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Abstract 

Background:  The primary reason to study summer monsoon (long rain season) all over Ethiopia was due to the 
atmospheric circulation displays a spectacular annual cycle of rainfall in which more than 80 % of the annual rain 
comes during the summer season comprised of the months June–September. Any minor change in rainfall intensity 
from the normal conditions imposes a severe challenge on the rural people since its main livelihood is agriculture 
which mostly relies on summer monsoon. This research work, entitled, ‘The outlook of Ethiopian long rain season from 
the global circulation model’ has been conducted to fill such knowledge gaps of the target population. The objectives 
of the research were to examine the global circulation model output data and its outlooks over Ethiopian summer. 
To attain this specific objective, global circulation model output data were used. These data were analyzed by using 
Xcon, Matlab and grid analysis and display system computer software programs.

Results:  The results revealed that Ethiopian summer rainfall (long rain season) has been declined by 70.51 mm in 
the past four decades (1971–2010); while the best performed models having similar trends to the historical observed 
rainfall data analysis predicted that the future summer mean rainfall amount will decline by about 60.07 mm (model 
cccma) and 89.45 mm (model bccr).

Conclusions:  To conclude, the legislative bodies and development planners should design strategies and plans by 
taking into account impacts of declining summer rainfall on rural livelihoods.
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Background
Ethiopia presents a particularly difficult test for climate 
models. The central part of Ethiopia is dominated by 
highland plateaus, which split the country into two cli-
matically (Mikko et al. 2009). The south and east, the land 
is semi-arid and the rain falls in two short spells either 
side of the dry season of summer (June–August). The 
north and west, the vegetation is more bush, and sum-
mer is the major rainy season (Gulilat et  al. 2008). This 
split in the geographical distribution of rainfall, and the 
different seasonal cycles in different regions of Ethiopia 
make the task of simulating Ethiopian rainfall extremely 
challenging. Furthermore, climate models need to be able 
to capture the processes that influence the year to year 
(inter-annual) variability of Ethiopian rainfall. Variations 

of El Nino, the Indian monsoon and the position of the 
African easterly jet, all influence the rainfall over Ethiopia 
(Gulilat et al. 2008).

Disentangling these remote influences on the climate 
characteristics of Ethiopia and properly simulating in a 
climate model is a remarkably difficult task (Gulilat et al. 
2008). Seasonal rainfall in Ethiopia is driven mainly by the 
migration of the inter-tropical convergence zone (ITCZ). 
Most parts of Ethiopia have experienced one main wet 
season (called Kiremt) from mid‐June to mid‐September 
(up to 350 mm per month in the wettest regions), when 
the ITCZ is in its northern‐most position (Gulilat et  al. 
2008). Parts of northern and central Ethiopia also have 
a secondary wet season of sporadic, and considerably 
lesser, rainfall from February to May (called Belg).

The southern regions of Ethiopia experience two dis-
tinct wet seasons which occur as the ITCZ passes through 
this more southern position (March–May) Belg season is 
the main rainfall season, yielding 100–200 mm monthly, 
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followed by a lesser rainfall season in October to Decem-
ber called Bega (around 100 mm per month) (world bank 
2010). The eastern most corner of Ethiopia receives very 
little rainfall at any time of the year. The movements of 
the ITCZ are sensitive to variations in Indian Ocean sea‐
surface temperatures and vary from year to year, as the 
onset and duration of the rainfall seasons vary consider-
ably inter-annually, causing frequent drought. Accord-
ing to Gulilat et  al. (2008), the most well documented 
causes of this variability is the El Niño southern oscilla-
tion (ENSO). Warm phases of ENSO (El Niño) have been 
associated with reduced rainfall in the main wet season, 
July, August and September, in north and central Ethio-
pia, causing drought, but also with greater rainfalls in 
the early February to April rainfall season which mainly 
affects southern Ethiopia (Maugeri 2011). In addition to 
capturing the general patterns of rainfall, climate models 
should be able to provide a reasonable simulation of the 
seasonal cycle of rainfall. Because of the high spatial vari-
ation of rainfall over Ethiopia both in terms of the sea-
sonal cycle and the inter-annual variability, Ethiopia is 
aggregated into a number of homogeneous rainfall zones 
(McSweeney et al. 2008).

The rural people of Ethiopia in general are dependent 
on summer rain for agricultural production activities 
(main livelihood of the country) (NMSA 2007). Hence, 
the specific objectives of this research was to examine the 
global circulation model output rainfall data over Ethio-
pian summer for the past 40  years (1971–2010) and its 
40 years future predictions (2015–2054).

Methods
Ethiopia is located in Northeastern or East Central 
Horn of Africa lying between 3 and 15 degrees north 
latitude, 33–48 degrees east longitude. Ethiopia is bor-
dered in the east Somalia and Djibouti, in the south by 
Kenya, in the northeast by Eritrea and in the west by the 
North and South Sudan (newest country). The country 
has a total area of about 1.1 million km2 and comprises 
of 12 river basins with varying size and water resource 
potential (CSA 2007). Ethiopia falls into four main geo-
graphic regions from west to east; the Great Rift Valley, 
the Somali plateau, the Ogaden plateau and the Ethiopian 
plateau. The Ethiopian plateau, fringed in the west by the 
Sudan lowlands (made up of savanna and forest), includes 
more than half of the country. It has several high moun-
tains and is generally 1524–1829 m a.s.l high, but reaches 
a much loftier height including Ras Dejen (4620 m a.s.l), 
the highest point in Ethiopia. The plateau slopes gently 
from east to west and is cut by numerous deep valleys.

The materials and computer software programs which 
were used for this study are topographic map of Ethiopia, 

external hard disc, raw GCM output data and observed 
data, Matlab, Xcon and GrADS respectively.

For the accuracy and reliability of the real climate situ-
ation of the study area, observed climate station data 
from different sites and more sophisticated and recent 
models output data were used. GCMs output data were 
used to simulate the climatic effect of increased atmos-
pheric concentration of greenhouse gases (GHGs) and 
the climate model output was interpolated to the scale 
of Ethiopia using a regular grid bilinear interpolation 
method. The interpolated climate data were consisting of 
inter-governmental panel on climate change (IPCC) core 
variable such as precipitation in the study area. This was 
determined by the local knowledge and experts’ opinion 
of the study area. The performance of GCM was evalu-
ated and the best model, which has a high hit rate for the 
observed data was used to predict the future summer 
monsoon (rainfall).

GCM output data acquisition
For the period from 1971 to 2010 and from 2015 to 2054, 
appropriate scenarios were selected based on the data 
availability. These data represent a subset of the IPCC 
model output archive run by Program for Climate Model 
Diagnosis and Inter-comparison (PCMDI). The complete 
set of core data variables in monthly temporal resolution 
was obtained from the IPCC-data distribution center 
(IPCC-DDC 2007), at the website http://www.ipcc-data.
org/gcm/monthly/SRES_AR4/index.html. Since the data 
were developed for global scale and is at a suitable spa-
tial resolution, the extent of Ethiopia was considered 
for selected high performance model data output. This 
was done by bilinear interpolation Xcon computer pro-
gram (Yatagai et  al. 2009). In order to investigate cli-
mate change situations of Ethiopia, much higher spatial 
information was required. Our objectives in interpo-
lating global scale climate data were twofold—firstly to 
be able to evaluate the spatial variability in more detail 
across Ethiopia and secondly to provide more specific cli-
mate variable data inputs for further research activities. 
The future climate predictions provide information on 
the actual values of climatic variables (e.g. precipitation, 
which are common in the study area).

NCEP data
Observations are from many different sources, includ-
ing satellites, ships, ground stations, and radar. Currently, 
earth system research laboratory, physical sciences divi-
sion (PSD) makes available these reanalysis datasets to 
the public in standard netCDF file format at the  web-
site http://journals.ametsoc.org/doi/pdf/10.1175/1520
0477(1996)077%3C0437%3ATNYRP%3E2.0.CO%3B2. 

http://www.ipcc-data.org/gcm/monthly/SRES_AR4/index.html
http://www.ipcc-data.org/gcm/monthly/SRES_AR4/index.html
http://journals.ametsoc.org/doi/pdf/10.1175/15200477(1996)077%253C0437%253ATNYRP%253E2.0.CO%253B2
http://journals.ametsoc.org/doi/pdf/10.1175/15200477(1996)077%253C0437%253ATNYRP%253E2.0.CO%253B2
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Reanalysis is a method to reconstruct the past state of 
the atmosphere and oceans in a coherent way by com-
bining available observations with numerical models. 
These reconstructions are created with model based data 
assimilation methods which are similar to those used for 
numerical weather prediction (Compo et al. 2011). NCEP 
reanalysis is also scientific method for developing a com-
prehensive record of how weather and climate are chang-
ing. Observations and a numerical model that simulates 
one or more aspects of the earth system are combined 
objectively to generate a synthesized estimate (Compo 
et  al. 2011). A reanalysis typically extends over several 
decades or longer and covers the entire globe from the 
earth’s surface to the top of the stratosphere. NCEP rea-
nalysis products are used extensively in climate research 
and services classifying the causes of climate change 
and preparing climate predictions (IPCC 2007). A large 
subset of this data is available from PSD in its original 
four times daily format and as daily averages. Reanalysis 
datasets are created by assimilating (“inputting”) climate 
observations using the same climate model throughout 
the entire reanalysis period in order to reduce the effects 
of modeling changes on climate statistics (Compo et  al. 
2011).

It is possible to extract useful information about rain-
fall, temperature and humidity observation from sat-
ellites, or to infer large-scale features of the global 
circulation in the early 20th century using only surface 
pressure observations available at that time (Compo 
et al. 2011). Reanalysis is a rapidly evolving field and new 
reanalysis products benefit from recent modeling capa-
bilities, improved techniques in data assimilation, in the 
latest observation techniques (i.e. from satellite measure-
ments), and newly digitalized historical datasets (Compo 
et  al. 2011). Reanalysis also allows the user to estimate 
rainfall over regions where in  situ observations are not 
available. This dataset for Ethiopian summer rainfall 
comprises monthly variables of each year from 1971 to 
2010 at a resolution of 0.5 degrees (approximately 55 km 
at the equator) were downloaded and crucially contains 
the climate variables which are common parameters to 
Ethiopia. This period was selected since the observa-
tion data before 1971 was not reliable and digital in the 
case of Ethiopia. It has been since 1971 that modern and 
standardized meteorological weather instruments were 
installed by (World Meteorological Organization) WMO 
standards (NMSA 2007).

Data analysis
According to Joel and Mike (2006) there are three generic 
types of climate change scenarios. These are scenarios 
based on outputs from GCMs, synthetic scenarios, and 
analogue scenarios. All the three types have been used 

in climate change impacts research; although probably a 
majority of impact studies have used scenarios based on 
GCMs output. For this research, scenario based on the 
outputs of GCM was used and the analysis procedures 
are stated in the following sections.

The historical summer monsoon (summer rainfall) was 
analyzed by dividing into two periods; 1971–1990 and 
1991–2010 for the proper performance of the models as 
well as the past trends. This period was selected since the 
observation data before 1971 was not reliable and digi-
tal in the case of Ethiopia. This might serve also to avoid 
over generalization of the model values and for easy 
management and processing of the netCDF files. Study-
ing the historical summer monsoon would also help to 
determine the trends of rainfall and to evaluate the best-
performed model for forecasting the future (2015–2034 
and 2035–2054) of summer rainfall conditions.

Data from a number of climate models run by differ-
ent national meteorological organizations and for a wide 
range of climate variables under different SRES Scenarios 
are available. In accordance with current best practice for 
analyzing the outputs of climate modeling exercises, the 
data from six runs of six different climate models were 
used. The model name and its origin are given as: bccr-
bcm2.0 (Norway), cccma_cgcm3_1 (Canada), giss_model 
(USA), inmcm3_0 (Russia), ipsl_cm4 (France), and mpi_
echam5 (Germany) (Table 1).

A total of 23.6  GB data were downloaded and stored. 
The data were available in netCDF file format which is 
not a flat file construction, relatively a self-describing 
multi-layered structure for storing and documenting 
large amounts of numerical precipitation data files. Each 
file downloaded contains monthly precipitation data (i.e. 
a single value for each month of the year) for all years for 
the entire earth. In order to extract ‘slices’ of the multi-
layered netCDF datasets, it was necessary to use certain 
tools which were designed specifically for the netCDF file 
format.

It was therefore freely downloadable computer soft-
ware program which enabled to visualize and extract data 

Table 1  Summary of  the models used for  precipitation 
variable

No. Country of run Model name Run Precipitation

1 Norway Bccr-bcm2.0 1 √

2 Canada Cccma_cgcm3_1 1 √

3 USA Giss_model_e_r 1 √

4 Russia Inmcm3_0 1 √

5 France Ipsl_cm4 3 √

6 Germany Echam-5 3 √
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slices from netCDF. Examples of these are the climate 
data analysis tools, which is a collection of applications 
based on the Xcon software. Using this software, both 
temporal (1971–2054) and spatial (from the global scale 
to Ethiopian latitudinal and longitudinal extent) slices of 
a netCDF file were extracted. It was important to recog-
nize that from a temporal perspective, what was actually 
extracted were the monthly normal calculated from the 
data for 40  years either side of the year of interest. The 
reason for calculating monthly normal was to eliminate 

single year anomalies that may show up in data from a 
single year only. Due to the spatial sub-setting routine to 
remove data outside of Ethiopia, in addition to the calcu-
lation of monthly normal, the size of this entire data set 
was reduced from 23.6 GB to 210 MB. Further compres-
sion has reduced the total size of the dataset. The sam-
ple interpolation of the GCM output data is indicated by 
Fig. 1.

The mask file was prepared using excel sheet by putting 
a zero value for areas not touched and one value for areas 

Fig. 1  Interpolation rainfall into Ethiopia from ipsl model Source: computed by Xcon from IPSL model (2014)
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covered by the latitudinal and longitudinal extent of Ethi-
opia. This value was used to limit the study only for the 
area covered by map of Ethiopia. The GCM output data 
were processed and studied for the whole parts of Ethi-
opia. This was done by downloading the GCM output 
data and interpolated to Ethiopian scale by 0.5 latitude 
and longitude. The mathematical modeling (Matlab) cod 
(program was developed to calculate the different statis-
tical analysis, such as climatology (clim), standard devia-
tion (SD), root mean square errors (rmse), coefficient of 
variations (cv) and correlations (corr).

Results and discussions
Summer monsoon from the GCM and the observed 
(1971–1990)
The time series year average (clim), the standard devia-
tion (SD), the coefficient of variations (cv), the correla-
tion (corr.), the root mean square errors (rmse) and the 
bias value of precipitation were used to evaluate the best 
performed model over Ethiopia. This would help to pre-
dict the future summer rainfall trends across the coun-
try. Accordingly, the models which have similar record 
of clim, sd and cv to that of the observed one would be 
taken as the best performed model. On the other hand, 
the smaller magnitude value of the rmse and bias would 
be selected as best performed and will be used to pre-
dict to the future summer rainfall amount provided that 
the trends should also be similar (Doswell et al. 2005). In 
other words, if the rmse computed value is greater or if 
the bias value between the model data and the observed 
data is greater, the performance of the model capturing 
that particular area climate situation is poor and unable 
to use such models for further predictions. This would 
happen due to the geographical location and the altitudi-
nal controlling effect of the region.

Based on the above concept, the time series aver-
age value of the summer rainfall amount based on the 
observed data was found to be 501.7 mm. Based on this 

reference, model cccma was found to be perfect relatively. 
Whereas, models such as ipsl, inmcm, giss, and echam 
under predicts and model bccr over predict the summer 
rainfall amount. Similarly, SD and cv values indicate that 
model cccma was performing well as compared to others 
(Table 2).

Moreover, it is clear that the magnitude of the root 
mean square error (rmse) for the observed and forecasted 
rainfall trends has been smaller for the model cccma than 
the rmse for the rest of the models. Although, the cor-
relations might not support to conclude that the model 
cccma performance, relatively this model captured simi-
lar to the observed value in most of the statistical analy-
sis. Model bccr also has similar characteristics next to 
cccma and could be useful to consider those model values 
for future prediction of summer rainfall over Ethiopia.

The graphic representations of the statistical value of 
the summer means average rainfall amount has clearly 
shown that model cccma more or less similarly captured 
to that of the observed values. Models such asbccr, echam 
and giss also indicted similar patterns to the observed 
one. Model bccr correlation coefficient explained better 
relationship, however, over prediction was observed by 
the remaining statistics results (Fig. 2).

After the statistical analysis, the spatial distribution of 
summer rainfall was generated using grid analysis and 
display system (GrADS) computer software program. 
As indicated in the observation (NNRP), the southwest-
ern and central highlands of Ethiopia received maximum 
summer rain; whereas, the eastern, western and south-
eastern periphery of the country has received very little 
summer rain. In a similar manner, the appropriate model, 
which captured summer rainfall distribution, is model 
cccma and bccr. Although the rainfall pattern has indi-
cated by all the models, the spatial rainfall distribution 
of summer in Ethiopia for the period between 1971 and 
1990 clearly captured by the cccma and the bccr model 
(Fig. 3).

Table 2  Statistical analysis of rainfall (1971–1990)

Clim climatology (time series average value of rainfall), Sd standard deviation, cv coefficient of variation, corr correlation
a  NNRP Observed rainfall recorded mean values from satellite, ground based and observation above the top of the stratosphere (reanalysis)

Model Clim (mm) SD Cv (%) Corr Rmse Bias

NNRPa 501.7023 40.33089 8.038809071

Bccr 592.1023 54.06119 9.130380004 0.21042016 112.8483 90.4

Cccma 546.9452 44.3595 8.11041033 0.13351548 62.14697 45.2429

Echam 356.2808 53.90224 15.12914533 0.00429265 160.1898 −145.4215

Giss 416.9231 22.73914 5.454036967 −0.07013787 97.26162 −84.7792

Inmcm 282.4245 49.81025 17.63666042 −0.14229288 229.7001 −219.2778

Ipsl 182.0708 36.48957 20.04141795 −0.08403028 324.6071 −319.6315
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Normalized anomaly and probability of detection (POD)
The normalized anomaly of summer rainfall is the best 
parameter (probability of observed rainfall transformed 
into an index). Multiple time scales allow for temporal 
flexibility in evaluation of rainfall conditions and water 
supply. It is not merely the “difference of rainfall from the 
mean divided by the standard deviation”, the rainfall data 
was normalized using a probability distribution so that 
the values of the index are actually regarded as standard 
deviations from the median. Normalized distribution 
allows for estimating both dry and wet periods. Accu-
mulated values can also be utilized to analyze drought 
severity (magnitude). Probability based (probability of 
observed precipitation transformed into an index) nature 
is considerably suited to risk management. Accordingly, 
values of −1  <  0<1 would be taken as normal rainfall 
amount year, values greater than 1 excess rainfall year 
and values less than −1 would be taken as rainfall deficit 

year (Doswell et al. 2005). Based on these concepts, the 
normalized anomaly of the summer rainfall analysis has 
indicated that the 1972, 1974 and 1982  years showed 
that deficit; whereas, the 1978 and 1979 were found to be 
excess rainfall years from the period 1971 to 1990. The 
rest of the years were found to be normal (Table 3).

The probability of detection was calculated by dividing 
the frequency of the model matching with the observed 
value. In other words, the number of hit rate or the num-
ber of times in which the model output matches to the 
observation. Accordingly, the number of years which 
were in rainfall excess was only 1978 and 1979; whereas, 
the hit match of model bccr was one (1978). Probability 
of detection (POD) (hit rate) then calculated by dividing 
the number of hit matches (one) to the number of excess 
years (two), which was found to be 0.5. This implies that 
the hit rate of model bccr to capture similar value to that 
of the observed was 50  %. Similarly, the hit rate of the 

Fig. 2  The statistical analysis of 1971–1990 rainfall
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model on excess rainfall amount for the model cccma 
and echam computed to be 50 %. On the other hand, the 
hit rate on excess rainfall for the models giss, inmcm and 
ipsl found to be 0 %. It implies that the probability of the 
model to capture similar value to the observed (NNRP) 
is 0 %. In a nutshell, model bccr, cccma and echam per-
formed better than giss, inmcm and ipsl models in cap-
turing excess rainfall of the period 1971–1990. The deficit 
frequency of the observed years found to be three, (1972, 
1974 and 1982); however, none of the models matches 
those years’ records. The POD for all of the models for 
deficit years of the period 1971–1990 found to be 0  % 
(Table 4).

The frequency of the normal rainfall years was found 
to be 15, whereas, the frequency of the models which 
matches the observed one were (bccr =  9, cccma =  13, 

echam = 10, giss = 12, inmcm = 10 and ipsl = 11). The hit 
rate found to be (bccr = 0. 6, cccma = 0.87, echam = 0. 
67, giss = 0. 8, inmcm = 0. 67 and ipsl = 0.73). Based on 
this value, the highest POD value has recorded by model 
cccma (0.87). This value also supports that the perfor-
mance of the model cccma was found to be the best by 
capturing similar normal rainfall values of the observed 
one.

The overall performance of the models was measured 
by the combined matching frequencies. This can be done 
by dividing the frequency of the total matching (deficit, 
excess and normal) rainfall to the total model values. 
For instance the frequency of the total matching rainfall 
of the model bccr was (deficit = 0, excess = 1 and nor-
mal = 9). The combined POD was calculated by dividing 
the sum of the frequency of deficit, excess and normal 

Fig. 3  Spatial distribution of Ethiopian summer monsoon in GCM and NNRP
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rainfall years by the total model years (10/20). Accord-
ingly, the best performed model from the overall analy-
sis of POD calculations was the model cccma (70  %) 
(Tables  4, 8). In general, we have concluded that from 
the period 1971 to 1990, the model cccma captured rela-
tively similar rainfall recorded vales as compared to the 
observed one.

Summer monsoon in the GCM and the observed (1991–
2010)
The statistical analysis of the observed data revealed that 
the summer rainfall amount of the period 1990–2010 
time series average, standard deviation and coefficient 
of variation found to be 431.19  mm, 39.14 and 9.0776, 
respectively (Table 5).

As usual, those models which captured closely related 
rainfall value to the observed rainfall values would be 
performed better. Accordingly, model giss’s clim, SD and 
cv values were more similar than the rest of the models. 
The second model that has relatively similar clim value 
is echam (Table 6). However, model inmcm has closer sd 
value than echam and model bccr has relatively closer cv 
value than giss. It implies that model values in capturing 
similar statistical rainfall value were not uniform except 
giss model. On the other hand, the model values recorded 
least by rmse and bias could perform best. Model giss 
then capture relatively the least rainfall value by those 
statistics mentioned above. The statistical correlation 
and partial correlation computed, but unable to indicate 
the best performed model. With irrespective of the poor 
indication of correlation coefficient values, model bccr 
has relatively higher relationship with the observed value. 
In general, the model giss could be used for better predic-
tions of the future summer rainfall in Ethiopia based on 
the period 1990–2010.

It is clearly indicated in the Fig. 4 that the model giss, 
bccr and cccma appears best by recording relatively simi-
lar rainfall recorded values of the observed.

GrADS output for the period 1991–2010 confirm that 
most of the models have captured similar summer rain-
fall distribution. Unlike the 1971–1990 period where a 

Table 3  Summer rainfall amount normalized anomaly

a  Deficit
b  Excess rainfall years

Year\model NNRP Bccr Cccma Echam Giss Inmcm Ipsl

1971 0.153 −1.412 −0.853 −0.858 −0.571 −1.568 −0.300

1972 −1.881a −0.175 0.848 −0.144 −0.945 −0.608 −0.513

1973 −0.819 −0.037 0.562 0.669 1.045 −0.385 0.150

1974 −1.858a 0.400 1.145 −0.204 1.027 0.768 0.359

1975 0.521 −1.191 −0.587 −0.469 0.709 0.004 2.499

1976 −0.907 1.790 −0.043 1.805 −2.360 0.115 0.084

1977 0.813 0.702 2.684 −1.053 −0.908 1.279 1.609

1978 1.755b 1.399 −0.806 −1.002 −0.195 −0.909 −1.348

1979 1.294b −0.572 1.041 2.319 −0.648 −0.875 −1.173

1980 −0.519 0.094 0.021 1.699 0.365 −0.504 −0.989

1981 0.634 0.288 −0.415 0.432 −0.001 −1.106 0.063

1982 −1.493a −0.714 −0.880 −0.554 0.269 −0.605 0.104

1983 −0.456 0.799 −0.432 −1.529 −0.582 −0.194 0.572

1984 0.977 0.461 −0.621 0.290 −0.192 −0.945 0.396

1985 0.447 1.723 0.723 0.486 0.711 0.131 −1.433

1986 0.880 −1.083 0.876 −0.029 −0.275 −0.435 0.284

1987 −0.046 −0.693 −0.607 −1.229 2.574 0.929 −0.396

1988 0.840 −1.645 0.173 0.047 −0.393 0.703 −0.646

1989 −0.149 0.836 −0.948 −0.299 0.981 2.206 1.574

1990 −0.187 −0.969 −1.880 −0.379 −0.609 1.997 −0.895

Table 4  Models probability of detection (POD)

Model Excess Deficit Normal Combined

Bccr 0.5 0 0.60 0.50

Cccma 0.5 0 0.87 0.70

Echam 0.5 0 0.67 0.55

Giss 0 0 0.8 0.6

Inmcm 0 0 0.67 0.5

Ipsl 0 0 0.73 0.55
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single model was highly performed by capturing summer 
rainfall distributions, the summer rainfall distribution of 
the period 1991–2010 has captured by more than one 
model. As it has depicted by Fig.  5, model bccr, cccma, 
echam and giss capture more or less similar summer rain-
fall pattern to that of the observed one. This created an 
alternative for further predictions of Ethiopian summer 
than ever before.

The summer rainfall normalized anomaly values of the 
observed data which indicated deficit were the year 1993, 
1995, 2000, 2004 and 2008; whereas, the excess rainfall 
years were recorded in 2007, 2009 and 2010. The remain-
ing years were normal rainfall (Table  6). The hit rate of 

each model was then counted and resulted in the deficit 
years by model bccr and echam two times and by model 
inmcm three times. On the other hand, model cccma, giss 
and ipsl didn’t capture deficit rainfall years. Similarly, the 
hit rate of the models for excess rainfall years were not 
captured by models bccr, cccma, echam, inmcm and ipsl. 
They have captured, but couldn’t match to the observed 
value. In the case of normal rainfall years model echam 
captured the highest number of hit rate (eight times), 
bccr the second highest (seven times) and model ipsl and 
giss captured six times each. This implies that the nor-
mal years have been captured better than the deficit and 
excess years by most of the models.

Table 5  Statistical analysis of summer rainfall (1991–2010)

Model Clim (mm) SD Cv Corr Rmse Bias

NNRP 431.19 39.14 9.08

Bccr 529.09 67.84 12.82 0.31 93.51 97.90

Cccma 522.56 69.29 13.26 −0.04 89.75 91.37

Echam 353.61 59.56 16.84 −0.29 111.59 −77.58

Giss 421.44 35.13 8.34 0.00 53.51 −9.75

Inmcm 290.64 36.25 12.47 0.13 149.11 −140.55

Ipsl 179.77 25.89 14.40 −0.29 256.89 −251.42

Table 6  Summer rainfall amount normalized anomaly (1991–2010)

a  Deficit
b  Excess rainfall years

Year\model NNRP Bccr Cccma Echam Giss Inmcm Ipsl

1991 −0.580 0.763 1.218 −0.035 0.040 2.227 −1.015

1992 0.485 −0.667 0.095 1.815 −1.616 1.048 −0.326

1993 −1.149a −0.588 0.000 0.295 −0.171 −0.225 0.950

1994 0.397 0.279 1.557 −0.652 −0.849 0.623 −1.301

1995 −1.002a −1.344 −0.179 1.900 0.432 −1.851 1.200

1996 0.285 1.162 1.624 0.909 −1.708 0.379 0.962

1997 −0.497 1.899 −0.811 −0.959 0.519 1.426 1.773

1998 −0.034 −1.192 1.553 −0.370 −1.439 0.626 −0.060

1999 −0.194 −0.386 0.100 0.517 0.009 0.763 −0.763

2000 −1.064a 0.721 −0.068 −1.034 0.201 −0.462 −0.090

2001 0.274 −0.525 −1.847 0.385 1.442 −0.152 1.530

2002 −1.136a 0.647 −0.098 −1.019 −0.289 −1.093 0.351

2003 −0.132 0.283 −0.405 −1.489 0.136 −0.388 −0.903

2004 −1.153a 1.631 −0.398 0.286 −0.852 −1.460 −0.893

2005 0.142 −0.197 −0.288 −0.161 2.014 −0.364 1.565

2006 −0.052 1.125 −1.085 1.516 −0.084 0.042 −0.542

2007 1.358b −0.691 −2.166 −0.427 −0.401 −1.473 −1.678

2008 −1.008a −1.601 0.612 0.725 1.476 −0.187 0.214

2009 1.847b 0.064 0.082 −1.556 1.343 0.869 −0.551

2010 2.714b −1.383 0.501 −1.044 −0.203 −0.346 −0.423



Page 10 of 16Legesse ﻿Environ Syst Res  (2016) 5:16 

The POD for all the models to capture excess rain-
fall has been found to be 0 % except igss which is 33 %. 
On the other hand the POD for deficit rainfall years has 
been better by the model inmcm (50 %), bccr and echam 
(33.3 %) and giss (16.7 %). However, model cccma and ipsl 
were not captured deficit rainfall years (0  % POD). The 
POD percentage of the model inmcm and echam were 
72.73 %. These models captured relatively better than the 
others did (bccr = 63.64 %, cccma = 45.46 % and ipsl and 
giss = 54.55 %).

The overall model performance were then calculated 
from the total frequency of matching to the total years 
and model echam and inmcm (55  %) were shown best 
performance (Table 7).

In the final analysis, from the period 1990 to 2010, it 
has been found that model giss appears best based on 
the statistical value; whereas, model echam and inmcm 
appears to be best based on POD. It implies that most of 

the models captured more or less similar results to that of 
the observed and can be used for future predictions.

Summer monsoon outlooks (2015–2034)
Predicting the future outlooks of Ethiopian summer rain-
fall has been done based on the best-performed model 
results by capturing Ethiopian climate in the above sec-
tion. For better comparisons and considerations, the 
analysis has done for all models which performed better 
and which did not. Most of the models failed to capture 
Ethiopian summer rainfall due to the fact that the altitu-
dinal climate controlling effects have been dominating 
than the latitudinal one. Accordingly, the future summer 
rainfall amount of Ethiopia was done by dividing into two 
periods (2015–2034 and 2035–2054).

The prediction of the rainfall by the period 2015–2034 
was based on the statistical analysis of the model, which 
performed best in the historical summer monsoon. 

Fig. 4  Graphic representations of the statistical analysis of 1991–2010 rainfall
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Accordingly, model giss, cccma, echam and inmcm have 
been captured relatively closer value (412.45, 520.92, 
512.62 and 298.27  mm) for clim, respectively. Based on 
this result, the values of the model giss and echam were 
closet; however, the standard deviation of rainfall from 
echam showed that higher deviations from the normal 

than the standard deviation of giss. Similarly, the coeffi-
cient of variation of rainfall from echam was higher than 
the coefficient of variation of the rainfall from giss model 
(Table  8). Giss model captured more or less constant 
amount of rainfall for the study period. In a nutshell, 
giss model could be relatively performed best; however, 
this model has shown a general constant and or a slight 
increase of rainfall in contrary to the observed value and 
could not be used to predict the future. However, model 
cccma and bccr relatively indicate that a general decline 
of rainfall which are in line with the observation trends. 
Based on these models, it has been predicted that sum-
mer rainfall of Ethiopia indicated a general decline.

The summer rainfall distribution predictions also 
supported the above conclusion that model giss and 
echam clearly depicted the pattern. However, it was 
hardly acceptable to use giss model values since it has 

Fig. 5  Spatial distribution of Ethiopian summer monsoon in GCM and NNRP

Table 7  Probability of detection (POD) (1991–2010)

Model Excess Deficit Normal Combined

Bccr 0 0.333 0.6364 0.45

Cccma 0 0 0.4546 0.25

Echam 0 0.333 0.7273 0.55

Giss 0.33 0.167 0.5455 0.40

Inmcm 0 0.50 0.7273 0.55

Ipsl 0 0 0.5455 0.30
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insignificant trend changes in the historical data analy-
sis. It has indicated that constant amount of rainfall 
which was not recorded by the observed data. However, 
model bccr and cccma have shown that a similar pattern 
to the observed data with a slight over predictions was 
recorded. This was confirmed by the patterns of the sum-
mer rainfall amount (Fig. 6).

The normalized anomaly table has shown that all of 
the models recorded deficit, excess and normal years. 
The frequency of recording deficit rainfall years were 
four except model echam (three); whereas, the frequency 

of excess rainfall predicted years by all the models were 
three. According to model bccr, the year 2020, 2023, 2027 
and 2033 have been found to be rainfall deficit; whereas, 
the year 2015, 2022 and 2026 predicted to be excess rain-
fall. The remaining years have been predicted to be nor-
mal rainfall occurrence. On the other hand, the years, 
which were confirmed by more than one model on the 
rainfall to be a deficit, normal and excess, can support the 
probability of its occurrence. For instance, the year 2015 
and 2020 were predicted by excess summer rain by two 
models (bccr and echam). And years such as 2016, 2017, 
2023 and 2029 were predicted by two models as sum-
mer rainfall deficit (Table 9). Prediction of a year by more 
than one model increases the probability of occurrence of 
the extreme as well as the normal rainfall distributions. 
These indications will play a significant role for the rural 
summer rain-fed agricultural dependent people. Govern-
mental and non-governmental bodies also consider these 
predictions in their plans and programs while designing 
sustainable development in the region. Hence, precau-
tionary measures will minimize the adverse impacts of 
those climate related hazards once the perfect predic-
tions were stated.

Table 8  Statistical analysis of summer rainfall (2015–2034)

Model Clim (mm) SD Cv

Bccr 512.6278 71.46301 13.9405257

Cccma 520.9299 38.08747 7.31143864

Echam 378.4397 64.74207 17.1076317

Giss 412.4507 34.00297 8.24412954

Inmcm 298.2686 37.25766 12.49131

Ipsl 183.0517 25.81825 14.10435

Fig. 6  Spatial distribution of Ethiopian summer monsoon (2015–2034)



Page 13 of 16Legesse ﻿Environ Syst Res  (2016) 5:16 

Summer monsoon outlooks (2035–2054)
By this sub period, the model value of clim by giss and 
echam were found to be 422.13 and 400.36 mm, respec-
tively. However, the value of the standard deviation for 
echam (95.51) deviated more than giss (47.44). Similarly 
the coefficient of variation of echam (23.86) is much 
greater than that of giss (11.24). Though those models 
seemed to record similar rainfall amount, unable to use 
them for accurate predictions due to the low hit rate of 
models. Instead, model bccr and cccma values were used 
to predict the summer monsoon outlooks (Table 10). The 
historical analysis of those models helps to easily decide 
this case about the accurate prediction of the future rain-
fall conditions. By taking into consider the value of model 
bccr and cccma, the decision makers can take precaution-
ary measures to minimize the risk of the hazards created 
as a result of extreme rainfall occurrence.

The graphic representations of the rainfall analysis have 
shown in the Fig. 7. Based on this, the three models (bccr, 
cccma and echam) recorded more or less similar record 
for both periods (2015–2034 and 2035–2054). These 
models also show good performance in recording a closer 
rainfall value to the observed one in the historical analy-
sis. Therefore, it should be taken into consider the future 
rainfall status in planning for sustainable livelihoods of 
the rural people of Ethiopia.

The GrADS output of the predicted summer rainfall 
distribution better represented by the model bccr and 
cccma (Fig. 8). Based on the patterns of rainfall, the first 
four models have recorded in a similar trends; whereas, 
the last two models have failed to capture the Ethiopian 
rainfall pattern. From the above analysis and its histori-
cal similarity to the observed rainfall records, model bccr 
has been appeared to predict the future fate of Ethiopian 
summer rainfall.

The 2035–2054 rainfall normalized anomaly table has 
shown that more number of years has been found to be 
a deficit as compared to the period 2015–2034. Model 
echam, giss and inmcm predicted six, seven and six rain-
fall deficit years, respectively; whereas, model bccr and 
ipsl four and model cccma five deficit years have been 
predicted. This implies that the frequency of rainfall defi-
cit years has increased across models. On the other hand, 
the years 2035, 2037, 2045, 2046 and 2047 have been 
confirmed by more than two models as rainfall deficit 

Table 9  Summer rainfall amount normalized anomaly (2015–2034)

Year\model Bccr Cccma Echam Giss Inmcm Ipsl

2015 1.268 0.025 1.014 −0.092 0.946 0.144

2016 −0.653 0.339 0.465 −1.566 0.140 −2.280

2017 0.138 −2.502 −1.686 −0.958 0.463 1.489

2018 −0.868 −0.770 0.200 −1.286 −0.272 −0.943

2019 0.837 0.973 1.495 0.173 −0.057 0.626

2020 −1.447 0.196 0.918 0.176 1.080 2.014

2021 0.689 0.036 −1.287 1.712 −0.625 −0.137

2022 1.594 −0.390 0.728 0.552 −0.106 −1.027

2023 −1.044 −1.770 1.593 −0.389 −0.463 −0.202

2024 −0.861 0.584 −0.542 1.210 −1.482 0.941

2025 0.678 1.411 −0.417 0.319 0.911 −1.107

2026 1.975 0.919 0.921 0.683 2.061 −0.176

2027 −1.012 −0.116 0.353 1.207 0.390 −0.861

2028 0.105 −1.112 −0.899 0.986 0.432 −0.119

2029 0.225 −0.225 0.290 −1.716 −1.864 0.438

2030 0.977 −1.037 −0.588 −0.326 −0.908 0.494

2031 −0.103 1.256 −0.784 −1.610 0.305 0.286

2032 −0.634 0.832 0.755 0.953 −1.064 1.153

2033 −1.739 −0.153 −0.783 −0.446 1.260 −1.058

2034 −0.326 1.203 −1.844 0.316 −1.448 0.224

Table 10  Statistical analysis of  summer rainfall (2035–
2054)

Model Clim SD Cv

Bccr 423.1752 125.5509 29.6687755

Cccma 460.8515 62.06466 13.4673881

Echam 350.3633 95.51073 27.2604836

Giss 422.1384 47.43772 11.2374804

Inmcm 302.4444 55.19686 18.2502503

Ipsl 171.6467 33.69273 19.6291161
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years, which increased the probability of the occurrence 
of deficit, which might lead to drought (Table 11). How-
ever, it should be noted that the prediction values of the 
best performed model in the historical analysis would 
be more trusted predictions than the rest of the models. 
Hence, this indication would give an insight to the con-
cerned body for the proper planning and implementation 
of strategies.

Model output data analysis supported the ground 
based station data. More than one year were recorded in 
the rainfall deficit years in the last full point between the 
years (2035 and 2054) than the first period (1971–1990). 
Rainfall is certainly the most significant element influ-
encing the success or failure of rural livelihoods (agricul-
tural production). It demonstrates itself through its effect 
on soil, plant growth, as well as on every phase of ani-
mal development and growth. Crop and animal disease 
are the direct consequence of any fluctuations of rainfall 
in the study area. Nevertheless, crop losses can be scaled 

down substantially by affecting adjustments through 
timely and through accurate predictions and prognoses. 
This backup also provides guidelines for long range or 
seasonal planning and choice of crops best suits to the 
anticipated rainfall conditions.

Conclusions
By analyzing the GCM data output and the National 
Center for Environmental Predictions (NCEP) re-analy-
sis of the period 1971–2010, the trend analysis and the 
future predictions (2015–2054) have been stated by a 
comparative method. According to the observed mete-
orological data, the past Ethiopian summer monsoon has 
declined by 70.51 mm Table 12.

Most of the models have failed to capture Ethiopian 
summer rainfall due to the fact that the altitudinal cli-
mate controlling effects have been dominating than the 
latitudinal one. The heterogeneous topography of the 
country as well as the mountainous domination of its 

Fig. 7  Graphic representations of the statistical rainfall analysis



Page 15 of 16Legesse ﻿Environ Syst Res  (2016) 5:16 

Fig. 8  Spatial distribution of Ethiopian summer monsoon in GCM (2035–2054)

Table 11  Summer rainfall amount normalized anomaly (2035–2054)

Year\model Bccr Cccma Echam Giss Inmcm Ipsl

2035 1.203 0.739 −1.605 −1.003 −0.503 −1.713

2036 −0.297 −1.064 1.614 −1.024 −0.423 1.335

2037 −0.006 −1.240 −1.050 0.051 −0.964 −1.052

2038 0.162 0.569 −1.027 −1.027 0.152 0.192

2039 0.554 −0.315 2.238 1.426 −0.098 −0.306

2040 −1.000 −0.745 0.985 −1.165 1.478 −0.187

2041 0.049 0.403 −0.331 −0.411 −1.167 −0.390

2042 −1.362 0.996 −0.314 0.960 0.651 −1.014

2043 0.877 −0.632 0.196 0.151 −0.950 0.139

2044 0.147 −1.142 0.255 1.442 −1.287 1.429

2045 −1.764 −0.134 0.800 −1.099 −1.167 1.559

2046 −2.020 1.725 −1.043 −1.982 −0.367 1.260

2047 −0.215 0.238 −1.642 −1.829 −1.233 −0.190

2048 0.148 1.683 1.305 −0.577 −0.997 −0.781

2049 −0.342 1.315 0.461 −0.133 0.019 −0.322

2050 0.812 −1.013 −1.047 −0.045 0.627 0.068

2051 0.222 1.082 −0.279 0.254 −1.005 −0.471

2052 1.227 −0.522 −0.542 1.481 1.774 −0.536

2053 2.158 −1.719 −0.445 1.316 1.605 2.047

2054 −0.653 −0.325 0.072 −0.651 −1.159 −1.366
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landscapes, Ethiopia dominantly experienced a temper-
ate type climatic zone though located within the tropics. 
The heterogeneous characteristics of the landscape ena-
bled the task of climate modeling difficult. By the com-
parative analysis of the models’ data outputs, the best 
performed models having similar trends to the observed 
data predicted the future summer monsoon as a decline 
of 89.45  mm by model beccr to 60.07  mm by model 
cccma. To conclude, the legislative bodies and develop-
ment planners should design strategies and plans by tak-
ing into account impacts of declining summer rainfall on 
rural livelihoods.
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