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Abstract 

Background:  Forest stand density in tropical rainforests is crucial functional and structural variable of forest ecosys-
tems in which above ground biomass can be derived. Currently, there is a growing demand for airborne and terres-
trial LIDAR in measuring forest trees parameters for accurate assessment of forest biomass/carbon stock to meet the 
requirements of UN-REDD + program. Although several studies have been conducted on above ground biomass/
carbon stock in tropical rainforest using forest inventory parameters derived from airborne and terrestrial LIDAR, no 
research was conducted on how the estimation of above ground biomass/carbon stock using airborne and terrestrial 
LIDAR derived parameters is affected by forest stand density in a tropical rainforest. Therefore, this study aims to analyze 
and investigate the strength of the relationship between forest stand density and its above ground biomass estimated 
using airborne and terrestrial LIDAR derived trees parameters. Purposive sampling approach was adopted for the selec-
tion of the unit of analysis. Results are based on data collected from 32 sample plots measured and scanned in the field. 
Airborne LIDAR was used to derive upper canopy trees height, while terrestrial LIDAR was used to derive the height of 
lower canopy trees and DBH of all lower and upper canopy trees. The DBH measured in the field was used to compute 
forest stand density and to validate the DBH manually extracted from TLS point cloud data. The DBH manually derived 
from TLS point cloud data was used to estimate AGB of the sampled plots for both upper and lower canopy trees.

Results:  Descriptive statistics, linear regression and correlation analysis were used to answer the research questions of 
this study. Out of 1033 trees measured and scanned in the field, 855 trees (82.7%) were extracted from TLS point cloud 
data and 178 trees (17.3%) were missed due to occlusion. The Pearson correlation coefficient (r) between a total number 
of trees measured and scanned in the field and the total number of trees extracted from TLS point cloud data was 0.95. 
R2 of 0.89 was found to explain the relationship between number of missed trees per plot against a number of trees 
measured in the field per plot. The strength of the effect of forest stand density on AGB is explained by R2 which is 0.91.

Conclusions:  Based on the findings, forest stand density have significant effect on above ground biomass at 1% 
significance level. Since there is a strong relationship between forest stand density and AGB and the measurement of 
forest stand density from the ground is fast, forest stand density could be recommended as a proxy to estimate above 
ground biomass.
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Background of the study
Forest above ground biomass (AGB) is a very important 
parameter used for forest productivity and carbon bal-
ance assessment (Nie et al. 2017). Forests have an impor-
tant and an exceptional function in mitigating global 
warming caused by the increase in atmospheric CO2 and 
contain 86% of terrestrial plant carbon on Earth. With or 
without disturbances, forests can absorb or release huge 
amounts of carbon. Therefore, monitoring the dynamics 
of forest carbon storage at various spatial scales is very 
important for a better understanding of the terrestrial 
carbon cycle as well as improving the decision making 
process in forest management (Wang et al. 2013).

Tropical rainforests are rich ecosystems in biological 
diversity, and it is the highest terrestrial carbon reservoir 
(Drake et  al. 2002). These rainforests play a crucial role 
in maintaining about 70% of the world biodiversity and 
numerous species of wildlife due to their habitat diver-
sity (Zakaria 2013). But now a day, tropical rainforests 
are undergoing degradation and deforestation in alarm-
ing rate (Palace et al. 2015). One of the major causes of 
forest degradation is selective logging, which is a major 
economic activity in moist tropics (Neba et  al. 2014). 
As explained by Putz et  al. (2008) in tropics despite 
improvement in forest management practices, still there 
are destructions during timber harvesting because most 
logging operations are still carried out by untrained and 
unsupervised tree fellers. This traditional logging prac-
tice aggravates the forest degradation in tropics, and it 
leads to low forest stand density.

Forest stand density is a quantitative measure of tree 
cover per unit area or space. More specifically it is a 
measure of the degree of how crowded trees are in a stand 
or within a specified area. Forest stand density is crucial 
functional and structural variable of forest ecosystems. 
Above ground biomass/carbon stock and timber volume 
can be obtained from forest stand density. It can be meas-
ured in two ways. These are number of trees per unit area 
(tree density) and basal area per unit area. In some litera-
ture, forest stand density and stocking are considered as 
synonyms. However, there is a slight difference. Stocking 
is related to carrying capacity of the given area or fixed 
resources in relation to the available variable resources. 
Therefore, it is related to the issue that can be considered 
to be optimum or standard for a certain objective. For the 
forest, a subjective indication of the stocking is compar-
ing number of trees to the desired number considered 
to be optimum for a particular area for a certain objec-
tive to get best results. Accordingly, stands can be under 

stocked, fully stocked, or overstocked. When the forest is 
even-age forest, in which all the trees almost have similar 
DBH and height, then the number of trees per unit area 
can reasonably represent forest stand density. However, 
in a natural forest such as tropical rainforest, it is difficult 
to use the number of trees as a measure of forest stand 
density because it doesn’t consider the variation in the 
size of the tree. In this case, the sum of the basal area for 
all trees in the stand per unit area (i.e., ha) provides the 
total stand basal area per unit area can be used as a meas-
ure of forest stand density (Brack 2012; Density 1982; 
Elledge and Barlow 2012). The stand basal area is the 
cross-sectional (circular) area of a stem measured at the 
breast height (i.e., 130 cm) from the ground (Brack 2012; 
Elledge and Barlow 2012). Hence the forest of the study 
is natural forest; stand basal area for all trees per plot is 
used as a measure of forest stand density for this study. In 
this study, different densities have been considered since 
different densities can be related to the different degree 
of degradation.

In developing countries, both deforestation and for-
est degradation are the largest sources of greenhouse 
gas emissions which accounts about 11–13% of all 
global CO2 emissions during the last decade (Kaisa et al. 
2017). To overcome this problem, the United Nations 
Framework Convention on Climate Change (UNFCCC) 
designed a climate change mitigation action by reducing 
emissions from deforestation and forest degradation in 
its REDD + program (Eckert et al. 2011).

As one of the central elements of the REDD + pro-
gram, United Nations Framework Convention on Cli-
mate Change (UNFCCC) has proposed a mechanism 
of Measurement, Reporting, and Verification (MRV) of 
carbon to assess carbon stock accurately. Accordingly, 
the REDD + program focused not only on emission 
reduction from deforestation and degradation but also 
on the conservation of forest carbon stocks, sustainable 
management of forest and enhancement of forest carbon 
stocks which are expected to be undertaken by countries 
and implementation bodies. Therefore, Measurement, 
Reporting, and Verification of carbon stocks have been 
one of the mechanisms used to mitigate climate change 
(Lyster et  al. 2013). Countries and implementing bodies 
can receive financial compensation from REDD + activi-
ties up on the implementation of a reliable measuring, 
verification and reporting mechanism (Ene et  al. 2016; 
Willem et al. 2013).

Currently, there is a growing demand for accurate and 
operational techniques for assessing forest biomass/
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carbon stocks to meet the requirements of UN-REDD 
program (Prasad et  al. 2016). However, so far accu-
rate estimation of the forest above ground biomass 
remains a challenge. Above ground biomass can be 
estimated using either destructive (harvest) or nonde-
structive method. The destructive method (i.e., cutting 
down trees and weighing their parts) is very accurate 
to estimate biomass. However, it needs much time and 
labor, it is very expensive, sometimes it is illegal, it is 
not feasible for large-scale analysis, and often it is not 
environmentally friendly. To overcome, the limitations 
of the destructive approach, a nondestructive method 
is used using biophysical parameters of trees mainly 
tree height and DBH which are the most common 
inputs for large scale above ground biomass and carbon 
assessment through allometric models (Andersen et al. 
2006; Ketterings et  al. 2001). These parameters can 
be derived either directly or indirectly. But the direct 
measurement is very expensive because it needs much 
time, cost, labors and not applicable in large areas. 
For this reason, active remote sensing technologies 
like airborne and terrestrial LIDAR have been used as 
a solution to quantify above ground biomass quickly, 
efficiently and effectively in a nondestructive way. How-
ever, airborne and terrestrial LIDAR have their own 
inherent strength and weakness. Due to the top down 
perspective, airborne LIDAR focuses on the upper part 
of the canopy. Thus, it has limitations to characterize 
vegetation structure in the lower canopy. While ter-
restrial LIDAR returns typically focus on lower parts of 
the canopy, as a result it is difficult to assess the upper 
crown structure and tree heights (Van Leeuwen et  al. 
2011). Consequently, for this study, accurate heights of 
upper canopy trees was obtained using airborne LIDAR 
and accurate DBH for all upper and lower canopy trees 
and lower canopy trees height was derived from TLS.

Even though several studies (Drake et al. 2002; Gibbs 
et al. 2007; Prasad et al. 2016; Rahman et al. 2017) have 
been conducted on above ground biomass/carbon using 
forest inventory parameters derived from airborne and 
terrestrial LIDAR in tropical rainforest, according to 
the literature review, no research is conducted on how 
the estimation of above ground biomass/carbon stock 
using airborne and terrestrial LIDAR derived param-
eters is affected by forest stand density in tropical 
rainforest. Therefore, the aim of this study was (1) To 
assess the effect of number of trees per plot on occlu-
sion using TLS scanning at plot level; (2) To investigate 
the strength of the relationship between forest stand 
density and its AGB estimated using airborne and ter-
restrial LIDAR derived trees parameters in Berkelah 
tropical rainforest, Malaysia.

Methodology
Description of study area
This study was conducted in Berkelah tropical rainfor-
est, Malaysia. Berkelah Forest Reserve is located in the 
Pahang province of Malaysia (Fig.  1) roughly at latitude 
3°46′1″N and longitude 103°1′1″E. The forest is found at 
234 km to the North-East of Kuala Lumpur and 218 km 
to the North-East of Forest Research Institute Malaysia 
(Zakaria 2013).

Berkelah tropical forest reserve has been recognized as 
a red Meranti forest. The forest is characterized by a high 
proportion Shorea species which is categorized under 
red meranti group. In 1986–1987 the area was tractor-
logged once. After that, the vegetation of Berkelah forest 
reserve can be classified as a mixed hill dipterocarp forest 
dominated by Dipterocarpaceae which is the dominant 
timber producing tree family (Barizan et al. 1997).

Sampling design and determination of sample plot
In this study, purposive sampling approach was adopted 
to select the unit of analysis. Purposive sampling is a 
nonprobability sampling technique in which all elements 
in the population do not have an equal chance of being 
selected as a sample. Therefore, in this study to select the 
unit of analysis (plots), the terrain/slope of the area, time 
availability, weight of TLS, thickness of undergrowth, the 

Fig. 1  Location map of Berkelah forest reserve, Pahang, Malaysia
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density of the forest, proximity to the road were consid-
ered. A total of 32 circular plots with a radius of 12.62 m 
equivalent to 500 square metre were taken as the unit 
of analysis considering the variation in tree densities. 
According to Ruiz et al. (2014) plot size of the 500–600 
square metre is recommended for biomass estimation 
because larger plot sizes increase the cost of fieldwork 
but do not significantly increase the accuracy of the 
result. For TLS multiple scan position, the circular plot 
is more preferred than rectangular or square shaped plot 
of the same size. Lackmann (2011) pointed out since the 
boundary of the plot is smaller in relation to the area, and 
thus the number of trees on edge is less, circular plots are 
less vulnerable to errors than square plots.

Plot preparation and TLS position set up
There are two types of TLS scanning approaches. These 
are single and multiple scan modes (Bienert et al. 2006). 

For this study, a multiple scan mode with four scanning 
positions was undertaken (Fig. 2). The center of the plot 
was selected in the way it avoids or minimizes occlusion 
from the stem of the trees and undergrowth. Accord-
ing to Liang et  al. (2012) trees or other undergrowth 
very close to the scanner can create a large area shadow 
behind. The outer three scanning positions of the plot 
were carried out at an angle of 120° determined using the 
TLS tripod stands at the center position backed up with 
visual judgment.

The model of the terrestrial laser scanner (TLS) used 
in this study was RIEGL VZ-400 and its specification is 
shown in Table 1 without and with the camera.

Setting of retro reflectors and tree numbering 
within the sample plot
After the plot preparation is completed, trees within the 
plot with their DBH equal or greater than 10  cm were 
tagged with laminated tree numbers which helped later 
for the extraction of tree parameters from the point cloud 
data. In order to register and georeferencing of the multi-
ple scan positions with the home(reference) position, tie 
points were used during scanning of each plot in the field 
(Bienert et  al. 2006). For this study, a total of 18 reflec-
tors (tie points), 12 cylindrical and 6 circular were used 
in each plot. Cylindrical retro-reflectors were placed on 
top of a stick near to the three outer scanning positions 
on the way to be observable to the scanner at different 
scanning positions. Circular retro-reflectors which were 
pinned on selected tree stems facing towards the center 
scanning position (Fig. 3).

Biometric data processing
Plot radius, GPS coordinates of the plot center, DBH, X 
and Y coordinates of each tree measured in each plot 

Fig. 2  TLS scan positions used for the study (Prasad et al. 2016)

Table 1  Specification of RIEGL VZ-400 terrestrial laser scanner

Description Performance

Maximum range (m) 600

Horizontal field of view 0°–360°

Vertical field of view 100° (30°–130°)

Minimum range (m) 1.5

Precision (mm) 3

Accuracy (mm) 5

Beam divergence (mrad) 0.35

Weight (Kg) 9.6

Wave type/wavelength Near infrared (1550 nm)
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were entered the Excel sheet. X and Y coordinates of 
individual trees within the plot were collected using tab-
lets, and it is used for matching the corresponding tree 
on the airborne LIDAR CHM. In this study, a total of 
1033 trees were measured and scanned in the field from 
all 32 sampled plots.

Pre‑processing of TLS point cloud data
The first step in the pre-processing of TLS point cloud 
data is registration. Registration is the process of merg-
ing all the individual scans into a single point cloud data 
(Fig.  4). After the point cloud data was exported from 
the terrestrial laser scanner, RiSCAN PRO V 2.4.2 soft-
ware was used for registration and pre-processing of the 
point cloud. According to Holopainen et al. (2014) arti-
ficial retro-reflectors are used to undertaking registra-
tion of multiple scans. The central scanning position was 
used as a reference position to register all the three outer 
scanning positions since it has the most overlap with the 
outer scanning positions. Therefore, the three outer scan-
ning positions were registered towards the central scan 
positions with a minimum of five best values of common 
tie points selected automatically by the software.

Extraction of individual tree and parameter measurement
After registration of each plot multiple scan positions, 
extraction of the plot was undertaken through filtering 
of the point cloud covering radius of 12.62  m from the 
center scan position extract individual trees manually. 
During field measurement, all trees those DBH ≥ 10 cm 
in all plots were tagged with laminated tree numbers 
which helped for the extraction of individual trees meas-
ured in the field from the point cloud data. To identify 

the tagged tree numbers, the polydata was displayed in 
3D true color linear scale. Accordingly, using the selec-
tion tool in RiSCAN PRO software, extraction of the 
individual tree in all plots was done. This process has 
been done by selecting all point cloud data correspond-
ing to a single tree.

From the 3D point clouds of the individual trees, the 
DBH was measured on the stem at 1.3  m height from 
the ground from the extracted 3D point clouds of indi-
vidual trees by using distance measurement function tool 
in RiSCAN PRO software. Similarly, the height of trees 
was also measured manually from the lowest point of the 
stem on the ground to the highest top of the tree using 
distance measurement function tool in RiSCAN PRO 
software. X, Y, Z values are recorded by the measurement 
and the difference in the highest and lowest value of Z 
was considered as the tree height.

Airborne LIDAR point cloud data processing
Lite Mapper 5600 system was used with flying height 
700 m to 1000 m, scan angle 60°, density of the LIDAR 
point cloud data was 5–6  points/m2, which basically 
determines the cell size and the scan pattern was regular. 
A cell size of 1 m is used to construct pit or hole free can-
opy height model (CHM) from the airborne LIDAR point 
cloud data in “las” format. Arc GIS is used to display and 
generate a digital surface model (DSM) and digital ter-
rain model (DTM) from the first and last returns respec-
tively. By subtracting digital terrain model (DTM) from 
the digital surface model (DSM) using raster calculator 

Fig. 3  Setting of circular (yellow color) and cylindrical (red color) 
reflectors in sample plots

Fig. 4  Sample registered point cloud data displayed in four colors 
representing four scan positions
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in Arc GIS, CHM was generated. The originally created 
CHM had pits and holes because of the first LIDAR 
return is far below the canopy due to the LIDAR beam, 
penetrate the branches before creating first return (Heu-
rish et al. 2003). These pits hinder the accurate extraction 
of tree parameters from CHM. Therefore, these pits were 
removed.

Segmentation and accuracy assessment
Segmentation is a technique used for segmenting and 
clustering of pixels in an image into meaningful homo-
geneous units or objects (Clinton et  al. 2010). There 
are two approaches in segmentation that can be done. 
These are the bottom–up and top–down approach. In 
the bottom–up approach, pixels are merged to obtain 
larger meaningful object based on homogeneity criteria. 
Whereas in the top–down approach, large objects are 
clustered into smaller objects (Rahman Rejeur and Saha 
2008). Even though, there are different segmentation 
techniques, according to Witharana and Civco (2014) 
multi resolution segmentation technique is most com-
monly used. This technique works based on bottom–up 
and region-based approach. For a given resolution of 
the image object, this technique minimizes the average 
heterogeneity.

Therefore, for this study, using eCognition software, 
multiresolution segmentation was adopted using the 
homogeneity criterion which is the scale parameter 
which determines the homogeneity of the object, shape 
which determines the spectral value of the segmented 
objects. Giving more value for shape, makes the seg-
mented object having more spatial uniformity than 
spectral homogeneity. Moreover, the compactness value 
used to produce a compacted segmented object. The 
values of these homogeneity criteria (color + shape = 1, 
and compactness + smoothness = 1) (Definiens Devel-
oper 2012). Accordingly, 12 for scale parameter, 0.8 and 
0.5 for shape and compactness respectively were found 
to be optimal for this study. LIDAR CHM (Canopy 
Height Model) was used as input to delineate individual 
tree crown which was used for the extraction of upper 
canopy trees height. Segmentation, watershed transfor-
mation, and tree morphology were employed in a sub-
set. Then after this complete rule set was implemented 
for the entire study area.

As revealed by Clinton et al. (2010) assessment of the 
accuracy of the segmented polygon is based on com-
paring with the predefined reference training set with 
segmented output’s geometric extent. As a result, the 
over and under segmentation determine the quality 
of produced segment. Therefore, segmentation accu-
racy assessment was done by comparing automatically 

segmented tree crowns with the manually delineated 
tree crowns. The manual delineation of tree crowns 
was undertaken for randomly selected visually identi-
fied tree crowns. Accordingly, 15% proportions of field 
measured trees from each of the 32 sampled plots were 
manually delineated. Thus the total reference polygons 
are 157. Based on the following equations the over seg-
mentation, under segmentation and “D” value (good-
ness of fit) was calculated. The “D” value ranges from 
0 to 1 and values close to 0 indicates high matching 
whereas if it is close to 1 shows less match. Moreover, 
the two extremes, 0 indicates a perfect match between 
the reference polygon and the automatically segmented 
polygons while 1 is the minimum mismatch between 
the two.

Equation 1: Calculation of over segmentation

Equation 2: Calculation of under segmentation

Equation 3: Calculation of segmentation goodness of 
fit

where xi: manually delineated reference crowns; yi: auto-
matically segmented crowns; D: segmentation goodness 
of fit.

After calculating the value of over and under segmen-
tation, the D value (goodness of fit) was calculated to 
assess the segmentation accuracy. Accordingly, the seg-
mentation error was found to be 29%. Therefore, the 
accuracy of crown delineation was 71% while the result 
of 1:1 manual matching of polygons was 74% accuracy.

Biometric data collection and above ground biomass 
estimation
After delineation of plots, DBH were measured for all 
tree with their DBH ≥ 10 cm within the plot. As pointed 
out by Brown (2002) trees with DBH less than 10  cm 
have an insignificant contribution to biomass/carbon 
stock. DBH was measured using diameter tape at 1.3 m 
height from the ground. To be consistent with DBH 
measurement, 1.3 m measured stick was used. In case of 
the buttress and fork trees, DBH was recorded above the 
buttress while fork trees were considered as two trees if 
the fork is below 1.3 m and as one tree if the fork is above 

(1)Over segmentation = 1−
Area

(

xi ∩ yi
)

Area (xi)

(2)Under segmentation = 1−
Area

(

xi ∩ yi
)

Area
(

yi
)

(3)

D =

√

Over segmentation2ij +Under segmentation2ij

2
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1.3 m. The allometric equation is used to estimate AGB 
for large-scale analysis through non-destructive meth-
ods. The equation is developed based on the relationship 
of the biophysical parameters of trees mainly DBH and 
tree height are used as the main input parameters (Ket-
terings et  al. 2001). The equation can be either species 
specific or generic. However for highly diversified species 
of trees like in Berkelah tropical forest, the use of local 
or species specific allometric equation is not appropriate 
(Gibbs et al. 2007). Therefore, for this study, the generic 
allometric equation developed by Chave et  al. (2005) is 
employed (Eq. 4).

where AGB: above ground biomass (Kg); ρ : specific wood 
density (g/cm3) (Reyes et  al. 1992) of wood density for 
tropical forest tree species which is 0.57 g/cm3; D: diam-
eter at breast height (cm); H: height (m).

Carbon is derived from above ground biomass, and it 
is assumed that approximately 50% of dry biomass is car-
bon (Basuki et al. 2009; Drake et al. 2003). Therefore, to 
calculate the carbon stock, AGB is multiplied by a con-
version factor (CF) of 0.47 (Aalde et al. 2006) (Eq. 5).

where C-carbon stock (Mg); AGB-above-ground biomass 
(Mg); CF-conversion factor which is 0.47.

Effect of forest stand density on AGB estimation
Assessment of the effect of forest stand density on above 
ground biomass estimation was examined. To do this 
analysis, stand basal area is used as a proxy for forest 
stand density. To assess the effect of forest stand density 
on AGB, a scatter plot was done between above ground 
biomass in hectare against total stand basal area per hec-
tare. Moreover, linear regression analysis was carried out 
to quantify the magnitude of the effect of forest stand 
density on above ground biomass using stand basal area 
as an explanatory variable and above ground biomass as a 
predicted variable. In addition to the forest stand density, 
the effect of number of trees per plot on missed trees per 
plot was investigated. Accordingly, a scatter plot between 
number of missed trees per plot against number of trees 
measured in the field in each plot was used to assess the 
effect of the number of trees per plot on missed trees 
from TLS point cloud data due to occlusion. A linear 
regression analysis was also used with number of missed 
trees per plot as dependent variable and number of trees 
measured in the field as an explanatory variable to quan-
tify the magnitude of the effect. According to Elledge and 
Barlow (2012) and You and Need (1999), the basal area/

(4)AGB = 0.0673 ×

(

ρD2H
)0.976

(5)C = AGB× CF

tree and the total stand basal area per plot in hectare are 
calculated using Eqs. 6 and 7.

where π is constant which is 3.14, DBH is diameter at 
breast height (cm), 0.0001 is a constant used to convert 
the measured centimeter square into meter square

where 0.05 is plot size in hectare and 20 is a constant 
used to extrapolate the measurement of basal area from 
per plot (m2/plot) to per hectare (m2/ha).

Results
Individual tree extraction from TLS point cloud data
The extraction of individual tree varies from one sample 
plot to another. The minimum extraction percentage of 
individual trees per plot was 73.3% while the maximum 
is 100% (Table  2). The overall extraction and missing 
percentage of individual trees were 82.77% and 17.23% 
respectively.

Correlation analysis was carried out to assess the rela-
tionship between a total number of trees measured in 
the field and the total number of trees extracted from 
TLS point cloud data at the plot level. Pearson correla-
tion coefficient (r) is found to be 0.95. Therefore, there is 
a very high relation between the two values.

Relationship between number of trees per plot and tree 
extraction from TLS point cloud data
The purpose of this analysis was to check whether num-
ber of missed trees is directly related to the number of 
trees measured and scanned in the field. Consequently, 
the assumption is that as the number of missed trees 
increase the occlusion increase and vice versa. A scat-
ter plot was used to assess the effect of number of trees 
per plot on missed trees from TLS point cloud data due 
to occlusion regardless of the size of missed trees. As it 
is shown in Fig.  5, the coefficient of determination (R2) 
of missed trees per plot against number of trees per plot 
is 0.892. This result revealed only the existence of a very 
strong relationship between number of missed trees 
per plot and number of trees per plot due to occlusion 
regardless of the size of missed trees.

Moreover, linear regression analysis has been carried 
out with the number of missed trees per plot as predicted 
variable and the total number of trees measured in the 

(6)Basal area/Tree (m2) =
π ∗ (DBH)2 ∗ 0.0001

4

(7)

Total stand basal area

(

m2

ha

)

=
Sum of basal area for each tree

0.05

= sum of basal area × 20
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field per plot as an explanatory variable since these vari-
ables have a higher relationship (Table 3).

Size and location of missed trees within sample plots
Of 178 missed trees out of 1033 trees measured and 
scanned in the field, 51.7% of trees were located at the 
center of sampled plots. While 48.3% of trees were 
located at the edge of sampled plots. Even though the 
total number of missed trees located at the center of 
sampled plots are higher than the total number of 
missed trees located at the edge of the sampled plots, 
the mean DBH of missed trees located at the center of 

sampled plots is lower compared to the mean DBH of 
missed trees located at the edge of sampled plots. The 
overall mean DBH of missed trees is 13.96 cm of which 
13.13  cm is the mean DBH of missed trees located at 
the center of sampled plots and 14.83  cm is the mean 
DBH of those missed trees located at the edge of sam-
pled plots. Therefore, from the result of this study, one 
can easily understand as there is no direct relationship 
between number of missed trees and total DBH of the 
corresponding missed trees per plot.

Operational integration of airborne and terrestrial LIDAR 
data
During the field work, both multiple upper canopy 
layer and single upper canopy layer plots were sam-
pled. Zonal statistics and extraction of multi values 
to points were applied to obtain the local maximum 
value of the segmented CHM. Accordingly, for those 

Table 2  Number of trees measured in the field and extracted from TLS

Plot no. Field 
measured

TLS extracted Extraction 
in %

Missed  
trees

Plot no. Field 
measured

TLS 
extracted

Extraction 
in %

Missed  
trees

1 30 25 83.3 5 17 38 32 84.2 6

2 45 36 80 9 18 45 33 73.3 12

3 33 26 78.8 7 19 32 26 81.3 6

4 36 29 80.6 7 20 42 34 81 8

5 33 26 78.8 7 21 29 25 86.2 4

6 36 29 80.6 7 22 43 35 81.4 8

7 31 28 90.3 3 23 22 20 90.9 2

8 36 29 80.6 7 24 22 21 95.5 1

9 35 29 82.9 6 25 28 25 89.3 3

10 39 31 79.5 8 26 28 24 85.7 4

11 37 29 78.4 8 27 30 25 83.3 5

12 25 22 88 3 28 16 15 93.8 1

13 44 35 79.5 9 29 34 28 82.4 6

14 15 15 100 0 30 23 21 91.3 2

15 34 27 79.4 7 31 33 27 81.8 6

16 34 27 79.4 7 32 25 21 84 4

Total plots Total field 
measured

Total TLS extracted TLS extraction (%) Missed trees Missed trees (%)

32 1033 855 82.77 178 17.23

Fig. 5  Scatter plot showing the relationship between missed trees 
versus number of trees

Table 3  Linear regression analysis result of  missed trees 
against total number of trees

*** Indicate statistically significant at α = 0.01 significance level

Explanatory 
variable

Coefficient Standard error t-statistics p-value

Intercept − 5.165 0.701 − 7.372 0.000

Number of trees 
per plot

0.332 0.021 15.731 0.000***
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plots having multiple upper canopy layers (emergent, 
medium and lower canopy trees), 14 m was used as a 
threshold to separate upper canopy from lower can-
opy trees hence 14 m was the minimum height of tree 
observed by ALS in those plots. However, in those 
plots having single upper canopy layer, 9  m was a 
threshold to separate lower and upper canopy. There-
fore, 14 m and 9 m were used as a threshold to sepa-
rate upper canopy from lower canopy trees in multiple 
upper canopy and single upper canopy layers respec-
tively. Trees with their height below this threshold 
in the corresponding plots were considered as lower 
canopy trees, and the height was derived from TLS. 
Accordingly, based on the threshold, of 1033 trees 
measured and scanned in the field, 657 (63.6%) were 
identified as upper canopy trees and matched with 
DBH derived from TLS. While 198 trees (19.17%) 
were classified as lower canopy trees. Table  4 shows 

the overall descriptive statistics for trees identified as 
upper and lower canopies measured by ALS and TLS 
respectively.

Estimation of above ground biomass
In this study, the AGB was calculated with tree inventory 
parameters derived from TLS and ALS using allometric 
equation given in Eq.  (4). Height derived from ALS and 
DBH derived from TLS was used to calculate upper can-
opy trees AGB while tree height and DBH derived from 
TLS was used to estimate AGB for lower canopy trees. 
Total AGB for each sampled plot and the entire study 
area was estimated by adding AGB estimated from lower 
and upper canopy trees. Figure  6 shows distribution 
of AGB in Mg across sampled plots in ascending order 
(Fig. 6).

Furthermore, the overall descriptive statistics of AGB 
obtained from lower and upper canopy trees is also done 
and summarized in Table 5.

From the total of 418 Mg AGB estimated from all sam-
pled plots, 394 Mg (94%) were obtained from upper can-
opy trees while 24  Mg (6%) were estimated from lower 
canopy trees with parameters derived from TLS. The 
overall mean AGB of the sampled plots was 13 Mg (i.e., 
261 Mg/ha) while 12 Mg and 0.75 Mg per plot were for 
upper and lower canopy trees respectively (Table 5).

Estimation of above ground carbon stock
The estimated above ground biomass was multiplied 
by a conversion factor of 0.47 to estimate above ground 
carbon stock of the measured trees. A total amount of 

Table 4  Over all descriptive statistics for  trees identified 
as upper and lower canopies

Descriptive statistics ALS upper canopy 
trees height (m)

TLS lower 
canopy trees 
height (m)

Mean 24.90 10.08

Standard deviation 6.54 2.71

Minimum 9.03 5.1

Maximum 48.19 13.9

Observation 657 198

Fig. 6  Distribution of AGB in Mg across sampled plots in ascending order
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185 Mg and 11 Mg of above ground carbon stock were 
obtained from upper canopy trees and lower canopy 
trees respectively. The overall mean AGC of the sam-
pled plots was 6  Mg (i.e., 122  Mg/ha). Table  6 shows 

the overall descriptive statistics of the estimated above 
ground carbon stock from the sampled plots.

Relationship between forest stand density and AGB
The relationship between forest stand density and 
aboveground biomass was assessed using scatter plot 
and linear regression. Accordingly, a scatter plot of 
above ground biomass against stand basal area per plot 
was carried out. As it is shown in Fig. 7, there is a very 
strong positive relationship between above ground bio-
mass and stand basal area per plot hence the coefficient 
of determination (R2) is 0.91.

Furthermore, linear regression analysis was con-
ducted with above ground biomass per plot (Mg/ha) as 
the dependent variable and total stand basal area per 
plot (m2/ha) as an explanatory variable since the rela-
tion of these variables is very strong. The linear regres-
sion analysis result is shown in Table 7.

Discussion
Effect of number of trees per plot on TLS tree extraction 
and accuracy assessment
Out of 1033 trees measured in the field, 855 trees 
(82.77%) were extracted from the TLS point cloud data in 
all 32 sampled plots and 178 trees (17.23%) were missed 
(Table 2). Of the total missed trees, 52.7% of trees were 
located at the center of sampled plots. While 48.3% of 
those missed trees were located at the edge of sampled 
plots. These trees were missed due to occlusion because 
of the existence of many trees in the plot, lower branches 

Table 5  Overall descriptive statistics of estimated AGB

Descriptive statistics Upper canopy 
AGB (Mg)

Lower canopy 
AGB (Mg)

Total AGB 
(Mg)

Mean/plot 12.31 0.75 13.07

Mean/ha 246.2 15 261.4

Standard deviation 7.39 0.56 7.54

Minimum 0.35 0.15 0.70

Maximum 27.98 2.38 28.58

Sum (Mg) 394.05 24.09 418.14

Sample plots 32 32 32

Table 6  Overall descriptive statistics of  estimated above   
ground carbon

Descriptive 
statistics

Upper canopy 
trees AGC (Mg)

Lower canopy 
trees AGC (Mg)

Total  
AGC (Mg)

Mean/plot 5.79 0.35 6.14

Mean/ha 115.8 7 122.8

Standard deviation 3.47 0.26 3.54

Minimum 0.17 0.07 0.33

Maximum 13.15 1.12 13.43

Sum (Mg) 185.20 11.32 196.52

Sampled plots 32 32 32

Fig. 7  Scatter plot showing the relationship between AGB versus stand basal area per plot
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and due to adjacent trees blocking the tree numbers 
and reduce the density of the point cloud data because 
of blocking the pulses of TLS which makes it difficult to 
identify and extract individual tree. Moreover, a tree far 
away from the scanner is also another cause for missed 
trees because of the laminated tree number tagged on the 
tree could not be identified hence the point cloud den-
sity is low. For this reason, the tree detection percentage 
is low, when the tree is far from the scanner (Antonarakis 
2011; Liang et al. 2012).

In a study conducted by Antonarakis (2011) in man-
aged and natural riparian forests along the Garonne 
River (SW France), 100% of the tree trunks were detected 
because of the existence of low undergrowth vegetation. 
Moreover, 97.5% of the trees were correctly detected in 
an Austrian forest in a study conducted by Maas et  al. 
(2008). However, the overall accuracy achieved for indi-
vidual tree extraction in this study is comparable with 
similar studies conducted in tropical rainforest such as 
Ghebremichael (2016) achieved 80.5% from 779 total 
number of trees measured in the field and Madhibha 
(2016) achieved 80.02% from 821 total number of trees 
measured in the field.

In this study, the extraction rate of individual trees var-
ies from one sample plot to another depending on the 
number of trees in the corresponding plot and of course 
other factors like amount of undergrowth and standing 
position of trees in the plot. The collected data in the 
field per each sampled plot is used to assess the accu-
racy of individual tree extracted from the TLS point 
cloud data at the plot level. Plot 18 had the lowest tree 
extraction rate compared to other sampled plots because 
of the existence of occlusion due to a high number of 
trees measured and scanned in this plot (45 trees). The 
more trees in the plot, the more trees are missed from 
TLS point cloud data (Table 2 and Fig. 8). Therefore, this 
result confirms as a number of trees are the main causes 
of occlusion for TLS scanning at plot level in the field.

The number of missed trees per plot is plotted against 
the number of trees measured in the field per plot 
(Fig.  5). The coefficient of determination was very high 
which is 89%, it is an indication as number of trees per 
plot has a high influence on the extraction of individual 

trees from TLS point cloud data due to being occlu-
sion through trunk overlapping. The R2 is interpreted as 
in ceteris paribus conditions, number of trees per plot 
contribute 89% for the missed trees from the TLS point 
cloud data regardless of the size of missed trees. How-
ever, the higher value of the coefficient of determination 
doesn’t mean as number of trees per plot increase, more 
AGB is missed because of more trees are missed. In this 
study, the location of missed trees inside sampled plots 
and their corresponding size was assessed. The DBH 
of those missed trees is very low almost close to 10 cm 
which doesn’t contribute much to the AGB/carbon stock 
estimation. There is also another variable that might con-
tribute to missed trees from TLS point cloud data other 
than number of trees in the plot. Some of these variables 
are the standing position of trees in the plot, shape of 
trees and personal experience of the operator but these 
variables are not captured in the model. Moreover, the 
analysis revealed that as there is no direct relationship 
between number of missed trees per plot and their corre-
sponding total DBH. That means plots which have a rela-
tively high number of missed trees have lower total DBH 
compared with the total DBH of a plot which has a low 
number of missed trees. The relationship between num-
ber of trees measured in the field per plot in ascending 
order and number of missed trees from TLS point cloud 
data per plot is depicted in a combined bar chart (Fig. 8).

As it is shown in Fig. 8, the highest missed trees were in 
plot 18 hence the highest number of trees were measured 
and scanned in the field in this sample plot compared to 
other sampled plots. While in plot 14, the accuracy of 
individual tree extraction was 100% because of the lowest 
number of trees per plot were measured in this sample 
plot.

Furthermore, by using missed trees per plot as the 
dependent variable and a total number of trees per plot 
as an explanatory variable, linear regression analysis has 
been carried out. The linear regression analysis con-
firmed as number of trees per plot significantly affect the 
extraction of trees from TLS point cloud data at Alpha 
equal to 0.01 significance level. The magnitude of the 
influence of number of trees per plot for missed trees per 
plot is explained by its coefficient. Statistically, it is inter-
preted, as number of trees per plot increase by one unit, 
on average missed trees per plot increase by 0.33% keep-
ing all things constant. That means if number of trees per 
plot increase by one tree, on average missed trees per plot 
increase by 0.33 tree (Table 3). However, since trees are 
indivisible, this interpretation doesn’t make sense in this 
context even if this is the correct way of interpretation for 
significant variables of regression result, but it confirmed 
the relation visualized in Figs. 5 and 8. Note that, still this 
relationship doesn’t consider the size of the missed trees. 

Table 7  Linear regression analysis result of  stand basal 
area and AGB

*** Indicate statistically significant at α = 0.01 significance level

Explanatory 
variable

Coefficient Standard error t-statistics p-value

Intercept − 47.722 19.346 − 2.467 0.020

Stand basal area 
(m2/ha)

10.301 0.586 17.575 0.000***
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Therefore, this interpretation doesn’t say anything about 
above ground biomass.

Effect of forest stand density on the estimation of AGB
There is a direct relationship between stand basal area 
and above ground biomass/carbon stock. In this study, 
there is a strong positive relationship between above 
ground biomass and stand basal area with Pearson cor-
relation coefficient 0.95 and coefficient of determination 
0.91 (Fig. 7). The higher relationship between stand basal 
area and above ground biomass is because of both vari-
ables are directly related to the tree trunk diameter. For 
this reason, as the size of the tree trunk increases, the 
basal area increases hence it is the cross-sectional area of 
the stem measured at the breast height, and consequently 
the above ground biomass and carbon stock increases.

Linear regression analysis has been done using stand 
basal area per plot (m2/ha) as an explanatory variable and 
above ground biomass per plot (Mg/ha) as the depend-
ent variable. The regression result revealed there is a very 
strong positive relationship between stand basal area 
(m2/ha) and above ground biomass (Mg/ha) at Alpha 
equal to 0.01 significance level. Statistically, this result 
is interpreted, as stand basal area increase by one unit, 
on average above ground biomass increases by 10.301 
unit keeping all things constant. In this context, as stand 
basal area increase by 1 m2/ha, on average above ground 

biomass increases by 10.301  Mg/ha keeping all things 
constant (Table 7).

In this study, the relationship obtained between stand 
basal area and above ground biomass (R2 = 0.91) is com-
parable with other results of previous studies. Some of 
the studies are mentioned as follows: Torres and Lovett 
(2013) estimate above ground carbon stock using basal 
area in oak–pine forests of La Primavera Biosphere’s 
Reserve, Mexico and they found coefficient of determi-
nation R2 of 0.96 from linear regression between carbon 
and basal area using a total of 103 measured trees in the 
field. Phillips et  al. (1998) explained the linear relation-
ship between basal area and above ground biomass of 
trees of their DBH greater than or equal to 10 cm, with a 
coefficient of determination R2 of 0.85 from 319 destruc-
tively harvested trees. Moreover, in a study conducted by 
Drake et al. (2003) in two areas of Central America along 
the Panama Canal and La Selva Biological Station in the 
Atlantic lowlands of north-eastern Costa Rica, the vari-
ation of above ground biomass using basal area as pre-
dictor is less than by 10% compared to the above ground 
biomass estimated using site-specific allometric equation. 
R2 of 0.92 with a p value less than 0.01 from 59 observa-
tions were obtained by a study conducted by Slik et  al. 
(2010) using multiple regression analysis with stand basal 
area and stem density as explanatory variables and above 
ground biomass as a predicted variable. In all studies 

Fig. 8  Combined chart for field measured and missed trees per plot
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mentioned above, stand basal area is recommended as a 
proxy to estimate above ground biomass. Therefore, the 
result of the current study is strongly agreed with previ-
ous studies mentioned above. The combined bar chart 
was used to emphasize the relationship between above 
ground biomass (Mg/ha) and total stand basal area (m2/
ha) in ascending order at the plot level (Fig. 9).

As it is shown in Fig.  9, plot 14 is the plot which has 
lowest above ground biomass because of its correspond-
ing stand basal area is lowest compared to the stand basal 
area of all sampled plots in the field. This is because the 
DBH of trees measured in the field within this plot was 
very low since the trees were newly growing. The total 
DBH of trees measured in this plot was lowest com-
pared to other sampled plots. Whereas, plot 29 is the plot 
which has highest above ground biomass since the cor-
responding stand basal area was the highest compared to 
other sampled plots. The highest stand basal area in plot 
29 is because of this plot has the highest total DBH from 
all sampled plots measured in the field.

Conclusion
This study shows as there is no statistically significant 
difference between total number of trees extracted from 
TLS as compared with total number of trees measured 
in the field at 5% significance level. Moreover, based on 
the findings, it is possible to conclude as there is a direct 

relationship between number of missed trees per plot 
and number of trees per plot measured and scanned 
in the field. There is very strong and direct relationship 
between above ground biomass and forest stand density. 
Since there is a strong relationship between forest stand 
density and above ground biomass and the measurement 
of forest stand density from the ground is fast, forest 
stand density could be recommended as a proxy to esti-
mate above ground biomass.
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