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Abstract 

Background: Droughts cause serious effects on the agricultural and agro-pastoral sector due to its heavy depend-
ence on rainfall. Several studies on agricultural drought monitoring have been conducted in Africa in general and 
Ethiopia in particular. However , these studies were carried out using the limited capacity of drought indices such as 
Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and Deviation of Normalized Differ-
ence Vegetation Index (DevNDVI) only. To overcome this challenge, the present study aims to analyze the long-term 
agricultural drought onset, cessation, duration, frequency, severity and its spatial extents based on remote sensing 
data using the Vegetation Health Index (VHI) 3-month time-scale in Raya and its surrounding area, Northern Ethiopia. 
Both the MOD11A2 Terra Land Surface Temperature (LST) and eMODIS NDVI at 250 by 250 m spatial resolution and 
hybrid TAMSAT monthly rainfall data were used. A simple linear regression model was also applied to examine how 
the agricultural drought responds to the rainfall variability.

Results: Extremely low mean NDVI value ranged from 0.23 to 0.27 was observed in the lowland area than mid and 
highlands. NDVI coverage during the main rainy season decreased by 3–4% in all districts of the study area, while LST 
shows a significant increase by 0.52–1.08 °C. VHI and rainfall value was significantly decreased during the main rainy 
season. Agricultural drought responded positively to seasonal rainfall  (R2 = 0.357 to  R2 = 0.651) at p < 0.01 and p < 0.05 
significance level. This relationship revealed that when rainfall increases, VHI also tends to increase. As a result, the 
event of agricultural drought diminished.

Conclusions: Remote sensing and GIS-based agricultural drought can be better monitored by VHI composed of LST, 
NDVI, VCI, and TCI drought indices. Agricultural drought occurs once in every 1.36–7.5 years during the main rainy sea-
son, but the frequency, duration and severity are higher (10–11 times) in the lowland area than the mid and highlands 
area (2–6 times) during the last 15 years. This study suggests that the effect of drought could be reduced through 
involving the smallholder farmers in a wide range of on and off-farm practices. This study may help to improve the 
existing agricultural drought monitoring systems carried out in Africa in general and Ethiopia in particular. It also sup-
ports the formulation and implementation of drought coping and mitigation measures in the study area.
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Background
In arid and semi-arid regions, rain-fed agricultural pro-
duction is mostly a risky practice because of its high sen-
sitivity to climate extremes, including drought (Lei et al. 
2016; Choi et  al. 2013). Several studies have indicated 
that drought causes a significant decline in agricultural 
production and productivity all over the world. This can 
occur with no warning, without recognizing borders or 
economic and political differences (Kogan 2000). For 
instance, during the periods of 2001–2012, moderate-
to-exceptional (ME), severe-to-exceptional (SE) and 
extreme-to-exceptional (EE) droughts covered about 
17–35%, 7–15% and 2–6% of the total land mass of the 
world, respectively (Kogan et al. 2013). For example, the 
droughts of 2010 in Russia and 2011/12 in the USA pro-
duced considerable local and global economic impacts 
(Kogan et al. 2016). As a result, the balance of food sup-
ply and demand was significantly affected due to severe 
droughts at local, regional, and global scales (Van Hoolst 
et al. 2016; Song et al. 2004). In dry areas, where the rain-
fall pattern is highly variable, the most susceptible shock 
is realized (Maybank et  al. 1995). Several regions of the 
world, particularly the main grain-growing countries 
(e.g., USA, China, Russia, India, and European Union) are 
thus experiencing an increase in the frequency and inten-
sity of droughts incidence (Kogan et  al. 2016; Owrangi 
et al. 2011).

In developed countries, drought monitoring and early 
warning systems are based on earth observation prod-
ucts and it is highly effective, while in the majority of 
African countries (including Ethiopia) the situation 
largely depends on the in-situ climate data only, which 
significantly affects the smallholder farmers. It also lacks 
the continuous spatial coverage needed to character-
ize and monitor the detailed spatial pattern of drought 
conditions (Gu et  al. 2007). For instance, drought is a 
persistent problem in Botswana (Segosebe 1990) and 
other African countries. Efforts have been made to set 
up regional drought monitoring in the Southern Afri-
can Development Community (SADC), the Great Horn 
of Africa (GHA), and the West African Permanent 
Interstate Committee on Drought Control in the Sahel 
(CILSS). All these monitoring systems are confined only 
to the selected regions and hence, they do not include the 
entire African countries and their initiatives are ineffec-
tive in majority part of the continent in providing provide 
real-time information on the past and future drought 
events (Vicente-Serrano et  al. 2012). Vicente-Serrano 
et al. (2012) reported that many droughts affected devel-
oping countries, including Ethiopia, facing difficul-
ties in monitoring droughts due to weak institutional 
structures, lack of technical capacity, limited progress 
in mobilizing stakeholder involvement and investment, 

and lack of in-depth understanding of the benefits of 
effective drought management for poverty alleviation 
and economic development and the lack of a prepared-
ness culture. The drought has thus remained a bottleneck 
problem in the area. For instance, during the 1981–1984, 
several countries in the continent were under the spell of 
catastrophic drought events.

Ethiopia is one of the countries with frequent drought 
events due to poor and erratic rainfall availability where 
the problem is severe in the northern parts. Sholihah 
et al. (2016) reported that the incidence of El Nino phe-
nomenon droughts has also been frequently occurring 
over the decades triggering several threats to the agricul-
ture sector. Particularly, the arid and semi-arid area has 
been severely affected by the recurrent droughts. The 
cessation, duration, frequency, severity and spatial extent 
of agricultural drought in the area is high. Although, sub-
stantial growth in the major crop types (e.g., teff, barley, 
maize, wheat, and sorghum and others) were observed 
in terms of productivity and area coverage, yields are 
low when evaluated by international standards. This 
is because production is highly susceptible to weather 
shocks, particularly droughts (Se et  al. 2011). Agricul-
tural production, mainly in the poor area has remained 
highly dependent on the weather (Zhang et  al. 2016). 
The challenges may also arise in the future as the natural 
resources largely over exploited due to rapid population 
growth. Vicente-Serrano et al. (2012) stated that the cur-
rent population projections in the area also significantly 
increased in the regions where the area intermittently 
affected by the persistent water shortage leading to cata-
strophic drought. Umran Komuscu (1999) revealed that 
drought impacts are usually first apparent in agriculture, 
but gradually move to other water-dependent sectors. 
The agricultural drought was, therefore, occurring due to 
unfavorable precipitation. Agriculture is the first sector 
affected by the hydro-meteorological droughts because it 
adversely affects the growth of vegetation as well as crop 
production (Bhuiyan et al. 2006), but later moves to other 
water dependent sectors (Umran Komuscu 1999).

Agricultural drought is primarily expressed by the 
reduction of crop production and/or productivity due 
to erratic rainfall as well as insufficient soil moisture in 
the crop root zones (Sruthi and Aslam 2015; Alemaw 
and Simalenga 2015). However, the reliance on weather 
data alone is not adequate to monitor an area of drought, 
particularly when these data are untimely, sparse, and 
incomplete (Peters et al. 2002). The conventional ways of 
drought monitoring which depend only on weather sta-
tions (e.g., Ethiopia) lack continual spatial coverage to 
characterize and monitor the spatial pattern of drought 
incidences in depth (Gu et al. 2007).
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Kogan (2000) reported that the recent advances in 
satellite technology improved the ability to monitor 
droughts. Remote sensing and GIS-based agricultural 
drought monitoring has thus attracted interest of various 
scientists such as agriculturalists, hydrologists, meteor-
ologists, and environmentalists because it provides more 
accurate, flexible and reliable findings (e.g., spatio-tem-
poral trends of drought) in drought studies. Seiler et  al. 
(1998) noted that reliable, satellite-based drought indices 
are credible in detecting the spatial and temporal drought 
occurrence, which is highly important for conducting 
effective drought monitoring, and for alleviating the risk 
arises from drought. Likewise, those satellite observation 
products can complement the information gathered by 
traditional and ground-based drought assessment tech-
niques that rely only on meteorological observations. 
However, it requires timely information about vegeta-
tion condition related to drought, flooding, or fire danger 
(Brown et al. 2015). This method of drought monitoring 
is feasible, highly accurate and cost–effective to assess 
large areas with different time-scale. It also provides real-
time and dynamic information for terrestrial ecosystems, 
facilitating effective drought monitoring (Zhang et  al. 
2016). Bhuiyan (2004) stated that agricultural droughts 
reflect vegetation stress. Assessing the vegetation health 
status of a given area is paramount significant to char-
acterize the incidence of agricultural drought, but it 
requires at least 10 years of satellite observation data and 
suitable drought index. Furthermore, the understand-
ing, monitoring, and mitigating drought are becoming a 
very difficult task because of the intrinsic nature of the 
phenomenon (Vicente-Serrano et  al. 2012). However, 
satellite observations overcome some limitations of sta-
tion-based meteorological observations, providing the 
potential for cost–effective, spatially explicit and dynamic 
large-scale drought monitoring (Zhang et al. 2016). Like-
wise, satellite observation products (e.g., eMODIS NDVI, 
MOD11A2 LST) supported with advanced remote sens-
ing drought indices such as Vegetation Health Index 
(VHI) can help to assess the incidence of agricultural 
droughts. Liu and Kogan (1996) stated that the seasonal 
and/or inter-annual droughts can be delineated by using 
the Vegetation Condition Index (VCI) and Tempera-
ture Condition Index (TCI) because both indices can 
help to generate VHI. Rhee et  al. (2010) reported addi-
tional drought indices such as the Normalized Difference 
Drought Index (NDDI), the Normalized Difference Water 
Index (NDWI), and the Normalized Multiband Drought 
Index (NMDI) were introduced based on hyperspectral 
remote sensing data. These drought indices might be 
significant, but VHI has been the popular agricultural 
drought index. However, it requires both NDVI and LST 
data (Zhang et al. 2017; Choi et al. 2013).

Agricultural drought monitoring using VHI is therefore 
essential to provide reliable information. Studies showed 
that (e.g., Kogan and Guo 2016) the incident of droughts 
has continued with a significant agricultural production 
reduction or loss and other associated impacts such as 
malnutrition, human health deterioration, depletion of 
water resources, rising of food prices, population migra-
tion, and mortality. Therefore, there is a need to obtain 
synoptic information on a recurring and timely basis, 
drought-affected agricultural zones to identify area 
requiring immediate attention (Van Hoolst et  al. 2016) 
and to mitigate the implication. In this study, the agri-
cultural drought monitoring was conducted in 3-month 
time-scale (i.e., July–September). The specified time-scale 
is vegetation as well as the crop gestation period during 
the main rainy season. Similarly, Zhang et al. (2017) stud-
ied the drought phenomenon during vegetation growing 
seasons in the United States. Therefore, studying agri-
cultural drought during the vegetative phase can provide 
better drought characteristics information. The novelty 
of this study is that it conducted VHI based long term 
agricultural drought monitoring in Africa in general and 
Ethiopia in particular. The objective of this study was to 
analyze the long-term agricultural drought onset, cessa-
tion, duration, frequency, severity, and its spatial extent 
using the VHI that integrates NDVI, VCI, LST and TCI 
in Raya and its surrounding area, Northern Ethiopia. The 
study is decisive for monitoring, understanding and man-
aging the incidence of agricultural droughts through sat-
ellite earth observation data.

Methods
Study area
This study was undertaken in Raya and its environs 
(Northern Ethiopia) which is an intermountain plain area 
located at 39°24′40′′ and 40°25′20′′ longitude Easting and 
12°7′20′′ and 13°8′0′′ latitude Northing (Fig.  1) (Gidey 
et  al. 2017). It consists of 11 districts, namely Meg-
ale, Yalo, Gulina, Gidan, Kobo, Alaje, Alamata, Hintalo 
Wejirat, Ofla, Endamehoni, and Raya Azebo. The total 
area coverage of the study area is estimated at 14,532 km2 
of which (48%) falls in the southern Tigray region, 22% 
in Amhara and (30%) in the Afar region (Gidey et  al. 
2017). The area receives up to 558 mm of rainfall annu-
ally (Gidey et  al. 2017). Rainfall is erratic and bimodal 
(Ayenew et  al. 2013). In 2015, the highest temperature 
was observed since 1984. During this time, the maximum 
temperature (Tmax) and minimum temperature (Tmin) 
were 30.5 and 15.9  °C, respectively. The study area con-
sists of four river basins such as Denakil basin, which cov-
ers about 10,265.8 km2 (70.64%), Lake Ashinge 16.0 km2 
(0.11%), Abay (Blue Nile) 13.2  km2 (0.09%), and Tekeze 
4237.0  km2 (29.16%). The mean elevation value of the 
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area is 1762 meters above sea level (m.a.s.l) (Gidey et al. 
2017). Similarly, the slope of the study ranged from 0% 
(flat) to 395.3% (very steep slope). The soils of the study 
area i.e., eutric cambisols are the predominant soil type 
in the area covering about 4667.1  km2 or 32.1%, while 
dystric gleysols cover only small portions of the site, i.e., 
nearly 1.1 km2 or 0.001%, respectively (Gidey et al. 2017). 
The prominent land cover type is deciduous woodland 
which covers nearly 6097.6  km2 (42.0%), while others 
e.g., Croplands cover 3362.2 km2 (23.1%), open grassland 
with sparse shrubs 1517.4 km2 (10.4%), deciduous shrub 
land with sparse tree 1298.1 km2 (8.9%), sparse grassland 
789.9 km2 (5.4%), croplands with open woody vegetation 
503.5 km2 (3.5%), Bare soil 409.6 km2 (2.8%), open grass-
land 202.3 km2 (1.4%), closed grassland 197.0 km2 (1.4%), 
mosaic forest/savanna 129.2  km2 (0.9%), montane ever-
green forest 14.5 km2 (0.1%) and water bodies 11.1 km2 
(0.1%), respectively. According to the Raya Valley Liveli-
hood Zone report (2007), the dominant crop types in the 
study area are sorghum, teff, and maize. Of all crops, sor-
ghum and maize are widely used as a staple food by the 
community, while teff (Eragrostis tef ) is largely produced 

for both cash and food crops to improve their livelihoods. 
In the study area, the smallholder farmers prepare their 
lands during the months of May and June because July–
September are main rainy season.

Data acquisition
Expedited MODIS (eMODIS)‑TERRA NDVI
Tsiros et  al. (2004) reported that the earth observation 
data could effectively be used to monitor drought onset, 
cessation and the vegetation’s response to drought. In 
this study, the agricultural drought condition of the 
study area was investigated using the real-time and his-
torical EROS Moderate Resolution Imaging Spectrora-
diometer Earth observation products. A multi-temporal 
smoothed monthly Terra expedited Moderate Resolution 
Imaging Spectoradiometer Normalized Difference Veg-
etation Index (eMODIS-NDVI) data from the period of 
2001 to 2015 at 250  m spatial resolution were acquired 
from the Famine Early Warning Systems Network (FEWS 
NET) East-Africa region. The Terra eMODIS-NDVI 
data are better for agricultural drought monitoring than 
Aqua. The main reason is that the Aqua eMODIS data 

Fig. 1 Location map of the study area. Source: Gidey et al. (2017)
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are more prone to noise than the Terra data, likely due 
to differences in the internal cloud mask used in MOD/
MYD09Q1 or composting rules (Brown et al. 2015).

Land Surface Temperature (LST)
In this study, the MOD11A2 LST and Emissivity Terra 
8-day temporal resolution (later aggregated into monthly 
bases) data were obtained from the National Aeronautics 
and Space Administration (NASA)—United States Geo-
logical Survey (USGS) Land Process Distributed Active 
Archive Center (LP DAAC). The ultimate reasons to use 
the daytime (Terra) LST data were its temporal evolu-
tion. Frey et al. (2012) reported that the temporal evolu-
tion of LST acquired during the daytime is better to get 
in-depth information than the Aqua (night-time) because 
a significant change in LST change can be observed dur-
ing the nighttime. However, in the nighttime (Aqua), LST 
largely remains stable; as a result, the restriction on time 
differences could be relaxed. The MODIS LST introduces 
a higher quality of LST data than AVHRR sensor due to 
its temporal and spatial variations and up-to-date algo-
rithm such as time of acquisition, satellite view zenith 
and azimuth angle, quality flags for easy interpretation of 
the products (Frey et al. 2012). A total of 169 MOD11A2 
LST (morning overpass or Terra) data product collec-
tion of 005 used to assess the LST condition of the study 
area from the period of 2001–2015. The daytime or Terra 
temperature of vegetation canopy is an essential charac-
teristic (Kogan and Guo 2016). This data was used as an 
input to compute the TCI and VHI, which is an advanced 
and integrated agricultural drought-monitoring model.

Precipitation
Precipitation data are an extremely useful meteorologi-
cal parameter in drought studies. In this study, the long-
term monthly precipitation data were collected from 
the National Meteorological Agency of Ethiopia for the 
period 2001–2015. The data were mainly used to investi-
gate the response of agricultural drought to rainfall.

Data processing and analysis
Expedited MODIS (eMODIS)‑TERRA NDVI
eMODIS is a process for creating a community-spe-
cific suite of vegetation monitoring products based on 
the National Aeronautics and Space Administration’s 
(NASA) Earth Observing System (EOS) Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and pro-
duced in the U.S. Geological Survey’s (USGS) Earth 
Resources Observation and Science (EROS) Center 
(Jenkerson and Schmidt 2008). Jenkerson et  al. (2010) 
reported that the eMODIS NDVI data are well suited for 
vegetation studies because the data were acquired with 
a frequent and repeated cycle. Besides, the same author 

stated that the spatial resolutions of the data were better 
than the Advanced Very High Resolution Spectroradi-
ometer (AVHRR) and SPOT-Vegetation products. Rhee 
et  al. (2010) reported that the Normalized Difference 
Vegetation Index (NDVI) has been most widely used for 
drought monitoring. However, NDVI data alone can-
not fully show the severity and magnitude of droughts 
(Kogan et  al. 2013; Kogan and Guo 2016). Therefore, 
the multi-temporal analysis of eMODIS NDVI data sup-
ported by VCI and TCI can significantly improve the 
drought monitoring and early warning systems. Barbosa 
et al. (2006) reported that the satellite derived NDVI can 
be computed based on the red, which has low reflectance 
value and NIR high reflectance, portions of the wave-
length. Predominantly, in non-drought periods, green 
and vigorous vegetation reflects little light in the visible 
(VIS) spectrum due to high light absorption by chloro-
phyll and much reflection in the near-infrared (NIR) part 
due to the specificity of light scattering by leaf internal 
tissues and water content (Kogan and Guo 2016). In this 
case, the healthy vegetation is strongly absorbed the vis-
ible incident solar (red) and it reflects less solar radiation 
in the visible spectrum. However, the unhealthy veg-
etation strongly reflects the near-infrared light. Hence, 
healthy and dense vegetation has the highest NDVI value 
typically > 0.5 than the unhealthy. Furthermore, the main 
reason to use eMODIS NDVI data in this study was that 
the eMODIS Terra data are corrected from molecular 
scattering, ozone absorption, and aerosols. Likewise, the 
eMODIS NDVI is good to measure the density of chloro-
phyll contained in vegetative cover (Swets 1999). Kogan 
(1995) revealed that NDVI data helps to assess the VCI 
development reflects both temperatures and precipita-
tion conditions. The NDVI was mathematically com-
puted as follows (Eq. 1):

where NIR = near-infrared reflectance and RED = visible-
red reflectance.

In this study, the row eMODIS data were processed, 
rescaled and analyzed in ArcGIS 10.4.1 package to find 
out the real NDVI value of the study area as follows 
(Eq. 2):

The value of eMODIS NDVI ranges from − 1.0 to 
+ 1.0. The standard unit of eMODIS NDVI is NDVI 
ratio. The negative NDVI ratio shows less vigorous or 
unhealthy vegetation cover mainly occurred in a barren 
rock (rock outcrop), and sand, while the positive NDVI 
value depicts the healthy vegetation cover. NDVI values 
are much higher in healthy and dense vegetation than 

(1)NDVI = (NIR− RED)/(NIR+ RED)

(2)
eMODIS NDVI

= Float (Smoothed eMODIS NDVI - 100) / 100
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rocks, water, and bare soil (Kogan 1995). Similarly, sparse 
vegetation cover such as grasslands, bushes/shrubs may 
result in moderate NDVI values range from 0.2 to 0.5. 
High NDVI values (0.6–0.9) correspond with dense veg-
etation in the temperate and tropical forests or crops at 
their peak growth stage. The NDVI is thus a very good 
parameter for studying vegetation greenness, and map-
ping vegetation health or cover dynamics status in each 
satellite image pixel. In this study, the eMODIS NDVI 
data were used as input to compute the VCI only.

Vegetation Condition Index (VCI)
Several drought indices have been developed for assess-
ing the drought characteristics such as intensity, dura-
tion, severity and spatial extent (Mishra, and Singh 2011) 
(e.g., VCI). The VCI which is derived from remote-sens-
ing data has been used naturally allied with vegetation 
state and cover (Karnieli et al. 2010). The index is highly 
applicable for assessing the vegetation stress and/or to 
examine the response of vegetation. VCI quantifies the 
weather component (Singh et al. 2003) and portray pre-
cipitation dynamics as compared to the NDVI (Kogan 
1990). This index helps to show the cumulative environ-
mental impact on vegetation (Singh et al. 2003). The VCI 
permits not only the description of vegetation but also 
an estimation of spatial and temporal vegetation changes 
and weather impacts on vegetation (Kogan 1990). In this 
study, the smoothed monthly eMODIS NDVI data were 
used as input to compute the VCI model. Kogan (1995) 
pointed out that VCI has an excellent capability to iden-
tify drought and measure its time of onset, intensity, 
duration, and impact on vegetation. In this study, the VCI 
model was applied to examine the agricultural drought 
status of the study area as follows (Eq. 3):

where  NDVIi = the current smoothed NDVI value of  ith 
month,  NDVImin, and  NDVImax, is a multi-year (2001–
2015) absolute minimum and maximum NDVI value for 
every pixel at a particular period.

Vegetation Condition Index values show how much 
the vegetation has advanced or deteriorated in response 
to weather. According to Kogan (1995), the value of VCI 
is measured in percentile ranged from 0 to 100. A high 
value of VCI signifies healthy and/or unstressed veg-
etation condition. It is thus the area is free of the agri-
cultural drought incidence. The VCI value of 50–100% 
shows above normal or wet condition. This means that 
there is no drought, while values between 35 and 50 per-
cent show area under the incidence of moderate drought 
(MD) and VCI value between 20 and 35 percent shows 
severe drought (SD) prevalence. Furthermore, the sea-
sonal and/or annual VCI value 0–20% is showing very 

(3)VCI = 100×
(

NDVI
i
− NDVI

min

)

/
(

NDVImax − NDVI
min

)

severe agricultural drought event (VSD). However, in 
some cases, VCI model based on NDVI alone is not suf-
ficient for agricultural drought monitoring (Kogan 1995; 
Sholihah et  al. 2016). Hence, the combination of both 
VCI and TCI derived from MOD11A2 LST Terra data 
are significant to assess agricultural droughts. This study, 
therefore, applied VHI to analyze the long-term agri-
cultural drought onset, cessation, duration, frequency, 
severity and its spatial extents.

Temperature Condition Index (TCI)
Land Surface Temperature (LST) Land Surface Temper-
ature (LST) described as the radiative skin temperature of 
the land derived from solar radiation.1 This data used as 
an indicator of the energy balance at the Earth’s surface 
and the so-called greenhouse effect in climate change 
studies (Frey et al. 2012). The MOD11A2 Terra v.005 LST 
and emissivity measures the ground temperature of the 
earth’s surface. This helps to assess the overall vegetation 
health, soil moisture status and impact of thermal (Parviz 
2016; Karnieli et  al. 2010). In this study, the MOD11A2 
Terra 8 days LST data initially acquired at a 1 km spatial 
resolution archived in Hierarchical Data Format–Earth 
Observing System (HDF–EOS). However, the MODIS 
Re-projection Tool (MRT) v 4.1 developed on March 2011 
was applied to resample the 1 km MOD11A2 LST data in 
250-m spatial resolution together with the eMODIS 
NDVI data. The MRT also used to convert the Hierarchi-
cal Data Format (HDF) into a GeoTIFF image format to 
carry out better analysis and interpretations on the 
MOD11A2 LST and eMODIS NDVI. In addition, the 
MRT tool was used to reproject the data from its Sinusoi-
dal Projection type into Universal Transverse Mercator 
(UTM) projection zone 37 as the dominant part of Ethio-
pia relies on this projection type. The values of the 
MOD11A2 Terra LST data were computed by averaging 
all the valid pixels under clear-sky. The valid LST value 
ranges from 7500 to 65,535 (Wan 2006) and it was rescaled 
by 0.02 to get the correct LST value in Kelvin unit. Hence, 
the values of LST will be from 150 to 1310.7 Kelvin. In this 
study, the LST data were rescaled and converted into  °C 
(degree Celsius) unit as follows (Eq. 4):

where LST = Land Surface Temperature in Degree Cel-
sius (oC), ϖ = Row Scientific data (SDS).

The TCI is a thermal stress indicator used to determine 
temperature related drought situations. This satellite-
derived index assumes that during the drought event soil 

1 http://lst.nilu.no/langu age/en–US/Home.aspx.

(4)LST = (̟ × 0.02)− 273.15

http://lst.nilu.no/language/en%e2%80%93US/Home.aspx
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moisture diminished significantly and cause high vegeta-
tion stress. Kogan (1995) noted that computation of the 
TCI model is more likely similar to the VCI. However, the 
model has considerably improved to assess the response 
of vegetation to temperature. The TCI assumed that 
higher temperature has a tendency to cause deterioration 
or drought during the vegetative growth period, while 
low temperatures are largely favorable to vegetation dur-
ing its development. Hence, low TCI values correspond 
with vegetation stress due to dryness or harsh weather by 
high-temperature condition (Karnieli et al. 2006; Bhuiyan 
2004). The TCI was estimated using the following math-
ematical expression (Eq. 5):

where  LSTi = LST value of ith-month,  LSTmax and  LSTmin 
are the smoothed multi-year maximum and minimum 
LST.

Vegetation Health Index (VHI)
Rhee et  al. (2010) reported that the recently developed 
drought indices (e.g., NMDI, NDWI, and NDDI) did not 
perform significantly better than NDVI with 1 km resolu-
tion in the arid region. Studies showed NDVI only is not 
capable to depict drought or non drought conditions. The 
VHI model has been found to be a robust agricultural 
drought-monitoring index and it has good efficiency to 
explore the spatial extent of agricultural severity drought. 
In the arid region, VHI was quite highly correlated with 
in-situ variables (Rhee et al. 2010). Karnieli et al. (2006) 
stated that the VHI was applied only in arid, semi-arid 
and sub humid climatic regions where water is the main 
limiting factor for vegetation growth. VHI is dependent 
on the weather and ecological conditions of the region 
(Singh et al. 2003). Seiler et al. (1998) reveal that the VHI 
combination of TCI and VCI is essential to characterize 
the spatial extent, the magnitude, and severity of agri-
cultural droughts in a good agreement with precipita-
tion patterns. Likewise, they are paramount significant to 
examine the effect of weather on vegetation and to exem-
plify the condition of crop development. Furthermore, 
both the VCI and TCI indices have used for estimation 
of vegetation health and drought monitoring (Singh et al. 
2003; Jain et al. 2009). Hence, the vegetation stress due to 
dry and wetness condition was assessed to investigate the 
severity of agricultural droughts in the study area. Tsiros 
et al. (2004) and Parviz (2016) reported that the combina-
tion of both VCI and TCI the so-called VHI has shown 
satisfactory results in several parts of the globe when it 
is used for drought detection, assessment of weather 
impact and/or evaluation of vegetation condition. The 
VHI show the availability of moisture and temperature 

(5)TCI = 100× (LSTmax − LSTi)/(LSTmax − LSTmin)

or thermal condition in vegetation (Kogan 2001). This 
drought index has better performance for agricultural 
drought monitoring (Parviz 2016). Marufah et al. (2017) 
reported that VHI used to understand the duration, spa-
tial distribution, and severity or category of agricultural 
drought. Studies showed that low VCI and TCI values or 
warm weather largely signifies stressed vegetation condi-
tions and the prevalence of agricultural droughts. In this 
study, both the VCI and TCI components given an equal 
weight due to the reason that moisture and temperature 
contribution during the vegetative growth period not 
yet known (Kogan 2001). Similarly, Karnieli et al. (2006) 
reported that due to a lack of more accurate information 
on the influence of VCI and TCI on the VHI in Mongolia, 
the coefficient of the VHI equation was fixed at 0.5.

The VHI was mathematically computed as follows 
(Fig. 2) (Eq. 6):

where VHI = Vegetation Health Index, a = 0.5 (contribu-
tion of VCI and TCI), VCI = Vegetation Condition Index, 
TCI = Temperature Condition Index.

Drought warning issued if the VHI values decrease 
below 40 (Kogan et  al. 2013). The lower VHI indicated 
that the high incidence of drought whereas a higher VHI 
value show that wet or non-drought conditions (Table 1).

This study analyzed the onset, cessation, duration, 
and recurrence interval of agricultural drought. Stud-
ies showed that agricultural drought is striking when the 
VHI value is below 40 and ends if the values exceed 40 
(Table 1). The agricultural drought duration of this study 
was also analyzed by the number of consecutive drought 
periods, i.e., the time-period between the onset and the 
end of the drought.

Coefficient of variation (CV) analysis
The coefficient of variation (CV) analyses was conducted 
to examine the seasonal VHI variability relative to the 
mean percent from the periods of 2001–2015. The coeffi-
cient of variation statistically computed as follows (Eq. 7):

where CV(%) = Coefficient of variation of VHI in per-
centage, σ = Standard deviation of VHI, x̄ = long-term 
mean of VHI.

Regression analysis between VHI and rainfall
In this study, a regression analysis was carried out 
between agricultural drought as derived from VHI and 
rainfall only because there is no long-term record of crop 
yield data in the study area. Wilhite and Glantz (1985) 

(6)VHI = a× VCI + (1− a)× TCI

(7)CV (%) = 100×
σ

x̄
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reported that drought can occur in both high as well as 
low rainfall area. Therefore, it is useful to evaluate how 
the agricultural drought responded to rainfall because 
there is high rainfall variability in Raya and its environs. 
The regression analysis was conducted as follows (Eq. 8):

where Yi = VHI for the ith period, Xi = seasonal rainfall, 
β0 + β1χi = linear relationships between the independ-
ent and dependent variables, β0 = Mean of Yi when Xi 
= 0 (intercept), β1 = Change in the mean of Yi when Xi 
increases by 1 (slope), ɛi = Random error term.

Results and discussion
Long‑term agricultural drought analysis
Figure  3 shows the multi-temporal trend of LST-NDVI, 
VCI-TCI, and VHI—rainfall for the period 2001 to 2015. 
The lowland area presented in Fig.  3a1–c1 reveals that 
the mean NDVI value was between 0.23 and 0.27 and this 
sparse NDVI value is extremely low when it is evaluated 
by scientifically accepted thresholds, while the LST was 
high and it ranges between 39.6 and 41.29 °C. Therefore, 
low NDVI values are mostly reached at high LST values 
because the vegetation is under high water stress. In the 
midland area shown in Figs.  3d1–f1 and 4a1 relatively 
better NDVI value ranged between 0.44 and 0.57 was 
observed, while the LST was between 30.3 and 34.97 °C. 
In this area, the LST value was relatively lower than 
the lowland area stated in Fig.  3a1–c1, but it is still an 
unfavorable condition for the vegetation high moisture 
stress. In the highlands area, good NDVI coverage ranges 
between 0.53 and 0.57 was observed. Besides, low LST 
value ranges between 22.85 and 24.6 °C was observed in 
the same area. High LST during the vegetation growing 
period may cause vegetation stress. Hence, the increase 
in surface temperature may significantly influence veg-
etation development (Karnieli et  al. 2006). Singh et  al. 
(2003) reported that NDVI becomes an important tool 
for vegetation cover and/or growth analysis. Generally, 
this study observed that NDVI coverage during the main 
rainy season decreased by 3–4% in all districts of the 

(8)Yi = β0 + β1Xi + εi

study area. However, the LST shows a significant increase 
by 0.52–1.08  °C across all agro-ecologies as well as dis-
tricts in the last 15  years (Fig.  5). The increase in LST 
and the decrease in NDVI contribute considerable mois-
ture stress that can trigger the incidences of agricultural 
drought. Furthermore, Figs.  3a2–f2 and 4a2–e2 show 
the trend of VCI and TCI. The results showed that the 
stress of vegetation was due to rising surface tempera-
ture. In the lowland area, the values of VCI were between 
37.18 and 44.48, while TCI was largely between 38.54 
and 39.58. In the midland area, the values of VCI were 
between 53.77 and 62.65, while TCI was 52.57–64.4. In 
the highland area, the VCI value ranged between 63.94 
and 67.87, while TCI was 66.63–68.88.  

Furthermore, Figs.  3a3–f3 and 4a3–e3 indicated that 
VHI and rainfall value was significantly diminished dur-
ing the main rainy season. This revealed that the inci-
dence of agricultural drought became more frequent and 
severe because it is more sensitive to soil moisture, par-
ticularly the lowland and some parts of mid and highland 
area was seriously affected. For instance, the VHI value 
of the lowland area was between 38.38 and 40.55, while 
rainfall was about 274.42–379.87. In the midland area, 
better VHI values were observed ranged from 53.17–
62.82. Moreover, in the highland area, the VHI value 
ranged between 66.47 and 70.65 was observed. Bhuiyan 
(2008) reported that during 1985 and 1986 monsoon sea-
son, VHI showed severe to extreme droughts in the west-
ern and some northern parts of Thar Desert, India. In the 
same region, mild to moderate droughts severity were 
also observed in the rest of the country. Moreover, the 
validity of the VHI as a drought detection index relies on 
the assumption that NDVI and LST at a given pixel will 
vary inversely over time, with variations in VCI and TCI 
driven by local moisture conditions (Karnieli et al. 2010).

Agricultural drought onset, cessation, duration, 
and recurrence interval analysis
Table  2 shows the seasonal agricultural drought onset, 
cessation, duration, and recurrence interval. The results 
reveal that agricultural drought occurred in a different 
time-period, duration and recurrence interval. It strikes 
all districts once in every 1.36–7.5 years during the main 
rainy season. Serious drought conditions during the crop 
growing season eventually affect crop yield (Rhee et  al. 
2010). For example, the districts of Yalo and Gulina were 
hit by the agricultural drought that started in 2004 and 
ends in 2009. This incidence was affecting the livelihood 
of the community for about 6 years and it was recorded 
as the highest drought period during the last 15  years 
(Table  2). Similarly, another drought event which cov-
ers the larger portion of the area was started in 2011 and 
ends in 2015. The duration of this drought event was 

Table 1 Agricultural drought severity by VHI (Source: 
Kogan 2001)

Level of severity VHI values

Extreme drought < 10

Severe drought 10–20

Moderate drought 200

Mild drought 30–40

No drought > 40
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Fig. 3 Multi-temporal trend of LST-NDVI, VCI-TCI, and VHI—rainfall 2001–2015. Lowlands area: a1–a3 Yalo, b1–b3 Megale, c1–c3 Gulina, Midlands 
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Fig. 4 Multi-temporal trend of LST-NDVI, VCI-TCI, and VHI—rainfall 2001–2015. Midlands area: g1–g3 HintaloWejirat, Highlands area: h1–h3 
Endamehoni, i1–i3 Ofla, j1–j3 Alaje, k1–k3 Gidan
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5 years from 2011 to 2015. During these periods, signifi-
cant effects on the livestock and humans were observed 
because the livelihoods of the communities are largely 
relying on the rearing of animals. Furthermore, the recur-
rence of agricultural drought in these two districts was 
once in every 1.36 years. Therefore, drought is a regular 
event in the area. Likewise, the rest of the study area was 
extensively affected by the agricultural drought. However, 
the impacts both on the livestock and on humans were 
diminishing due to the support of the federal and local 
governments and other non-government or humanitar-
ian organizations. For example, the drought-affected 

communities were supported and are still getting food 
aid (Cereals and Other) at monthly basis as per the FAO 
survival threshold. In the study area, the government is 
supporting about 2131 kilo calorie (kcal) per person per 
day and also supply pasture and drinking water in the 
highly drought affected areas.

Agro‑ecological based frequency of agricultural drought 
incidence
In this analysis, the VHI was considered as a basic 
parameter to declare the regularity of drought. Besides, 
the analyses were done based on the thresholds stated in 
Table  1. Kogan and Guo (2016) reported that the Horn 
of Africa (including the study area) was affected by 
droughts yearly. This study found that there are no dis-
tricts that were free from the incidence of agricultural 
drought in the last 15  years. The highest agricultural 
drought incidence, which covers about 4409.7  km2, was 
observed in the lowland area. The frequency of agricul-
tural drought event in these districts were 10–11 times in 
the last 15 years (Fig. 6). This means that drought is a reg-
ular event in the lowland area. The result is largely similar 
to what Kogan and Guo (2016) reported, but the return 
period is less in the highlands area (Fig.  6) and some 
parts of the midlands area. In the midland area (Raya 
Azebo, Alamata, Hintalo Wejirat, Kobo) the incidence is 
relatively lower and the area has been under the spell of 
drought for about 2–6 times covering about 6385  km2. 
However, in the highlands area, agricultural drought was 
occurred for about two times covering 3738  km2 in the 
last 15  years during the main rainy season. The return 
period of agricultural drought in this area is different due 
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Fig. 5 Average increase of LST in all districts of the study area from the period 2001–2015

Table 2 Analysis of agricultural drought onset (O), ces-
sation (C), duration (L), and recurrence interval (I) in the 
study area. Source: Gidey et al. (2017)

District O C L (year) I

Yalo and Gulina 2004 2009 6 1.36

2011 2015 5

Megale 2004 2006 3 1.5

2008 2009 2

2011 2015 5

Raya Azebo 2004 2004 1 2.5

2008 2009 1

2013 2015 3

Alamata 2009 2009 1 3

2013 2015 3

Hintalo Wejirat 2013 2015 3 5

Kobo, Endamehoni, Ofla, Alaje, Gidan 2013 2013 1 7.5

2015 2015 1
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to the various levels of moisture stress, rainfall deficit, 
and Land Surface Temperature conditions.

Analysis of the spatio‑temporal agricultural drought
Figure 7 shows that the study area was experiencing agri-
cultural drought during the period 2001–2015. The year 
2015 observed extreme drought period across the study 
area where the mean VHI value was less than 10 (Fig. 7). 
In this period, a catastrophic shortage of livestock for-
age, drinking water, and food occurred. Lei et al. (2016) 
suggested that exploring adaptation strategies to the 
expected increase in droughts incidence has become 
a critical issue of poverty reduction and agricultural 
sustainability. The impacts of drought can be reduced 
through involving the smalholder farmers and agro-pas-
toralists in a wide range of on- and off-farm practices.

Coefficient of variation (CV) analysis
Studies revealed that the coefficient of variation deter-
mined by the absolute dispersion of data relative to the 
mean and mainly expressed as a percentage. Analyzing 
the coefficient of variation is, therefore, useful to deter-
mine the statistical reliability and/or precision of estima-
tion. The highest coefficient of variation depicting the 
greater level of dispersion, while the lowest value of the 
coefficient of variation corresponds to good precision. 
This study, therefore, found very high precision of esti-
mation in all districts (Fig.  8). The overall coefficient of 
variation ranges from 6 to 20.7%. Hence, a higher (20.7%) 
degree of coefficient variation has reported in the dis-
tricts of Hintalo Wejirat, and lower in Ofla (8.6%). One of 

the possible reasons could be due to erratic rainfall dis-
tribution which increasing the seasonal rainfall variability 
among each district. This indicated that the coefficient of 
variation estimation was highly reliable as the maximum 
acceptable thresholds are below 29.9%.

Agricultural drought (VHI) response to the seasonal rainfall
This study found that the majority of the study area 
received below average seasonal rainfall, which can 
directly cause agricultural drought. The shortage of rain-
fall is thus the most important climatic constraint to the 
occurrence of agricultural drought. Figure  9 shows that 
how the agricultural drought (VHI) responded to the 
seasonal rainfall. Dutta et al. (2015) observed that a good 
agreement between the values of VCI and meteorologi-
cal indices [e.g., Rainfall Anomaly Index (RAI)] and Yield 
Anomaly Index in India. Wan et al. (2004) found a linear 
correlation between Vegetation Temperature Condition 
Index (VTCI), and monthly precipitation in the southern 
Great Plains, USA. However, in this study, the relatively 
strong relationship between VHI and rainfall  (R2 = 0.651, 
 R2 = 0.602) at p < 0.01 significance level in the districts of 
Megale (Fig. 9b), and Hintalo Wejirat (Fig. 9g) observed. 
Similarly, in the lowland area presented in Fig.  9 Yalo 
(b) and Gulina (c), an  R2 = 0.526 and 0.463 was also 
observed. Likewise, in midlands area shown in Fig. 9d–f 
an  R2 of 0.596,  R2 = 0.544, and  R2 = 0.516 were observed 
in the districts of Raya Azebo, Alamata, and Kobo. Fur-
thermore, in the highland area depicted under Fig. 9h–k 
an  R2 = 0.411, an  R2 = 0.383,  R2 = 0.398, and  R2 = 0.357 
was observed. However, in these area, the slightly poor 

Fig. 6 Agro-ecological based frequency of agricultural drought incidence from 2001 to 2015. L lowlands, M midlands, H highlands
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regression result was associated with several factors such 
as topography. The relationship between VHI and rainfall 
is statistically significant at (p < 0.01 and p < 0.05) across 
all districts of the study area. Moreover, the regression 
analysis results of this study indicated that agricultural 
drought (VHI) positively responded to rainfall. This 

reveals that when rainfall increases, VHI also tends to 
increase. As a result, agricultural drought incidences sig-
nificantly diminished. This study also demonstrated that 
the incident of agricultural drought was due to shortage 
of rainfall leading to high level of moisture stress.

Fig. 7 A Spatio-temporal agricultural drought severity by VHI in all districts of the study area
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Conclusions
Remote sensing and GIS-based agricultural drought can 
be better monitored by VHI composed of VCI and TCI 
drought indices. This study analyzed the onset, cessa-
tion, duration, recurrence interval, frequency, severity 
and spatial extent of agricultural drought using VHI at 
3-month time-scale during the main rainy season. NDVI 
value was extremely low in the lowland area than the 
mid and highlands area. NDVI coverage during the main 
rainy season decreased by 3–4% in all districts of the 
study area. However, LST showed a significant increase 
by 0.52–1.08  °C across all agro-ecologies as well as dis-
tricts in the last 15 years. LST was high both in the low-
land and midlands area and it is an unfavorable condition 
for the vegetation because it causes stress, while the low-
est LST is largely a favorable condition. The increase in 
LST and the decrease in NDVI may contribute consid-
erable moisture stress that can trigger the incidences of 
agricultural drought. Furthermore, the VHI and rainfall 
value diminished significantly during the main rainy 
season. This revealed that the incidence of agricultural 
drought became more frequent and severe, particularly 
in lowland and some parts of the mid and highlands area. 
There were no districts that were free from the incidence 

of agricultural drought during the study periods. A high 
frequency of agricultural drought incidence (10–11 
times) was observed in the lowland of the study area 
consisting of Yalo, Megale, and Gulina districts. The inci-
dence is relatively lower (2–6 times) in the midland area 
(Raya Azebo, Alamata, Hintalo Wejirat, Kobo). Further-
more, the study noted that the frequency of drought was 
very low in the highlands (Endamehoni, Ofla, Alaje, and 
Gidan) of the area. Both the lowland and midlands area 
were more exposed to the agricultural drought than the 
highland area. VHI model showed that the year 2015 was 
extremely drought period across the study area where the 
mean VHI value was less than ten. The overall coefficient 
of variation ranged from 6 to 20.7%. A higher (20.7%) 
coefficient variation was observed in Hintalo Wejirat, 
and lower in Ofla (8.6%). The relationship between rain-
fall and VHI is positive  (R2 = 0.357 to  R2 = 0.651) and 
statistically significant at (p < 0.01 and p < 0.05) across 
all districts of the study area. This relationship reveals 
that when rainfall increases, VHI also tends to increase. 
As a result, agricultural drought incidences significantly 
reduced. This study suggests that the effect of drought 
could be reduced through involving the smallholder 
farmers in a wide range of on- and off-farm practices. 
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The study may also support formulation and implemen-
tation of drought coping and mitigation programs in the 
study area.

Abbreviations
CV: Coefficient of Variation; LST: Land Surface Temperature; NDVI: Normalized 
Difference Vegetation Index; TCI: Temperature Condition Index; VCI: Vegetation 
Condition Index; VHI: Vegetation Health Index.
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