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Abstract 

Background:  Considering the lack of research over this region the Statistical Downscaling Model (SDSM) was used as 
a tool for downscaling meteorological data statistically over four representative regions in the eastern side of Colom-
bia. Data from the two Global Climate Models CanESM2 and IPSL-CM5A-MR, which are part of the CMIP5-project have 
been used to project future maximum and minimum temperature, precipitation and relative humidity for the periods 
2021–2050 and 2071–2100. For both models, the Representative Concentration Pathways RCP2.6 and RCP8.5 were 
considered, representing two different possible future emission trajectories and radiative forcings. Predictor variables 
from the National Centre for Environmental Prediction (NCEP-DOE 2) reanalysis dataset, together with analyzed cor-
relation coefficient (R) and root mean square error (RMSE) were used as performance indicators during the calibration 
and validation process.

Results:  Results indicate that Maximum and minimum temperature is projected to increase for both Global Climate 
Models and both Representative Concentration Pathways; relative humidity shows a decreasing trend for all scenarios 
and all regions; and precipitation shows a slight decrease over three regions and an increase over the warmest region. 
As expected, the results of the simulation for the period 2071–2100 show a more drastic change when compared to 
the baseline period of observations.

Conclusions:  The SDSM model proves to be efficient in the downscaling of maximum/minimum temperature as 
well as relative humidity over the studied regions; while showing a lower performance for precipitation, agreeing with 
the results for other statistical downscaling studies. The results of the projections offer good information for the evalu-
ation of possible future-case scenarios and decision-making management.
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Background
Global climate change is one of the greatest concerns of 
humanity given the great impact it has for the future sus-
tainability of socioeconomic and environmental devel-
opment. According to the Intergovernmental Panel on 
Climate Change (IPCC), a climate change scenario is a 
climate response under the assumption of emissions of 
greenhouse gases (GHG) into the atmosphere; therefore, 
depending on the scenario analyzed, a different change in 
meteorological patterns is allowed, induced by a greater 
or lesser emission of gases throughout the twenty-first 
century (Jones et al. 2004).

In order to estimate the effect that greenhouse gas 
emissions have on the global climate, Global Climate 
Models (GCMs) have been used for this purpose. GCMs 
describe physical elements and important processes in 
the atmosphere, ocean, and soil that occur within the 
climate system. The main disadvantage of GCMs is their 
spatial resolution, which is adequate for a few 100  km; 
thus, they do not capture regional and local meteoro-
logical details. In order to study the impacts of climate 
change on the regional level, it is necessary to predict 
changes on much finer scales. One of the best known 
techniques to do this is through the use of Regional 
Climate Models (RCMs). The RCM is an atmospheric 
physics-based model to which boundary conditions are 
provided with the output of a GCM. Downscaling tech-
nique is the method for creating local climate scenarios 
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from GCM climate scenarios, and they are broadly clas-
sified into two categories: dynamic downscaling and 
statistical downscaling. Statistical downscaling meth-
ods construct statistical relationships between the large 
scale GCM outputs (predictors) and the catchment scale 
climate variables (predictands). The basic advantage of 
statistical downscaling is that it is computationally less 
demanding compared to dynamic downscaling. Wilby 
et  al. (2002) and other authors have studied downscal-
ing techniques and stated that by using this approach, 
GCM outputs can be changed into surface variables in 
the scale of a basin or smaller areas under study. Accord-
ing to Wilby and Wigley (2000), statistical downscaling is 
based on the assumption that the predictor–predictand 
relationships are valid under future climatic conditions, 
and predictor variables and their changes are well charac-
terized by GCMs.

Worldwide, Colombia is one of the richest countries 
in water resources. Its climate presents varied condi-
tions with the coldest weather being located on its snowy 
mountains and the warmest at sea level. Precipitation 
is governed by the double crossing of the Inter Tropi-
cal Convergence Zone (ITCZ); however, there is also the 
influence of trade winds and climatic variability events 
such as El Niño-La Niña, intra-seasonal Madden–Julian 
oscillation (MJO), among others. Regional physical-
geographic factors such as orography also play a role 
(IDEAM 2005). These patterns of circulation and accord-
ing to IPCC could be altered by the emission of green-
house gases. Colombia is a country with relatively low 
industrial development, for this reason, the quantity of 
greenhouse gas emissions is not in a proportion that they 
have become a decisive factor on the effect of the compo-
sition of the high atmosphere of the planet. However, the 
country is expected to be very affected by climate change: 
especially the Colombian Andes (Perez et al. 2010). The 
eastern region of Colombia presents high vulnerability 
to the effects of climate change due to its high diversity 
of fauna and flora, potential direct impact on agricultural 
activities and the pressure on water resources.

Almost no research has been carried out focusing on 
the predicted changes on climate in Colombia for the 
next decades, especially on the eastern region. Only 
studies on related fields have been performed for other 
areas; Ruiz et al. (2008) analyzed the past change of cli-
mate during the last decades in a mountain basin on the 
west flank of the Colombian andean central mountain 
range, Nakaegawa and Vergara (2010) studied river dis-
charge in the north of Colombia using direct output from 
a GCM as well as Ospina-Noreña et al. (2017), but there 
is no research for the east side and no regional downscal-
ing approach have been carried out to determine a more 
accurate representation of the future climate in a specific 

region. With reference to the above factors and consid-
ering the great lack of detailed climate studies about 
Colombia, a research work is necessary to determine on 
a regional scale the possible change of climate variables 
such as precipitation, temperature, and relative humid-
ity in Colombia for future decades. Additionally, this data 
must be compared against a reference period of historical 
records to comprehend the magnitude of the future cli-
mate change in the region and its potential impact.

Study area
The eastern side of Colombia borders Venezuela. It is 
characterized by different geographical and climate char-
acteristics with a range of medium temperature from 12 
to 34 °C. The Amazon Rainforest is located in the south-
ernmost part; the extensive valleys and Andean Moun-
tains are found in the middle-east region of the country; 
and coastal plains to the high north. The areas analyzed 
in this study comprises 4 macro water districts located 
at the eastern and middle side of Colombia: each area 
presenting different geographic and climate conditions. 
These two regions lie between 74° 56′ 13″ and 66° 82′ 29″ 
west longitude, and between 12° 24′ 40″ north and 2° 18′ 
225″ south latitudes. These specific regions are shown 
in the Fig. 1 and were selected due to their variability of 
conditions and the sufficient availability of data for the 
analysis. Colombia is located in tropical South America, 
which is dominated by the Amazon Rainforest. Precipita-
tion throughout the country is highly influenced by the 
Inter Tropical Convergence Zone—ITCZ; however, the 
climate is also conditioned by local particularities like 
those caused by mountain barriers to the atmospheric 
circulation.

Materials and methods
Datasets
Observed data
The observed daily data of precipitation, maximum tem-
perature (Tmax), minimum temperature (Tmin), and 
relative humidity (RH) was collected from 153 hydro-
meteorological stations along the studied regions. A 
bigger amount of data was supplied by the Institute of 
Hydrology, Meteorology and Environmental Studies of 
Colombia (IDEAM) but only datasets with less than 30% 
of missing values for the time range of 1980–2015 were 
considered, complying with the minimum extension of 
records of 30  years, recommended by the World Mete-
orological Organization (WMO 2017), to obtain reliable 
statistics.

Reanalysis data
The daily mean atmospheric variables were obtained 
from the National Centre for Environmental Prediction 
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(NCEP-DOE 2) reanalysis dataset for the period from 
January 1980 to December 2015. The data has a resolu-
tion of 2.5° latitude × 2.5° longitude global grid and sev-
enteen constant pressure levels in the vertical.

GCM data
The selection of the GCM’s is made on the basis of liter-
ature review and availability of data. In a previous study, 
Bonilla-Ovallos and Mesa Sánchez (2017) evaluated 
the performance of the simulations of Global Climate 
Models from the CMIP5-project compared with local 
observations, the two GCM used in this study showed a 
good performance in this analysis. The GCMs selected 
for this study are CanESM2 (2.79° latitude × 2.81° lon-
gitude) and IPSL-CM5A-MR (1.26° latitude × 2.5° lon-
gitude). CanESM2 is developed by Canadian Centre for 
Climate Modelling and Analysis, whereas IPSL-CM5A-
MR by The Institut Pierre Simon Laplace, France, 
respectively. The future Long-Term scenarios consid-
ered in this study are the Representative Concentration 

Pathways (RCPs) RCP2.6 and RCP8.5 representing 
two different possible future emission trajectories 
and radiative forcings. The RCP8.5 combines assump-
tions about high population and relatively slow income 
growth with modest rates of technological change and 
energy intensity improvements, leading in the long 
term to high energy demand and GHG emissions in the 
absence of climate change policies. RCP8.5 thus cor-
responds to the pathway with the highest greenhouse 
gas emissions (Riahi 2011). The RCP 4.5 represents a 
scenario with lower concentration in the atmosphere 
of CO2 than RCP 8.5, here the emissions peak around 
midcentury at around 50% higher than 2000 levels and 
then decline rapidly over 30  years. It is important to 
notice that concentration of CO2 continues to increase 
even after emissions slow and then drop. Carbon diox-
ide accumulates in the atmosphere and stays there for 
decades.

The predictor variables are available and obtained for 
the period 1980–2005 for historical data, and the period 

Fig. 1  Location of Colombia and the studied regions
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2021–2100 was used for the future projections of both 
models (van Vuuren et al. 2011).

Statistical Downscaling Model (SDSM)
The Statistical Downscaling Model was developed by 
Wilby et  al. (2002) as a tool for statistical downscal-
ing method. There are many studies which have used 
SDMS in climate change impact assessments (Rajabi 
and Shabanlou 2013). The model uses a combination of 
stochastic weather generator (SWG) and multiple lin-
ear regression (MLR). The MLR establishes a statisti-
cal relationship between GCM predictor variables and 
local-scale predictand variables to produce regression 
parameters. These calibrated regression parameters are 
further used with NCEP and GCM predictor variables 
in SWG to simulate daily time series producing a better 
correlation with the observed predictand’s time series.

In SDSM, there are three kinds of sub-models—
monthly, seasonal and annual sub-models—that com-
prise the statistical/empirical relationship between the 
regional-scale variables (temperature and precipitation) 
and large-scale variables (Hussain et al. 2017). There are 
also two options within sub-models: conditional and 
unconditional sub-models. The conditional sub-models 
are used for the parameters that are dependent on the 
occurrence of other climate parameters, i.e. precipita-
tion, evaporation, etc., while the unconditional mod-
els are used for independent climate parameters, i.e. 
temperature.

Screening of predictors
The direct relationship between predicted variables and 
large-scale predictors as independent variables is con-
sidered to define a multiple linear regression model. The 
screening of predictors is an essential step of statistical 
downscaling with SDSM (Wilby et  al. 2002). For this, a 
correlation analysis was applied between predictands 
(precipitation, Tmax, Tmin, and RH) and daily data of 21 
predictors based on explained variance, correlation coef-
ficient, and the p value. In this way the best correlation 
between individual predictors and predictand was found. 
The predictor with the highest correlation was selected 
as main predictor, also called superpredictor, setting 
the significance level of P < 0.05 as default value. After 
selecting the main predictor, a second and third predic-
tors were also selected based on highest correlation and 
explained variance. Similar studies have used the method 
performed in the current study for the selection of the 
appropriate predictors (Saddique et  al. 2019; Khan and 
Coulibaly 2006; Gulacha and Mulungu 2017).

The correlation found between the predictand and 
predictors in the case of precipitation was low, this was 

expected considering other similar studies and the diffi-
culties for downscaling with high accuracy daily precip-
itation (Hashmi et al. 2011; Huang et al. 2011; Meaurio 
et  al. 2017). For regions at high elevation (Sabana de 
Bogota and Rio Catatumbo) superpredictor were found 
at 500  hPa while for regions at low elevations (Alta 
Guajira and Bajo Meta) superpredictors were found 
at surface level and 850  hPa. Figure  2 summarizes the 
results of the most used predictors due to its better cor-
relation with the downscaled variables for each evalu-
ated region.

Model performance
During the validation period, the four different vari-
ables were simulated using the NCEP data, as well as 
the historical data from both GCM datasets (CanESM2, 
IPSL-CM5A-MR) and compared with observations in 
order to evaluate the model performance in the differ-
ent cases. For this, the correlation coefficient (R), root 

Fig. 2  Most used predictors for SDSM using inputs from NCEP-DOE 2
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mean square error (RMSE) and normalized root mean 
square error (NRMSE) were used.

where Oi and Pi are the observed and modeled values, 
respectively, Ō and P̄ are the means of the observed and 
modeled values, respectively, and N is the number of data 
points. A Taylor diagram (Taylor 2001) is used as well 
to quantify the statistical relationship between observed 
and modeled data for each of the analyzed regions and 
scenarios. In this diagram, the relationship is represented 
by the correlation coefficient (R), the standard deviation 
(σ) and the centered root mean square difference (RMS), 
an independent diagram is shown for each parameter.

Results
Model calibration and validation
Based on the available datasets of observations, two daily 
data sets for the periods 1980–1999 and 2000–2015, were 
selected for the model calibration and validation, respec-
tively. This for every station of the studied regions. SDSM 
is calibrated using observed station scale data (Tmax, 
Tmin, Precipitation and Relative Humidity) and sets of 
observed predictors, i.e., NCEP reanalysis datasets. A 
monthly sub-model was set for the process of calibration, 
which derives 12 different regression equations, one for 
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)

√

∑

N

i=1

(

Pi − P̄
)2 ·

√

∑

N

i=1

(

Oi − Ō
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each month, and the optimization of the best fit is per-
formed by the ordinary Least Squares Method.

With the calibrated model for the period of 1980–1999, 
20 daily ensembles for every variable were simulated for 
the periods of calibration and validation. The mean value 
of these 20 ensembles was compared with the observed 
data. The correlation coefficient and root mean square 
error were used as performance indicators during the 
calibration and validation process. Table 1 and the Taylor 
diagrams in Fig. 4 show the general model’s performance 
during the calibration and validation periods. Here, the 
given R and RMSE values are taken as an average value 
for the group of stations that belong to each region. Some 
of the studied regions include stations in a wide range 
of elevation. Such is the case, for example, of the region 
Bajo Meta, with stations below 500 m and others above 
3500  m of elevation. These groups of stations represent 
results in different ranges for each modeled variable. 
Figure  3 presents an example of the validation results 
concluded over an average result for a group of stations 
located in the range of 500 m of elevation for each region.

The Taylor diagrams provided in the Fig. 4 are a brief 
statistical summary of standard deviation, correlation 
coefficient and root mean square difference according to 
the results of SDSM for the downscaling of daily maxi-
mum and minimum temperature, relative humidity and 
precipitation.

Climatic scenarios generation
Data from the selected GCM models was used into the 
developed and calibrated SDSM model to simulate daily 
values of precipitation, Tmax, Tmin and relative humid-
ity for two future periods: 2021–2050 and 2071–2100, 
this for both GCM and both Representative Concentra-
tion Pathways. Future changes in the variables were cal-
culated by comparing them to a baseline period from 
1981 to 2010. In the Figs.  5 and 6 a comparison of the 

Table 1  Performance of  model for  daily time series of Tmax, Tmin, RH, and  precipitation during  the  calibration period 
(1981–2000)

Tmax Tmin Rel. Humidity Precipitation

R RMSE R RMSE R RMSE R RMSE

Alta Guajira

 NCEP 0.78 0.8 0.72 0.73 0.65 11.87 0.27 6.23

Bajo Meta

 NCEP 0.66 1.14 0.61 0.82 0.54 5.13 0.25 34.61

Rio Catatubo

 NCEP 0.82 1.91 0.77 1.43 0.65 21.23 0.35 59.23

Sabana de Bogota

 NCEP 0.8 0.64 0.81 0.52 0.74 11.19 0.31 13.12
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simulated results is made with the baseline period of 
observations in 1981–2010. Using the mean value for 
the 30-year period, it is possible to calculate the relative 
increment or decrease for each projected variable in the 
future compared to the reference period of 1981–2010; 
these values can be observed in the Table 2.

Discussion
The results presented in Table  2 show an increase of 
both maximum and minimum temperature over the next 
decades as well as a decrease in relative humidity with 
a slight change of precipitation which will most likely 
decrease for most of the considered stations-especially 
in the last decades of the XXI century. In contrast to the 
case of temperature, difficulties to perform accurately a 
downscaling of daily precipitation agrees with the results 
of other studies (Huang et  al. 2011; Nguyen et  al. 2006; 
i.a., González-Rojí et al. 2019; Saraf and Regulwar 2016; 
Ahmadi et  al. 2014; Saddique et  al. 2019; Hussain et  al. 
2017; Cavazos and Hewitson 2005; Fiseha et  al. 2012; 
Osma et  al. 2015), also in these studies a low correla-
tion in a regional scale between daily precipitation and 
different set of predictors was found, this creates a dif-
ficulty to adjust the model and calibrate it more accu-
rately. That can be seen in this study in the Figs.  3 and 
4. This partial inability of the statistical model of repro-
ducing daily precipitation is also due to regional physical-
geographic factors like interactions of atmospheric flow 

with topography, combined with land-use and land-cover 
changes that play a role in the formation of precipita-
tion and show high variability in inter-annual basis. This 
confirms the high sensitivity of mountainous regions and 
the complex climate processes at play, which have been 
found as well in other studies (Gulacha and Mulungu 
2017; Sigdel and Ma 2015; Mahmood and Babel 2013).

The projected increase in temperature as shown by 
the CanESM2 model, is slightly higher than the IPSL-
CM5A-MR model, both for maximum and minimum 
temperature. Regarding the change of precipitation, Rio 
Catatubo, Bajo Meta and Alta Guajira show a general 
decrease over their area while Sabana de Bogota was the 
only region that presents an increase. However, it must 
be considered that these results are a mean average from 
all the stations located in each region and it is given in 
these terms in order to have a general overview of the 
different climate variables on each region on the future 
caused by different scenarios of greenhouse emissions 
and climate change. The projected values may relatively 
differ for each station with regards to the elevation where 
is located and regional physical-geographic factors such 
as orography.

In terms of geographic perspective, the greatest 
increase in maximum and minimum temperature is 
observed in Bajo Meta and Sabana de Bogota (which 
are mountainous regions), while the lowest increase is 
observed in the Alta Guajira region (which is located 

Fig. 3  Validation of SDSM for four water districts in a range of 500 m of elevation regarding to Tmax, Tmin, relative humidity and precipitation
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at the northern coast). In general, it is observed from 
the output of various scenarios that the mountainous 
stations with drier climate show a higher probability 
of rising temperatures during the coming decades. The 
projections obtained with the Representative Concen-
tration Pathway RCP 8.5 were expected to show the 
highest increase in temperature compared with those 
made using the RCP 2.6. Since the first mentioned rep-
resents the worst-case scenario of greenhouse gas emis-
sions for the first decades of XXI century, and this was 

in fact the result that was observed at most of the sta-
tions. This can be seen in the examples shown in Fig. 5; 
however, the maximum temperature that was projected 
using the model CanESM2 RCP2.6 is for some stations 
higher than the one obtained with RCP 8.5 with the 
model IPSL-CM5A-MR. This might indicate (in some 
degree) inconsistency or instability in the global projec-
tions of the models in some locations.

Considering the two different modeled periods and 
the characteristics of the different Representative Con-
centration Pathways (RCPs) the changes obtained for the 

Fig. 4  Taylor diagrams for two GCMs and two scenarios during SDSM validation for all parameters in a Alta Guajira, b Bajo Meta, c Rio Catatumbo, d 
Sabana de Bogota
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Fig. 5  Changes in Tmax and and precipitation at the four studied regions for the periods of 2021–2050 and 2071–2100, compared to the baseline 
period of 1981–2010

Fig. 6  Changes in relative humidity and precipitation at the four studied regions for the periods of 2021–2050 and 2071–2100, compared to the 
baseline period of 1981–2010
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period of 2071–2100 are, as expected, bigger than for the 
period 2021–2050 when compared to the baseline period 
of observations (1981–2010). A more detailed analysis of 
the spatial distribution of the projected climate changes 
shows that groups of station located at low elevations 
(below 1000 m) present a more spatially uniform results 
than those at higher elevations. This was the case for 
three of the four regions. More uniformity is also found 
for the period of 2071–2100 than for 2021–2050.

An important inference of the performed approach and 
as concluded in other studies (Gebrechorkos and Bern-
hofer 2019), the selection of the best fit predictors for a 
given predictand at a particular location, represents the 
key part of the modelling process and enables to accu-
rately reproduce and predict the observed station data. 
The predictors that showed the best correlations with 
precipitation as predictand are related mostly with wind 
speed, geopotential, as well as high and relative humid-
ity. This agrees with other studies using statistical down-
scaling methods (e.g., Hussain et  al. 2017; Saraf and 
Regulwar 2016). A bias correction was not applied to the 
global climate data because it was found that bias cor-
rection methods might impair the advantages of circula-
tion models by altering spatiotemporal field consistency, 
relations among variables, and by violating conserva-
tion principles. This might additionally neglect feedback 
mechanisms (Ehret et  al. 2012); moreover, the resulting 

correlation coefficients found in the calibration and vali-
dation procedure were significant to assume a direct pre-
dictor-predictand relationship.

Since the projected scenarios for precipitation don’t 
show a general tendency over the four studied regions, 
an alternative method is suggested for daily precipita-
tion regional downscaling in order to compare the results 
or find higher accuracy e.g. generalized linear models or 
the use of neural network approach. In the same way, it 
is recommended that the results from this study be com-
pared with other regional climate modeled datasets such 
as CORDEX in order to validate or complement the anal-
ysis of the results. The use of a dynamical downscaling 
method could provide more accurate results as well but 
this approach demands much more intensive computa-
tional resources and require large volumes of data which 
were not available for the studied regions.

For a more detailed analysis of the predictors and in 
order to identify potential better correlations with the 
historical records, the lagging of daily predictor variables 
could be applied as well as suggested for some authors 
(e.g., Harpham and Wilby 2005; Crawford et  al. 2007) 
with the purpose of revealing hidden direct relationships 
between predictand and predictors; this is because pre-
dictors from distant grid-boxes may also influence the 
local climate in distinct time.

Table 2  Reductions and/or increases in °C for temperature and in % for relative humidity and precipitation for two future 
periods compared to the reference period of 1981–2010

2020–2050 2070–2100 2020–2050 2070–2100 2020–2050 2070–2100 2020–2050 2070–2100

Alta Guajira

 CanESM2 (RCP 2.6) 0.3 0.5 0.6 0.7 − 2.3 − 3.1 0.5 − 3

 CanESM2 (RCP 8.5) 0.7 1 1.3 1.5 − 6.3 − 7.1 − 0.4 − 1.6

 IPSL-CM5A-MR (RCP 2.6) 0.4 0.8 0.9 1.1 − 3.5 − 4.3 0.1 − 4.1

 IPSL-CM5A-MR (RCP 8.5) 0.8 1.4 1.1 1.3 − 2.9 − 3.7 − 0.4 − 1.9

Bajo Meta

 CanESM2 (RCP 2.6) 1.1 1.8 1.1 2.2 − 1.5 − 2.3 − 2.3 − 5

 CanESM2 (RCP 8.5) 1.5 2.6 2.2 3.3 − 5.5 − 6.3 − 3.4 − 4.6

 IPSL-CM5A-MR (RCP 2.6) 0.9 1.4 1.4 2.5 − 2.7 − 3.5 − 1.2 − 6.1

 IPSL-CM5A-MR (RCP 8.5) 1.2 2.7 2 3.1 − 2.1 − 2.9 − 3.6 − 8.9

Rio Catatubo

 CanESM2 (RCP 2.6) 1.9 3.2 0.3 2 − 1.3 − 2.4 − 2 − 4

 CanESM2 (RCP 8.5) 2.7 3.2 0.7 2.5 − 5.3 − 6.4 − 1.6 − 3.6

 IPSL-CM5A-MR (RCP 2.6) 2.2 2.8 − 0.2 0.9 − 2.5 − 3.6 − 3.1 − 5.1

 IPSL-CM5A-MR (RCP 8.5) 3.2 3.5 0.5 1.6 − 1.9 − 3 − 5.9 − 7.9

Sabana de Bogota

 CanESM2 (RCP 2.6) 2.6 2.9 1 1.7 − 3.1 − 5.2 1 2

 CanESM2 (RCP 8.5) 3 3.6 2.1 2.8 − 7.1 − 9.2 2.4 3.4

 IPSL-CM5A-MR (RCP 2.6) 1.7 2.2 1.3 2 − 4.3 − 6.4 − 0.1 0.9

 IPSL-CM5A-MR (RCP 8.5) 2.1 2.7 1.9 2.6 − 3.7 − 5.8 1.9 3.2
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Conclusions
The results obtained during the process of calibration 
and validation define the model developed by SDSM as 
efficient in the downscaling of maximum/minimum tem-
perature and relative humidity over the studied regions. 
With regards to precipitation the model shows a lower 
performance, which is not unusual compared to other 
statistical downscaling studies.

The GCMs used in this study show a projected increase 
of both maximum and minimum temperature over the 
next decades on the studied regions as well as a decrease 
in relative humidity with a slight change of precipitation 
with a most likely tendency to decrease for most of the 
considered stations, especially in the last decades of the 
XXI century.

The distribution density of stations into the stud-
ied regions (especially the Alta Guajira and Bajo Meta 
regions) is low when compared with other regions of 
the country. Even though these regions have importance 
regarding the agricultural and energy sector, there is still 
a higher attention on surveilling climate parameters in 
more urban areas in Colombia. The low amount of cli-
mate records and particularly those for temperature, rela-
tive humidity, radiation, and wind speed make it difficult 
to conduct a more proper technical climate analysis and 
thus creates higher uncertainties when calibrating cli-
mate models with the historical records for these regions.

Performing this study over four different regions offers 
a good opportunity to evaluate the performance of the 
tool SDSM over different geographic and climate condi-
tions. Along the same lines, the results of the projections 
offer good information for the evaluation of possible 
future-case scenarios and decisions-making manage-
ment. These results are useful for development planners, 
decision makers, as well as other stakeholders when plan-
ning and implementing appropriate management strate-
gies regarding to adaptation and mitigation of climate 
change for these regions.
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