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Abstract 

Background:  Soil and water conservation (SWC) has been implemented in the Tigray Region of Ethiopia since 1985. 
Besides this, the agricultural development strategy of the region which was derived from the national agricultural 
development led industrialization strategy formulated in 1993 was focused on natural resources rehabilitation and 
conservations. Accordingly, each year a 20-days free labor work on SWC activities were contributed by the rural com-
munities. Other programmes such as productive safety net programmes, and sustainable land management project 
were deploying their resources aiming to reverse the degraded landscape in the region.

Method:  Multi-temporal remote sensing data of landsat imageries were used for estimating the normalized differ-
ence vegetation index, soil adjusted vegetation index (SAVI) and land surface temperature (LST) for the years 1985, 
2000 and 2015. Long-term station based data on daily precipitation started from 1973 was aggregated to derive aver-
age annual precipitation (AAP) into three sections to correspond with the processed image data. The precipitation 
data then converted into raster format using the inverse distance weight interpolation method. The analysis was done 
using ENVI 5.3 software and results were mapped in ArcGIS 10.3 package. The correlation between AAP and SAVI; LST 
and SAVI was evaluated on village polygon based as well as pixel-by-pixel.

Results:  The results based on village polygons show that there is statistical significant inverse relationship between 
SAVI and LST in all the study periods. The correlations between AAP and SAVI pixel-by-pixel were r = − 0.14 in 2015 
and r = 0.06, r = 0.25 for 2000 and 1985 respectively. In 1985, the total area with SAVI ≥ 0.2 was 23.57 km2. After 15 
years (from 1985 to 2000), the total area with SAVI ≥ 0.2 increased to 64.94 km2. In 2015, the total area of SAVI with 
values ≥ 0.2 reached 67.11 km2, which is a 3.3% increment from year 2000.

Conclusion:  Based on the field observation and the remote sensing analysis results, noticeable gain in vegetation 
cover improvement have been observed in the 30 years period. These improvements are attributable to the imple-
mentation of integrated SWC measures particularly in areas where exclosure areas were defined and protected by the 
local community. Therefore, this study concludes by providing a theoretical bases and an indicator data support for 
further research on vegetation restoration for the entire region.

Keywords:  Soil adjusted vegetation index, Soil and water conservation, Landsat, Land surface temperature, Middle 
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Background
Geographic information system (GIS) and remote sens-
ing (RS) have become fundamental tools for characteriz-
ing watersheds and landscapes. Remote sensing is one of 
the most widely used technologies for discerning effective 
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correlations of ecosystem properties via the reflectance of 
light in the spatial and spectral domain. Remote sensors, 
such as Landsat, SPOT, IKONOSs, MODIS and Quick-
bird, capture the reflectance from ground objects like 
vegetation which have their own unique spectral char-
acteristics. The spectral signatures of photosynthetically 
and non-photosynthetically active vegetation show clear 
differences and are used to estimate the forage quantity 
and quality of grass prairie (Beeri et al. 2007) and vegeta-
tion density. Moderate to high resolution data are being 
extensively used at varying scales from local to regional 
landscapes for assessment of the ecosystem processes 
(Chawla et al. 2010).

In this investigation, the relationships between SAVI 
and LST; SAVI and long term AAP was assessed in the 
years 1985, 2000 and 2015 for the Middle Suluh River 
Basin in northern Ethiopia, thereby providing useful 
information about the effects of soil and water conserva-
tion on vegetation cover improvement.

The method of LST–NDVI space with standard mete-
orological data, as well as remote sensing data were 
combined by Moran et  al. (1994), to estimate the water 
deficit index (WDI). However, the combination of SAVI 
and LST; NDVI and LST; SAVI and precipitation pixel-
by-pixel bases can provide information about vegetation 
and moisture condition of the Earth surface. The major 
information used was the wavelengths of the thermal 
region, the visible/NIR region and station records of rain-
fall, which were assumed to be satisfactory for monitor-
ing vegetation conditions.

Land degradation was a serious problem in the Tig-
ray Region with severe denudation of vegetation cover, 
depletion of soil fertility, and deterioration of surface and 
ground water potential (Berhanu et  al. 2003). In order 
to reduce the extent of such problems, substantial reha-
bilitation work has been done through SWC practices. 
Some studies claim that SWC practices in the Tigray 
Region were started between 1975–1991 during the Tig-
ray People’s Liberation Front (TPLF) movement with the 
effective mobilization of the rural communities (Carolyn 
and Kwadwo 2011). Another study by Esser et al. (2002) 
indicated that SWC was introduced with the assistance 
of donors, following the drought in Wello and Tigray 
in 1976. The agricultural development strategy of the 
region which was derived from the national Agricultural 
Development Led Industrialization (ADLI) strategy for-
mulated in 1993 (Dercon and Zeitlin 2009) was focused 
on the rehabilitation, conservation and development of 
natural resources, and is known as a conservation-based 
agricultural development policy (Berhanu et  al. 2003). 
As a policy emphasis, major strategies were designed 
in the region during the early 1990s for integrated soil 
and water conservation activities (Negusse et  al. 2013). 

Environmental rehabilitation practices such as estab-
lishment and development of area exclosures and com-
munity woodlots; construction of check-dams; stone 
terraces; soil bunds; enforcement of rules and regulations 
for grazing areas; application of manure and compost 
were then implemented throughout the region (Berhanu 
et al. 2003; Carolyn and Kwadwo 2011).

Based on the socio-economic survey of 246 sample 
household heads (HH) in the study area, the average 
number of years a farmer practiced SWC was 23  years. 
The large proportion of the interviewed HHs (95.5%) 
reported that there was a declining in soil erosion and an 
improvement in vegetation cover over the past years. A 
study conducted by Nyssen et al. (2009) in the northern 
highlands of Tigray shows that it is possible to reverse 
environmental degradation through an active, farmer-
centered SWC policy. Most of SWC focused studies 
conducted in northern Ethiopia looks at the effects to 
soil loss and run-off (Taye et  al. 2013; Gebremichael 
et  al. 2005; Selassie et  al. 2015) and food security (Van 
der Veen and Tagel 2011). From this perspective, we can 
quantify the vegetation cover improvement attributed to 
from the effects of SWC by using GIS and RS application 
in a basin which is not previously studied.

Methods
Study area description
The Middle Suluh River Basin is located in the north-
ern highland of Tigray Region, in Ethiopia. It covers a 
total area of 490 km2, and with an altitude ranging from 
1818 to 2744  m.a.s.l (Fig.  1). The study area consists 
of almost 28 lower administrative units, locally called 
“Tabia” which are situated in three districts, namely 
Kilte_Awulaelo, Saesie Tsaeda Emba and Hawzen. Out 

Fig. 1  Location and digital elevation model of Middle Suluh River 
Basin
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of the 28 tabias, only 15 tabias have over 50% of their 
territory within the Middle Suluh River Basin. Accord-
ing to Bizuneh (2014) cited in HTSL (1976) and WAP-
COS (2002), the Suluh Basin is mainly characterized by 
Precambrian basement rocks, Paleozoic, Mesozoic rocks 
and Younger tertiary and Quaternary deposits, with 
lithological units at the Precambrian basement, Enticho 
sandstone, Tillite, Adigrat sandstone, Transition, Meso-
zoic limestone, and Quaternary alluvial sediments. The 
major economic activity of the area is crop and livestock 
production. The Suluh  River flows from north to south 
dissecting the study area into two halves. Since the study 
area is dominated with sandstone, many youths were 
engaged in extracting sand from the river bed to gener-
ate income by selling them for construction purposes. 
Such activity is practiced after the month of August 

when the rainy season starts to end and run-off gradu-
ally deposits the sand on the river bed.

The study area is dominated by five soil types, namely 
Leptosol (37.6%), Luvisol (22.6%), Cambisol (22.8%), 
Regosol (14.7%) and Fluvisol (2.3%). The economy of the 
households was based on agricultural production, and is 
mainly dependent on rainfed agriculture. Some house-
hold’s practice small scale surface irrigation via micro 
dams and hand dug well water sources. According to 
FAO (2006) slope classification, 60% of the topography 
within the basin is flat to gently sloping and the remain-
ing 40% from strongly sloping to very steep. Based on 
altitude, temperature and precipitation parameters, 
the agro-ecology of the area is described as warm tem-
perate (Woina dega) zone (58%); and temperate (Dega) 
zone (42%). The mean annual rainfall from three stations 
around the study area for the period 2006–2015 was 
536 mm with uneven distribution and the mean annual 
temperature is 18.7 °C.

Normalized difference vegetation index
Many vegetation indices have been developed to assess 
vegetation conditions. Among them, the normalized dif-
ference vegetation index (NDVI), which was proposed by 
Rouse et al. (1973), is a numerical indicator that uses the 
visible and near-infrared bands of the electromagnetic 

Table 1  Landsat data used in the analysis and their speci-
fication

Satellite (sensor) Path/row Acquisition date Spatial resolution 
(m)

Landsat 5-TM 169/50 26 February 1985 30

Landsat TM-5 169/50 15 March 2000 30

Landsat 8 (OLI) 169/50 13 February 2015 30

Fig. 2  NDVI results of Middle Suluh River Basin for 1985, 2000 and 2015
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spectrum to analyze whether the target area contains 
live green vegetation or not. Healthy vegetation absorbs 
most of the visible light that falls on it, thereby reflecting 
a large portion of the NIR.

As listed in Table  1, all the Landsat images were 
obtained from United States Geological Survey (USGS), 
http://earthexplorer.usgs.gov and were analyzed and pre-
sented using ENVI 5.3 and ArcGIS 10.3 to classify the 
vegetation density in terms of NDVI and SAVI in the 
study area.

Figure  2 shows the spatial distribution of normalized 
difference vegetation index (NDVI) for the Middle Suluh 
River Basin based on comparison of Landsat images at 
three times (26 February 1985, 15 March 2000 and 13 
February 2015). The provided dates offer the best cloud 
free moments after the harvest season so that the extrac-
tion of reflectance just from vegetation cover is possible 
which is appropriate to fetch the required data. The nor-
malized difference vegetation index (NDVI) is one of the 
standardized indices that uses the combination of the 
red (0.63–0.69 µm) reflectance and near infrared (0.76–
0.90  µm) reflectance of the electromagnetic spectrum 
and defined as: 

The NDVI value falls between −  1 and +  1, where 
increasing positive values indicate increasing green veg-
etation and negative values indicate non-vegetated sur-
face features such as water, barren land, ice, snow, or 
clouds (Sahebjalal and Dashtekian 2013). The NDVI of 
1985 indicates that there was more vegetation cover in 
the northern part than in the middle and southern part 
of the study area. However, in 2000, the density of green-
ness radically decreased in the northern part while it 
improved towards the southern section of the study area. 
In 2015, the density of greenness showed a dramatic 
increase in the southern part where parts of Kilte Awu-
laelo district is located (Fig. 2). During field observation, 
it was learned that in this part of the valley free grazing 
was prohibited by community agreed by-laws.

Retrieval of LST from Landsat images
Conversion of DN values into radiance
All Landsat TM bands are quantized in 8-bit data for-
mat. Hence, these data are recorded in the form of digital 
numbers (DN) ranging between 0 and 255. By extract-
ing some important information from the metadata, the 
conversion from DNs to top of atmospheric (ToA) reflec-
tance for the TM band requires using a two-step process. 
On the other hand, the Landsat 8 OLI sensor is more 
sensitive so the raw data are rescaled into 16-bit DNs 
with a range from 0 and 65,536, requiring its conversion 

(1)NDVI =
NIR− R

NIR+ R

in a single step. Finally, for any of the bands, the reflec-
tance values range from 0.0 to 1.0 and are stored in float-
ing point data format. However, in this study ENVI 5.3 
software was used for all bands (TM and OLI) to convert 
the DN values into reflectance using the reflectance tool 
under the radiometric calibration (RC) toolbox. First, 
these data were converted into radiance values using the 
NASA (2009), Chander et al. (2009). 

where, Lλ: spectral radiance at the sensor’s aperture 
in watts/(meter squared  *  ster  *  μm); QCAL: the quan-
tized calibrated pixel value in DN; LMAXλ: the spec-
tral radiance scaled to QCALMAX in watts/(meter/
squared * ster * μm); LMAXλ: the spectral radiance scaled 
to QCALMAX in watts/(meter/squared  *  ster  *  μm); 
QCALMIN: the minimum quantized calibrated pixel 
value (typically 0 or 1); QCALMAX: the maximum quan-
tized calibrated pixel value (typically = 255).

Conversion of radiance to brightness
Spectral band brightness temperature (BT) is the temper-
ature a blackbody needs to have to emit a specified radi-
ance for a given sensor band (Berk 2008). By applying the 
inverse of the Planck function, thermal bands’ radiance 
values were converted into brightness temperature values 
using the following equation (Chander et al. 2009). 

where, T: at-satellite brightness temperature (K); Lλ: TOA 
spectral radiance (watts/(m2  *  srad  *  μm)); K1: band-
specific thermal conversion constant from the metadata 
(K1_CONSTANT_BAND_x, where x is the thermal band 
number); K2: band-specific thermal conversion constant 
from the metadata (K2_CONSTANT_BAND_x, where x 
is the thermal band number).

Conversion of radiance to reflectance
By converting the spectral radiance to planetary reflec-
tance, or albedo, a reduction in between-scene variability 
can be achieved through normalization for solar irradi-
ance. Radiances are converted to reflectance using the 
Sun zenith angle cosine interpolated at the pixel and the 
Sun spectral flux. The combined surface and atmospheric 
reflectance of the Earth is computed with the equa-
tion recommended by Chander et al. (2009). 

(2)
L� =

(

(LMAX� − LMIN�)

(QCALMAX − QCALMIN )

)

∗ (QCAL− QCALMIN )+ LMIN�

(3)
K2

T = ln
(

K1
L� + 1

)

(4)ρp =
π · L� · d

2

ESUN� · cos θS

http://earthexplorer.usgs.gov
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where, ρλ: unit less planetary reflectance; Lλ: spectral 
radiance (from earlier step); d: Earth–Sun distance in 
astronomical unit; ESUNλ: mean solar exo-atmospheric 
irradiances; θs: solar zenith angle.

Estimating proportion of vegetation and emissivity
In this study, the semi-automatic classification plug inte-
grated with open source GIS package (QGIS 2.18) was 
used for image acquisition, pre-processing and deriving 
brightness temperature to be used for final LST compu-
tation. Land surface emissivity is an average emissivity 
of an element of the surface of the Earth calculated from 
measured radiance and land surface temperature (LST). 
In order to calculate land surface emissivity, understand-
ing the proportion of vegetation or vegetation fraction 
from the NDVI output is essential. Carlson and Ripley 
(1997) defined the proportion of vegetation with the fol-
lowing equation:

where, NDVImin, and NDVImax, correspond to the values 
of NDVI minimum and NDVI maximum in an image, 
respectively. Sobrino and Raissouni (2000) and Valor 
and Caselles (1996) used different approaches to pre-
dict land surface emissivity from NDVI values. Sobrino 
et al. (2004) have developed a better equation to compute 
the land surface emissivity using the mean value for the 
emissivity of soils included in the ASTER spectral library 
(http://asterweb.jpl.nasa.gov) as indicated below:

Weng (2009) noted that emissivity for ground objects 
from passive sensors like Landsat has been estimated 
using different techniques such as the (1) NDVI method; 
(2) classification-based estimation, and the (3) tempera-
ture-emissivity separation model. These techniques are 
applicable to separate temperature from emissivity, so 
that the effect of emissivity on estimated LST’s can be 
determined. Hence for this study, Eq. (6) shows that sur-
face emissivity on pixel based remote sensing is derived 
using the NDVI method in conjunction with propor-
tional vegetation (Pv) cover (Valor and Caselles 1996).

LST is very important not only for soil development 
and erosion studies, but also to estimate amounts of veg-
etative cover and land cover changes (Li et al. 2013). This 
is because the natural phenomena on the Earth’s surface 
have no homogeneous characteristics in terms of land 
surface emissivity. It is true that surface emissivity is 
highly dependent on the type of vegetation cover, rough-
ness of the topography and soil and mineral composition 
of the Earth surface.

(5)Pv =

(

NDVI − NDVImin

NDVImax − NDVImin

)2

(6)εmmisivity = 0.004Pv + 0.986

Using this approach, the land surface emissivity of the 
three Landsat images (1985, 2000 and 2015) were calcu-
lated for further computation of land surface temperature 
(LST) of the study area. The LST results are all in degree 
celsius. For Landsat 5 (year 1985) and Landsat 7 ETM+ 
(year 2000), band 6 was used from the Thermal Infrared 
Sensor. For Landsat 8 OLI (year 2015), bands 10 and 11 
from the thermal infrared sensor (TIRS) were also used. 
The land surface temperature (LST) is the radiative skin 
temperature of the ground which depends on albedo, 
vegetation cover and soil moisture of the land surface 
(Suresh et al. 2016).

Land surface temperature (LST)
A series of satellite and airborne sensors have been devel-
oped to collect TIR data from the land surface, such as 
Landsat TM/ETM+/OLI, AVHRR, MODIS, ASTER, and 
TIMS (Al-doski et  al. 2013; Weng 2009). The measure-
ment of LST could be affected by the differences in tem-
perature between the ground and vegetation cover. The 
brightness temperatures from TM band 6 thermal for the 
years 1985 and 2000 Landsat images, OLI band 10 and 11 
for year 2015 Landsat image were used to calculate the 
emissivity corrected LST using Eq. (7), as used in Sobrino 
et al. (2004), Weng et al. (2004) and Yue et al. (2007).

where, LST: land surface temperature; BT: at-sensor 
brightness temperature (K); P: 14,380; W: wavelength 
of emitted radiance (11.5 µm); Ln(e): log of the spectral 
emissivity value.

Soil adjusted vegetation index
The spectral reflectance of plant canopy is a combination 
of the reflectance spectra of plant and soil components 
(Rondeaux et  al. 1996) which makes researchers inter-
ested to develop new indices like SAVI. This index is a 
measure of healthy, green vegetation which is similar to 
NDVI, but it suppresses the effects of soil pixels. The nota-
ble improvement of this index by Huete (1988) led again 
to further development of transformed soil adjusted vege-
tation index by Baret and Guyot (1991). The soil-adjusted 
vegetation index was developed to correct the influence 
of soil brightness when vegetative cover is low. According 
to Huete (1988), L is assumed a correction factor and its 
value is dependent on the vegetation cover. Total vegeta-
tion cover that receives a value of zero, it effectively turns 
SAVI into NDVI. For very low vegetation cover, it receives 
the value of 1. In this manner, Huete developed a three 
point adjustments as optimal for the L constant (L = 1 for 
low vegetation densities; L = 0.5 for inter-mediate vegeta-
tion densities; L =  0.25 for higher densities). In support 
this, Aboelghar et al. (2014) and Badreldin and Goossens 

(7)LST = BT
/

(1+W ∗ (BT/P) ∗ ln(e))

http://asterweb.jpl.nasa.gov


Page 6 of 16Hishe et al. Environ Syst Res  (2017) 6:26 

(2015) argued that L  =  0.5 successfully minimizes the 
impact of soil variations in green vegetation compared to 
NDVI. Hence, for the purpose of this study, we used 0.5 to 
represent intermediate vegetation cover in such semi-arid 
environment using the following equation:

The AAP was computed for long-term seven gauge sta-
tions distributed within and outside the study area from 
1973 to 2015. Using the spatial analyst tool in ArcGIS, 
inverse distance weight (IDW) interpolation technique 
was employed to generate a surface of mean precipita-
tion on pixel basis. These data were then used for fur-
ther regression analysis to examine relationships with the 
SAVI results.

Results and discussion
Interpretation of AAP distribution and SAVI
For better understanding of the SAVI, LST and AAP pat-
tern and relationships in the study area, the computed 
results were displayed simultaneously in ArcGIS 10.3. 
The figures highlight a visual illustration of the spatial 
pattern of thermal environment, vegetation cover and 
long term AAP distribution in the study area. The spatial 
distribution of the highest averages of annual precipita-
tion (Fig. 3 on top) increased from 756 mm in 1973–1985 
to 857 mm in 1986–2000 period. As we can observe from 
Fig. 3, the spatial coverage’s of extensive precipitation in 
the study area was observed in the period of 1986–2000. 
In this period, the less extensive coverage’s of precipi-
tation is observed in the western part of the study area 
in part of Hawzen district. The highest AAP has again 
decreased from 856  mm in 1986–2000 to 621  mm in 
2001–2015. In the last period, extensive part of the study 
area received low AAP compared to the periods in 1973–
1985 and 1986–2000 (Fig. 3 top).

From Fig. 3 (bottom) it can be revealed that there was 
high density of SAVI coverage in 1985 mainly in the 
northern part of the study area. This area was character-
ized with more of flat topography covered with grasses 
and gradually converted into agricultural lands. In the 
middle part where there is more exposed granitic rocks 
at the ground shows less density of SAVI while it slightly 
increases in the southern part. After 15 years in 2000, the 
SAVI distribution shows low density throughout, while 
it shows a relatively increase in the southern part of the 
study area. In 2015, the highest density of SAVI was dis-
tributed in the southern part of the study area (Fig.  3, 
bottom) where high vegetation restoration was observed 
during conducting the fieldwork assessment. During the 
discussion made with the village administrators and agri-
cultural development agents, they have agreed that the 

(8)SAVI =
(NIR− R)

(NIR+ R+ 1)
∗ (1+ L)

improvement is in the effect of community based SWC 
activities. One of the villages located in the study area 
called Abraha Atsibaha was evidenced as winner of the 
2012 UNDP Equator Prize at Rio de Janeiro in recogni-
tion of outstanding success to restoration of degraded 
landscape through SWC practices (Kahsai 2015).

The soil and water conservation practices implemented 
in the study area have thus resulted in a better restora-
tion of the natural environment. Figure  5a shows the 
degraded and heavy gully formation in Kilte Awulaelo 
district, Abraha Atsibaha village in 2006. After inten-
sive intervention of community based SWC practices on 
the hillside (Fig.  5c), the degraded landscape started to 
recover its vegetation density (Fig. 5b). The mean SAVI of 
this specific village shows significant increment from 0.16 
in 1985 to 0.18 in 2000 and reached 0.19 in 2015 (Fig. 4). 
Places like Frewyni town have shown declines in SAVI 
since 1985 for its conversion of land into urban functions 
(Fig.  4). In most of the properly conserved areas, farm-
ers benefited directly or indirectly from the conserved 
resources. For example, Fig. 5d shows a good structured 
communal well recharged underground water and used 
for irrigation of nearby farmlands. 

Similarly in Fig. 5e, a woman is harvesting grass from the 
area exclosure for cattle feed. In Abraha Atsibaha and May 
Kuha villages where the highest mean SAVI values are 
observed, free grazing was seriously restricted. Farmers 
have set their own communal resource use bylaw locally 
called “Sirit”, and practically implemented it in the area. 
Therefore, zero grazing was used as the most beneficial 
land rehabilitation mechanism and farmers are allowed to 
harvest grasses without limit from all area exclosures, hill-
side terraces and other protected areas. Park et al. (2013) 
addressed that area exclosure is one of SWC practice con-
sidered a well-known management tool to restore vegeta-
tion cover and in turn increase soil organic matter.

In order to assess the increment of vegetation cover, 
only SAVI values ≥ 0.2 were extracted as recommended 
by experts (see at https://phenology.cr.usgs.gov/ndvi_
foundation.php). The result in Fig. 6 shows that in 1985, 
the total land area with SAVI ≥ 0.2 was 23.57 km2. After 
15  years (2000), the total area covered with vegetation 
amounting SAVI ≥ 0.2 increased to 64.94 km2, which is 
over a twofold increase from the 1985 SAVI. In 2015, the 
total area with a SAVI value of ≥ 0.2 reached 67.11 km2 
(Fig.  6), which shows a 3.3% increment from year 2000 
value. These changes are attributable to the soil and water 
conservation interventions guided by the environmental 
rehabilitation strategy of the Regional State of Tigray.

In general, the average annual increment rate observed 
over a period of 30  years (1985–2015), using SAVI 
image, was 6.2%. The vigorous SWC activities performed 
throughout country are also evidenced by EBI (2014) for 

https://phenology.cr.usgs.gov/ndvi_foundation.php
https://phenology.cr.usgs.gov/ndvi_foundation.php
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the rehabilitation and restoration of degraded areas. This 
resulted in increased vegetation cover and enhancement 
of biodiversity.

Interpretation of LST and SAVI
Maximum LST has reduced from 42.2  °C in 1985 to 
36.7 °C in 2015. This could be due to the improvement in 

Fig. 3  IDW interpolation of average annual precipitation (top) and SAVI (bottom) for 1985, 2000, and 2015
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the surface vegetation cover. Similar studies by Alshaikh 
(2015) and Sun et al. (2012) revealed that areas with rich 
vegetation cover have characterized by lowest LST. In 
Fig. 7 (top), the lowest LST distribution was also mainly 
observed in areas indicated by fairly high AAP in Saesie 
Tsaeda Emba district. In 2000 and 2015, the lowest LST 
were found in areas where more vegetation cover was 
observed in the southern part of the study area.

Relationship of NDVI with LST and vegetation abundance
The concept of LST–NDVI space was first formulated by 
Lambin and Ehrlich (1996) with LST plotted as a func-
tion of NDVI. As indicated in Fig. 8, modified by Sand-
holt et al. (2002), the left edge represents bare soil from 
dry to wet (top–down) range. Along the X-axis, as the 
amount of green vegetation increases, the NDVI value 
also increases and inversely the maximum LST decreases. 
As indicated in Fig. 8 for the dry conditions, the negative 
relationship between LST and NDVI is defined by the 
upper edge, which is the upper limit of LST for a given 
type of surface and climatic conditions (Sandholt et  al. 
2002).

The relationship between NDVI and LST was inves-
tigated for each period (1985, 2000, and 2015) through 
regression analysis. The regression was performed from 
the mean values extracted in the zonal statistics in Arc-
GIS. Within the study river basin, there are 28 tabias sit-
uated some fully and some partially within the boundary.

A regression of NDVI_2015 as a dependent and 
LST_2015 as an independent variable was carried out. 
The linear regression established between LST_2015 and 
NDVI_2015 was statistically significantly (p < 0.05). The 
regression model indicates that 18.31% of the variation 

in mean NDVI_2015 was explained by the LST_2015 
(Fig.  9a). The regression equation was modelled as 
NDVI_2015 = 0.615 − 0.013 LST_2015. The result shows 
that there is significant inverse correlation between 
NDVI and LST in all the periods (Fig. 9a–c; Table 2). 

Similarly, a regression of NDVI in 2000 as depend-
ent and LST in 2000 as an independent variables was 
carried out. The linear regression established shows 
that LST is statistically inversely significantly pre-
dicted NDVI, F(1,26)  =  18.21, p  <  0.0005, (=  0.000) 
and LST accounted for 64% of the explained variabil-
ity in NDVI. The regression equation was expressed as 
NDVI_2000 = 0.557 − 0.01 LST_2000 (Table 2).

For 1985, a linear regression was run to predict NDVI 
in Landsat images from LST of similar period. The inde-
pendent variable (LST) has statistically significantly pre-
dicted NDVI, F(1,26) =  8.6, p  <  0.05, R2 =  0.249. The 
LST accounted for 22.9% of the explained variability 
in NDVI. The regression equation has been derived as 
NDVI_1985 = 0.375 − 0. 005 LST_1985 (Fig. 9c).

As Evans (1996) suggested for the value of r, the Pear-
son correlation coefficient in 2000 shows a strong cor-
relation between NDVI and LST (Table  2). In the year 
1985 and 2015, the correlation coefficient was clas-
sified as a moderate correlation between NDVI and 
LST. Similar results were attributed for the relationship 
between NDVI and LST by Yue et al. (2007) using Land-
sat 7 ETM+ data in Shanghai, and by Sahana et al. (2016) 
using Landsat 5 TM and Landsat 8 OLI in the Sundarban 
Biosphere Reserve, India; Karnieli et al. (2010).

Relationship of SAVI with LST using village polygons
The different SWC measures applied in the study area 
have also significance to the improvement of vegetation 
cover. In order to detect the vegetation cover dynam-
ics, a SAVI model formulated by Huete (1988) was pre-
ferred. This model best fits for a semi-arid environment 
to reduce the afterward influence of soil in considering 
soil coefficient of 0.5. Likewise for 1985, 2000, and 2015 
(Fig. 10), SAVI was computed from Landsat images taken 
in the months of February and March and its relationship 
with LST was compared.

Accordingly, a regression of SAVI in 1985 as a depend-
ent and LST in 1985 as an independent variable was 
carried out to see the relationship. The linear regres-
sion established shows that LST is statistically inversely 
significant predicted SAVI, F(1,26)  =  10.3, p  <  0.005, 
(= 0.004) and LST accounted for 28.3% of the explained 
variability in SAVI. The regression equation was derived 
as SAVI_1985 = 0.275 − 0.004 LST_1985.

Likewise, a simple linear regression was conducted to 
exhibit the relationship between SAVI and LST for every 
village polygons in the year 2000. The results are shown 

Fig. 4  Mean SAVI distribution in the village polygons in 1985, 2000 
and 2015
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in Table 2 where Y is the mean SAVI associated with the 
village polygons and X is LST associated with the vil-
lage polygons constructed under zonal statistics in Arc-
GIS software. The result indicates that at 95% confidence 

interval, LST is statistically significant predicted SAVI, 
F(1,26) = 9.06, p < 0.05, (= 0.006) and LST accounted for 
25.8% of the explained variability in SAVI. The regression 

Fig. 5  Rehabilitation of degraded landscape and its benefit to local farmers. a Heavy gully observed in 2006 from google Earth (Kilte Awulaelo 
district, village Abraha Atsibaha); b restored gulley in 2016 photo from google Earth (Kilte Awulaelo district, village Abraha Atsibaha); c conserved 
hillside (Kilte Awulaelo district, village Abraha Atsibaha, photo: researcher); d ground water harvesting at the bottom of the hill (Hawzen district, 
Hayelom village, photo: Hawzen district office of agriculture and rural development (HDOARD); e a woman harvesting grass in area exclosure 
(Kilte Awulaelo district, Abraha Atsibaha, photo: researcher); f potato harvesting from irrigated land (Saesie Tsaeda Emba district, Saz village, photo: 
researcher)
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equation was presented as SAVI_2000 =  0.282 −  0.003 
LST_2000.

The relationship between SAVI and LST for the period 
of 2015 was also computed. The significant regres-
sion was checked through a t-test α =  0.05. The result 
revealed that there was not statistically significant pre-
dicted SAVI, F(1,26) = 2.67, p > 0.05, (= 0.114) and LST 
accounted for only 5.83% of the explained variability 
in SAVI which is relatively lower than in the year 1985 
and 2000. The fitted line plot for the linear model was 
SAVI_2015 =  0.279 −  0.004 LST_2015. Like the NDVI 
and LST relationship tested previously, SAVI also exhib-
ited an inverse relationship with LST. This was similar 
with the result found by Badreldin and Goossens (2015) 
who studied for monitoring mitigation strategies effects 
on desertification change in an arid environment. This 
means that areas with high vegetation density are repre-
sented with a low surface temperature and vice versa.

With the Pearson’s correlation classes suggested by 
Evans (1996) there was negatively weak relationship 
between SAVI and LST in 2015 and where as in the year 
1985 and 2000, a negatively moderate relationship was 
observed (Fig. 10a–c; Table 2).

Relationships between SAVI and LST; SAVI and AAP pixel 
by pixel
SAVI as a measure of vegetation restoration was com-
puted to test the relationship with LST and AAP pixel-
by-pixel. Table  3 shows that the Pearson’s correlation 
coefficients between SAVI and AAP; SAVI and LST over 
the years 1985, 2000 and 2015. It is evident from Fig. 10 
that LST values tend to negatively correlate with SAVI 
values for all study periods. The highest negatively corre-
lation (− 0.359) was found in the year 2000 and the lower 
negatively correlation (− 0.102) was observed in the year 
1985 (Table  3). According to Evans (1996) correlation 

strength classification, in years 2000 and 2015, the rela-
tionship between SAVI and LST shows negatively weak 
correlation and whereas in 1985 was negatively very weak 
correlation. The negative correlation between LST and 
SAVI implies that areas with lower biomass of the vegeta-
tion have higher LST and vice versa. The combination of 
LST and SAVI by scatterplot results in a triangular shape 
like LST and NDVI as described by other scholars (see 
for example Carlson et al. (1994); Gillies et al. (1997); Gil-
lies and Carlson (1995); Weng et al. (2004)).

All the models are statistically significant (p < 0.05) and 
the pixel based samples were large enough (n = 544365) 
to obtain a precise estimate of the strength of the rela-
tionship. In the year 2015 the previously observed high-
est vegetation density indicated with 1.8% of the variation 
can be accounted for by the regression model (Fig. 11a). 
A significant negative correlation (r = − 0.135; p < 0.05) 
was found between the pixel based mean SAVI and 
pixel based AAP, which indicates that as AAP in 2015 
decreases, SAVI 2015 tends to increase. On the contrary, 
the very weak positive correlation (r = 0.057; r = 0.252) 
in the year 2000 and 1985 respectively indicates that 
when APP increases, SAVI also tends to increases to 
some extent (Table 3).

However, the significant increase of vegetation density 
in the study area could be due to other factors: (1) effect 
of appropriate SWC practices implemented to rehabili-
tate the degraded landscape; (2) vegetation water use effi-
ciency; (3) the impact of zero grazing for protection of 
area exclosure. In a Reuters news report written by Whit-
ing (2017) as cited from Chris Reij, desertification expert 
at the World Resources Institute, addresses that the Tig-
ray Region of Ethiopia is now greener than it has ever 
been during the last 145  years and the improvement of 
the vegetation cover is not due to an increase in rainfall, 
but due to human investment in restoring degraded land 
to productivity. For this reason, Ethiopia’s Tigray Region 
won gold in a U.N.-backed award in 2017 for the world’s 
best policies to combat desertification and improve fertil-
ity of dry lands (Whiting 2017). Davenport and Nichol-
son (1993) observed the notable inconsistencies in the 
vegetation index and rainfall associations that argued the 
relationships between precipitation and NDVI are not 
direct and causal. Contrarily, Kassie et al. (2008) argued 
that physical-based SWC measures did not have a posi-
tive impact but reduced yield and biomass in the high-
rainfall areas of the Ethiopian highlands compared with 
non-conserved plots.

Conclusions
Studies revealed that SWC has been implemented in 
the Tigray Region, of northern Ethiopia since 1985. 
The implementation was more effective from the early 

Fig. 6  SAVI area coverage in 1985, 2000, and 2015
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90s due to the more emphasis given by the government 
towards land rehabilitation. The implementation of 
SWC in the region as a strategy was to reduce run-off, 

improve soil fertility and finally reverse the degraded 
landscape for the betterment of the rural livelihood. This 
study evaluated changes in vegetation cover following 

Fig. 7  LST results for 1985, 2000 and 2015 (top); SAVI results for 1985, 2000, and 2015 (bottom)
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the implementation of SWC measures. Satellite images 
were used to generate SAVI and LST, whereas long-term 
AAP records were also used to account for the effects of 
precipitation. The implementation of different forms of 
SWC activities, such as area exclosure, stone terraces, 
soil bunds, contour ditches, moisture retention reser-
voirs and check dams are an optimal solution to reverse 
the vegetation degraded landscape of arid and semi-arid 
regions in Ethiopia. The supplemental survey made in the 
study area asserts that 95% of the respondents observed 
a vegetation cover improvement in their locality over the 
last 25  years. This was due to the proper implementa-
tion of SWC, particularly the practice of area exclosure 
in protecting from human and livestock interference for 
better restoration. When degraded landscape protected 

Fig. 8  Simplified LST/NDVI (Reproduced with permission from Lam-
bin and Ehrlich 1996; Sandholt et al. 2002)

Fig. 9  The mean LST and SAVI relationship over years 1985, 2000 and 2015 at village polygons. a regression plot between mean NDVI of 2015 and 
mean LST of 2015; b regression plot between NDVI of 2000 and mean LST of 2000; and c regression plot between NDVI of 1985 and LST of 1985 (all 
at village polygons)
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Table 2  Linear regression and correlation coefficients for the relationship between LST and SAVI in 1985, 2000, and 2015

SAVI soil adjusted vegetation index, LST land surface temperature, NDVI normalized difference vegetation index

Dependent variable Independent variable Regression equation R2 (%) R2 adjusted r Sig.

NDVI_2015 LST_2015 Y = 0.615 − 0.013x 21.3 18.31 − 0.46 0.013

NDVI_2000 LST_2000 Y = 0.557 − 0.010x 41.2 38.92 − 0.64 0.000

NDVI_1985 LST_1985 Y = 0.375 − 0.005x 24.9 21.97 − 0.50 0.007

SAVI_2015 LST_2015 Y = 0.275 − 0.004x 9.3 5.83 − 0.31 0.114

SAVI_2000 LST_2000 Y = 0.282 − 0.003x 25.8 22.99 − 0.51 0.006

SAVI_1985 LST_1985 Y = 0.275 − 0.004x 28.3 25.53 − 0.53 0.004

Fig. 10  Linear regression of mean SAVI and mean LST by village’s polygon over years 1985, 2000, and 2015. a regression plot of mean SAVI 2015 
and mean LST 2015; b  regression plot between mean SAVI of 2000 and LST of 2000; and c regression plot of mean SAVI 1985 and mean LST 
1985 (all at village polygon)
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with different SWC practices, run-off will reduce, infiltra-
tion capacity will increase, which retain soil moisture and 
finally improve vegetation density. In order to achieve 
such results, the involvement of local communities at all 
processes in the conservation program is essential. On 
this matter, Bewket (2007) argued that the success of any 

SWC intervention depends on the extent to which the 
introduced conservation technologies are accepted and 
adopted by the farmers.

The pixel-by-pixel correlation between SAVI and 
long-term AAP explained better estimates as compared 
to the village polygon results. Even though the AAP 

Table 3  Linear regression and correlation coefficients for the relationship between SAVI and LST; SAVI and AAP in 1985, 
2000, and 2015 pixel-by-pixel

a  Average annual precipitation for 2015
b  Average annual precipitation for 2000
c  Average annual precipitation for 1985

Dependent variable Independent variable Regression equation R2 (%) R r Sig.

SAVI_2015 LST_2015 Y = 0.331 − 0.0057x 7.2 0.269 − 0.269 0.000

SAVI_2000 LST_2000 Y = 0.352 − 0.0052x 12.9 0.359 − 0.359 0.000

SAVI_1985 LST_1985 Y = 0.193 − 0.0011x 1.0 0.102 − 0.102 0.000

SAVI_2015 AAPa Y = 0.287 − 0.0002x 1.8 0.135 − 0.135 0.000

SAVI_2000 AAPb Y = 0.138 − 0.00004x 0.3 0.057 0.057 0.000

SAVI_1985 AAPc Y = 0.051 − 0.0002x 6.4 0.252 0.252 0.000

Fig. 11  Scatter plot of linear regression model between SAVI and AAP in 1985, 2000 and 2000 pixel-by-pixel. a regression plot of SAVI 2015 and 
AAP 2015; b regression plot of SAVI 2000 and AAP 2000; and c regression plot of SAVI 1985 and AAP 1985 (all pixel-by-pixel).
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distribution shows a declining trend over the 30  years 
of study period, the vegetation cover shows an increas-
ing trend. This was proved statistical inversely signifi-
cant correlation between SAVI and AAP (r = − 0.135) in 
the year 2015. This clearly indicates that the significant 
increase in vegetation cover was not the result of pre-
cipitation rather other factors like the integrated SWC 
practices applied in the area contributes significantly. 
When appropriate SWC techniques were applied, run-
off can be reduced and instead the infiltration rate and 
water holding capacity of the soil can be improved. To 
assert such a result, similar studies shall be done in other 
SWC practiced areas and their results will be compared 
for a better conclusion.

It is recommended that the implementation, protec-
tion and follow-up of SWC activities require the direct 
involvement of rural communities at all stages for the 
better and sustainable restoration of vegetation cover. 
The study has shown that SAVI and LST derived from 
Landsat images in different periods, and AAP of long-
term station measurements are useful data when analyz-
ing the relationship between precipitation and vegetation 
cover and detecting vegetation cover improvement.
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