 0.82 0.80 0.79

Bhuntar R2 0.65 0.68 0.65 0.70 0.70

BIAS(%) 496.83 224.20 110.89 − 14.36 − 26.80

RMSE 372.83 173.26 91.12 15.81 21.23

R 0.75 0.80 0.78 0.81 0.82

Janjehal R2 0.63 0.68 0.70 0.75 0.70

BIAS(%) 270.11 157.87 78.83 − 45.37 − 47.06

RMSE 317.05 184.70 98.00 52.13 52.20

R 0.75 0.81 0.81 0.85 0.82

Larji R2 0.60 0.70 0.68 0.70 0.70

BIAS(%) 418.44 139.41 78.41 − 22.08 − 34.94

RMSE 349.78 125.15 71.73 23.00 30.20

R 0.75 0.83 0.80 0.82 0.83

Manali R2 0.60 0.70 0.68 0.70 0.70

BIAS(%) 292.48 127.27 42.25 − 14.37 − 64.47

RMSE 305.09 150.34 64.70 30.20 70.07

R 0.73 0.82 0.81 0.82 0.82

Pandoh R2 0.60 0.68 0.65 0.65 0.70

BIAS(%) 306.98 170.02 91.72 − 52.20 − 45.15

RMSE 309.67 185.13 99.68 50.07 41.70

R 0.75 0.82 0.80 0.80 0.82

Pong R2 0.65 0.70 0.70 0.70 0.75

BIAS(%) 104.03 90.49 50.56 − 39.96 − 52.07

RMSE 109.60 56.21 105.09 44.85 54.00

R 0.80 0.84 0.82 0.80 0.86

Sainj R2 0.65 0.60 0.73 0.75 0.70

BIAS(%) 396.81 197.05 107.11 − 32.91 − 34.76

RMSE 350.00 185.23 111.70 30.26 29.87

R 0.76 0.75 0.70 0.86 0.80
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Table 3  Statistical indicators during calibration and validation at monthly scale (1990–2009)

Stations Statistical parameter Stations

Manali Thalout Pong Pandoh

MERRA​

 Calibration R2 0.75 0.70 0.56 0.68

NSE 0.70 0.55 -0.21 0.61

PBIAS (%) 26.00 30.00 26.34 52.00

RMSE 13.29 152.00 161.09 109.78

 Validation R2 0.69 0.71 0.30 0.75

NSE 0.46 0.55 0.20 0.52

PBIAS (%) 30.00 30.00 1.16 65.00

RMSE 16.40 100.00 101.11 92.65

ERA-Interim

 Calibration R2 0.73 0.74 0.60 0.75

NSE 0.76 0.76 0.30 0.76

PBIAS (%) − 13.78 − 13.78 1.44 15.00

RMSE 8.00 70.45 109.87 78.50

 Validation R2 0.74 0.73 0.35 0.72

NSE 0.77 0.75 0.21 0.73

PBIAS (%) − 13.68 − 14.54 − 10.00 18.00

RMSE 8.00 65.75 98.92 60.76

JRA-55

 Calibration R2 0.58 0.62 0.42 0.63

NSE 0.10 0.32 − 0.12 0.34

PBIAS (%) − 50.00 − 36.75 − 30.67 − 32.78

RMSE 26.40 139.85 155.19 132.00

 Validation R2 0.50 0.60 0.45 0.53

NSE 0.30 0.21 -0.40 0.44

PBIAS (%) − 38.00 − 42.00 − 39.00 − 11.00

RMSE 22.54 138.00 120.11 95.00

CFSR

 Calibration R2 0.41 0.50 0.22 0.51

NSE − 0.65 − 0.51 − 1.10 0.05

PBIAS (%) − 80.87 − 75.43 − 56.37 − 64.00

RMSE 34.08 210.34 220.45 171.24

 Validation R2 0.38 0.53 0.14 0.47

NSE − 0.64 − 0.65 − 2.00 0.13

PBIAS (%) − 76.76 − 80.00 − 68.26 − 56.74

RMSE 30.59 190.65 199.10 121.23

WFDEI

 Calibration R2 0.36 0.43 0.15 0.43

NSE − 1.00 − 0.30 − 2.15 − 0.23

PBIAS (%) − 93.73 − 85.69 − 78.00 − 82.00

RMSE 38.01 218.56 265.31 186.24

 Validation R2 0.28 0.42 0.12 0.36

NSE − 1.16 − 0.40 − 2.30 − 0.17

PBIAS (%) − 93.75 − 87.76 − 82.47 − 82.16

RMSE 32.56 209.97 233.64 137.78
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3.	 Instead of using merged precipitation from the 
observed station during assimilation, the overestima-
tion of JRA-55 precipitation (compared to raingauge 
stations) happens due to excess rainfall after the 
beginning of forecasts (Figs.  14, 16) due spin-down 
problem, dry bias in tropical Beas (Kobayashi et  al. 

2015), convective scheme (Arakawa and Schubert 
1974) adopted by JRA-55 and implementing convec-
tion-triggering mechanism (DCAPE) which gener-
ates higher rainfall. Ghodichore et  al. (2018) found 
overestimated JRA-55 compared to observation in 
North India. Hence the underestimation of stream-

Fig.15  Monthly rainfall at (a) Manali for 2009 and (b) Larji for 2004 from different rainfall products
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flow has observed for JRA-55 during the simulation 
period (Figs.  17, 18, 19, 20). The reanalysis data is 
also weak in following the observed hydrograph pat-
tern. JRA-55 incorporates advanced features like, 
4D-var during assimilation, improved bias-correc-
tion method for satellite data, high-resolution of 
model and integration of several observed data (Kob-
ayashi 2020). Still the poor ability of the reanalysis 
to reproduce interannual variability of Beas rainfall 
may be due to error induced during bias-correction 
for observed data. Less dense and poor quality of 
observed data used in the bias-correction algorithm 
is the main cause of such errors (Essou et al. 2016a, b; 
Kobayashi 2020). The other reasons for inaccuracy of 
the reanalysis products are uncertainty of model and 
alteration of the observing system. Therefore serious 
attention is needed to apply JRA-55 rainfall (Bosi-
lovich et al. 2011; Trenberth et al. 2011) for hydrol-
ogy modeling.

4.	 CFSR rainfall underestimates the rainguage data 
(Figs.  14, 16). The reanalysis product also heavily 
underestimates the observed hydrograph (Figs.  17, 
18, 19, 20). Shah and Mishra (2014) have a simi-
lar finding of underestimated CFSR rainfall in the 
North-Western region of India. Further the rainfall 
estimate fails to reproduce the Summer and Winter 
hydrograph pattern due to the variability of rainfall. 
CFSR uses three-dimensional variational data assimi-
lation (3D-var) scheme, assimilate satellite radiance, 
use automated variational scheme for bias-correc-
tion of satellite radiances and generates precipitation 
field by observed rainguage data (Saha et  al. 2010; 
Wang et  al. 2011; Xie et  al. 2007). The weak spatial 
distribution of CFSR rainfall and hydrology model 
uncertainty may cause by assimilated poor qual-
ity raingauge data (Kobayashi et al. 2015). The other 
reasons for the inferior data may be error involved in 
the algorithm for combining several observed rain-
fall data, bias-correction error and error due to the 
specific algorithm from observation operator during 
estimation of precipitation (Janjic et  al. 2017; Shen 
et al. 2010).

5.	 Like the CFSR, WFDEI data underestimate both 
rainguage and discharge data (Figs. 14, 16, 17, 18, 19, 
20). The reanalysis is also not able to accurately simu-
late the temporal streamflow pattern. WFDEI uses 
CRU/GPCC observed data to correct ERA-Interim 
reanalysis for precipitation bias (Weedon et al. 2014). 
The bias-correction of WFDEI with CRU observed 
data intruse error in the data. The CRU data uses 
only a portion of all rainguages (old observation data 
located at valley floor) which is unable to represent 

the orographic rainfall pattern leads to improper 
precipitation phase of WFDEI (Beck et  al. 2017b, a; 
Weedon et al. 2014; Li et al. 2013).

The result of the study reveals that the performances 
of MERRA, JRA-55, CFSR and WFDEI are not good in 
Beas due to their dependency on altitude. Essou et  al. 
(2016a, b) have reported that the inferior standard of rea-
nalysis products in producing an adequate simulation of 
streamflow in the subtropical Beas river basin is may be 
due to non-uniform distribution of precipitation, sen-
sitivity to daily precipitation for seasonality, weak mean 
annual cycle and poor simulation ability of local events, 
i.e. convective storm during Summer. Sun et  al. (2018) 
have found overestimated precipitation of MERRA and 
ERA-Interim at high elevation as compared to observa-
tion, higher precipitation of JRA-55 at tropical regions, 
poor ability of reanalysis products in estimating oro-
graphic precipitation and higher interannual variability 
of Monsoon season precipitation. Additionally Ghod-
ichore et al. (2018) have compared NCEP/NCAR, CFSR, 
ERA-Interim, MERRA and JRA-55 reanalysis products 
for India. The study finds notable seasonal and regional 
differences exist between reanalysis and observed rainfall 
data in the complex data-scarce mountain region. In this 
study ERA-Interim has found to be best among all reanal-
ysis products. The other researchers (Essou et al. 2016b, 
2017; Beck et  al. 2017a; Sun et  al. 2018) also found the 
superior performance of ERA-Interim in the data-scarce 
region. The adjustment of model calibration parameters 
in this study has done so that model results consistently 
come close to observed data. However the parameters 
adjusted during the calibration period to increase or 
decrease discharge cannot substantially improve stream-
flow for poor-performing reanalysis products. Oudin 
et  al. (2006) have reported that modified calibration 
parameters have a little influence to compensate misrep-
resentation of streamflow due to precipitation. According 
to various studies (Fu et al. 2011; Nkiaka et al. 2017) for 
catchment areas larger than 1000  Km2 the rainfall data 
from large area smooths the spatial resolution effect on 
streamflow. So, there is an insignificant impact of rainfall 
spatial resolution on streamflow for the Beas river basin 
(catchment area 12,417 km2). The improvement of Beas 
streamflow totally depends on the ability of reanalysis 
products to produce accurate precipitation. Many studies 
also have proved the uncertainty in simulated streamflow 
may be due to input precipitation error (Hong et al. 2006; 
Moulin et al. 2009). In this research VIC hydrology model 
shows it’s potential to indirectly differentiate various rea-
nalysis rainfall products by simulated streamflow.



Page 22 of 29Bhattacharya et al. Environ Syst Res            (2020) 9:24 

Conclusions
The inferior quality of observed rainfall data is the main 
reason for poor simulated discharge in data-scarce and 
topographically complex Beas river basin. Observed 
rainfall inherent some uncertainty due to measurement 
error. In this study observed station rainfall and tem-
perature data are compared with different reanalysis 
and global meteorological data. The spatio-temporal 
variability of various modeled climate data is also com-
pared by simulated streamflow accuracy of the VIC 
hydrology model. The comparison of various reanalysis, 
global meteorological and station data in Beas has been 
conducted to find out reliable climate data as a proxy of 
observations and to find out the similarity and incon-
sistency between various datasets. The performance 
evaluation of various precipitation and temperature 
products has done at monthly and annual basis and 
based on statistical metrics. The study revealed a good 
correlation between reanalysis and observed tempera-
ture data. The gridded reanalysis temperature better 
represent snowmelt runoff in data-scarce snow/glacier 
covered Eastern Beas. Weak performance of reanalysis 

rainfall data as rainfall-runoff input has observed as 
compared to temperature in this study. All modeled 
rainfall data show a considerable difference when com-
pared with observed data. JRA-55, CFSR and WFDEI 
are also not able to reproduce the observed hydrograph 
pattern accurately. MERRA overestimates station rain-
fall and observed discharge data due to error in model 
operation and not including observed precipitation 
data during assimilation. The performance of JRA-55, 
CFSR and WFDEI is poor as compared to raingauge 
and observed streamflow might be due to intrusion of 
error during observed rainfall data assimilation. This 
indicates the need to modify the rainfall retrieval algo-
rithm for these above-mentioned data due to complex 
topography and raingauge limitation of the Beas river 
basin. However after comparing all global reanalysis 
and meteorological data ERA-Interim is found to give 
better performance as a meteorological input of the 
hydrology model. ERA-Interim provides a good match 
of temperature with observed station data for the 
whole basin. Moreover, the ERA-Interim temperature 
has no warmer bias during the simulation period. The 

Fig.16  Monthly bias (%) of different rainfall products compared to raingauge data in four season Winter (December-February), Summer (March–
May), Monsoon (June–August) and post-Monsoon (September–November) at different stations of the Beas river basin:(a) Banjar (b) Bhuntar (c) 
Janjehal (d) Larji (e) Manali (f) Pandoh (g) Pong and (h) Sainj
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ERA-Interim rainfall overestimates the observed data 
seasonally and annually. After the hydrologic simula-
tion, it proves it’s potential over observed rainfall data 
as a good rainfall-runoff input. The reason may be the 
topographic influence of high altitude Beas is less for 

ERA-interim rainfall than other rainfall data. The bet-
ter performance of ERA-Interim probably due to the 
assimilation of climate data from observed stations and 
have the advantage of using a four-dimensional vari-
ational analysis model. The reanalysis data is also near 

Fig.17  Hydrograph of observed and simulated flow of Manali for calibration period (1994–1999) and validation period (2003–2009)
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real time and daily basis upgraded which is beneficial to 
proper management of water resources. So high-reso-
lution ERA-Interim reanalysis can be used as a reliable 
climate data over observations for the data-sparse Beas 
river basin. The result of the study concludes that the 

accuracy of rainfall products is responsible for improv-
ing hydrology modeling results. This will also help 
researchers to find out ways of improving the quality of 
rainfall for hydrology modeling.

Fig.18  Hydrograph of observed and simulated flow of Thalout for calibration period (1993–1997) and validation period (1999–2005)
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Fig.19  Hydrograph of observed and simulated flow of Pong dam for calibration period (1992–1997) and validation period (2000–2009)
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