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Abstract 

Background:  Generalized linear models (GLM) are widely used to model social, medical and ecological data. Choos-
ing predictors for building a good GLM is a widely studied problem. Likelihood based procedures like Akaike Informa-
tion criterion and Bayes Information Criterion are usually used for model selection in GLM. The non-robustness prop-
erty of likelihood based procedures in the presence of outliers or deviation from assumed distribution of response is 
widely studied in the literature.

Results:  The deviance based criterion (DBC) is modified to define a robust and consistent model selection criterion 
called robust deviance based criterion (RDBC). Further, bootstrap version of RDBC is also proposed. A simulation study 
is performed to compare proposed model selection criterion with the existing one. It indicates that the performance 
of proposed criteria is compatible with the existing one. A key advantage of the proposed criterion is that it is very 
simple to compute.

Conclusions:  The proposed model selection criterion is applied to arboreal marsupials data and model selection 
is carried out. The proposed criterion can be applied to data from any discipline mitigating the effect of outliers or 
deviation from the assumption of distribution of response. It can be implemented in any statistical software. In this 
article, R software is used for the computations.
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Background
In the last two decades, generalized linear models (GLM) 
have emerged as a useful tool to develop models from 
ecological data to explain the nature of ecological phe-
nomena. GLM encompass a wide range of nature of 
response variable like ‘presence-absence’ and ‘count’. It 
can also be used to estimate the survivorship as can be 
seen in the conservation literature. GLM builds a pre-
dictive model for a response variable based on the pre-
dictors. Given a data on response and predictors, the 
model is fitted using maximum likelihood estimates 
(MLE) of the unknown regression coefficients. Under 
certain regularity conditions, the MLE is consistent 
asymptotic normal estimator of regression coefficients in 
GLM (McCullagh and Nelder 1989). In the presence of 
over dispersion, maximum quasi-likelihood estimation 

(MQLE) (Wedderburn 1974; McCullagh and Nelder 
1989; Heyde 1997) is a popular estimation method. In the 
process of model building, the researcher may be con-
fronted to a pool of predictors of which some might be 
redundant in nature. If such predictors are included in 
the model, the response will be predicted with less accu-
racy. The fitted GLM may contain some predictors which 
are redundant in nature and are required to be eliminated 
from the model based on the observed data.

In the linear regression set up, Murtaugh (2009) evalu-
ated the prediction power of various variable selection 
methods for ecological and environmental data sets. 
GLM is a wider class of models with linear regression as 
a particular case when distribution of response is nor-
mal. In GLM, there are many methods available in the 
literature for variable selection. When the likelihood 
is known, Akaike information criterion (AIC) (Akaike 
1974), Bayes information criterion (BIC) (Akaike 1978) 
and distribution function criterion (DFC) (Sakate and 
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Kashid 2013) find applications. Sakate and Kashid 
(2014) proposed a deviance based criterion (DBC) for 
model selection in GLM which uses MLE of parameters. 
BIC and DBC are consistent model selection criteria 
while AIC is not. Sakate and Kashid (2014) empirically 
established the superiority of DBC over BIC. They also 
showed that DBC performs better than R̄2 proposed by 
Hu and Shao (2008).

In practice, the data available for fitting a GLM may 
be contaminated and the MLE fit of the GLM may not 
be appropriate. In fact, both MLE and MQLE share 
the same non robustness property against contamina-
tion. Non robustness of MLE in the GLM is extensively 
studied in the literature (Pregibon 1982; Stefanski 
et  al. 1986; Künsch et  al. 1989; Morgenthaler 1992; 
Ruckstuhl and Welsh 2001). Hence, the use of MLE 
or MQLE in the presence of contaminated data may 
give misleading results. The non-robustness of MLE to 
contamination results in non-robustness of AIC, BIC, 
DFC and DBC. Hence, using MLE based model selec-
tion criterion in presence of contaminated data may be 
erroneous.

To overcome the problem of contamination in GLM, 
Cantoni and Ronchetti (2001) introduced robust estima-
tion of regression coefficients. Müller and Welsh (2009) 
proposed a robust consistent model selection criterion 
by extending the method in Müller and Welsh (2005) 
to GLM. It is based on a penalized measure of predic-
tive ability of GLM that is estimated using m-out-of-n 
bootstrap method. It is flexible as it can be used with any 
estimator. Further, Müller and Welsh (2009) empirically 
established that its performance is best with the robust 
estimator due to Cantoni and Ronchetti (2001). However, 
this method is computationally intensive.

In this article, we propose a new robust model selection 
criterion in GLM. We show that it is a consistent model 
selection criterion in the sense that as sample size tends 
to infinity, the model selected coincides with the true 
model with probability approaching to one. A simula-
tion study is presented to compare its performance with 
its competitors. The proposed model selection criterion 
along with the other criteria is applied to a data on diver-
sity of arboreal marsupials (possums) in montane ash 
forest (Australia) for model selection.

Results and discussion
An important assumption in the GLM is that the distri-
bution of response is a member of exponential family 
with the general form of the density given by (McCullagh 
and Nelder 1989)

P
(
yi; θi,ϕ

)
= e

yiθi−b(θi)
a(ϕ) + h(yi ,ϕ), i = 1, 2, . . . , n

where, θi is the natural location parameter and φ is a scale 
parameter and yi is the ith observation on the response 
variable Y.

A GLM is defined via a link function

where, µi = E(Yi) = db(θi)
dθi

, XT
i  is the ith row of n  ×  k 

matrix X whose first column is of ones and the remain-
ing columns contain observations on the predictors 
X1,X2, . . . ,Xk−1 and β =

(
β0,β1, . . . ,βk−1

)T is the vec-
tor of regression coefficients.

The log likelihood function is

The maximum likelihood score equations in matrix 
notations can be written as

where, µ = (µ1, . . . ,µn)
T. The MLE of regression param-

eter β using iteratively reweighted least squares (IRLS) at 
convergence is (McCullagh and Nelder 1989)

where, V is an n × n diagonal matrix whose diagonal ele-
ments are vi = dθi

dµi
a(φ) and ith component of n × 1 vec-

tor z is zi = g
(
µ̂i

)
+

(
yi − µ̂i

)dg(µi)

dµi
.

Robust estimation
The quasi-likelihood estimator is the solution of the sys-
tem of estimating equations

where, µ′
i =

∂µi
∂β

 and Q(yi, μi) is the quasi-likelihood 
function. The solution to Eq.  (2) can be viewed as an 
M-estimator (Huber 1981; Hampel et  al. 1986) with 
score function ψ̃

(
yi,µi

)
= (yi−µi)

V (Yi)
µ

′
i. Its influence func-

tion (Hampel 1974; Hampel et  al. 1986) is proportional 
to ψ̃ and is unbounded. Therefore, large deviations of the 
response from its mean or outlying points in the explana-
tory variables can have a large influence on the estimator 
and hence is non-robust (Cantoni and Ronchetti 2001).

Cantoni and Ronchetti (2001) proposed a robust esti-
mation procedure based on quasi-likelihood. It is the 
solution of the estimating equations,

(1)g(µi) = XT
i β , i = 1, 2, . . . , n

l(β; y) =
n∑

i=1

{
yiθi − b(θi)

a(ϕ)
+ h

(
yi,ϕ

)}
.

XT (y − µ) = 0,

β̂ =
(
X ′V−1X

)−1
X ′V−1z,

(2)

n∑

i=1

∂

∂β
Q
(
yi,µi

)
=

n∑

i=1

(
yi − µi

)

V (Yi)
µ

′
i = 0,

(3)

n∑

i=1

ψ
(
yi,µi

)
= 0,
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where, ψ
(
yi,µi

)
= v

(
yi,µi

)
w(X i)µ

′
i − a(β), a(β) =

1
n

∑
n

i=1 E
[
v
(
yi,µi

)]
w(X i)µ

′
i
 with expectation taken with 

respect to the conditional distribution of Y |x , v
(
yi,µi

)
 

and w(Xi) are weight functions. The constant a(β) ensures 
Fisher consistency of the estimator. Equation  (3) corre-
sponds to the minimization of the quantity,

with respect to β where,

with s̃ such that v
(
yi, s̃

)
= 0 and t̃ such that 

E
[
v
(
yj , t̃

)]
= 0.

Let ri = (yi−µi)√
V (Yi)

 be the Pearson residual and ψc be the 
Huber function defined by

where, c is tuning constant. The simple choices 
for the weight functions v(·, ·) and w(·) could be 
v
(
yi,µi

)
= ψc(r)

1√
V (Yi)

 and w(X i) =
√
1− hii, where, 

hii is the ith diagonal element of the hat matrix. The 
estimator defined in such a way is called the Mallows’ 
quasi-likelihood estimator. When w(Xi) = 1, this estima-
tor is called as the Huber quasi-likelihood estimator. The 
details on the properties and computational aspect of this 
estimator are given in Cantoni and Ronchetti (2001).

Robust quasi‑deviance
Cantoni and Ronchetti (2001) introduced the concept 
of robust quasi-deviance based on the notion of robust 
quasi-likelihood function to evaluate the adequacy of a 
model. The robust goodness of fit measure called robust 
quasi-deviance is defined as

We call the model given in Eq.  (1) as full model and 
denote its sub model as Mα, where α = α0 ∪ αl, α0 = {0} 
denotes intercept and αl denotes a non empty subset of {
1, 2, . . . , k − 1

}
. Hence, Mα is an individual model con-

taining the predictors whose suffices are present in the 
set α. The model Mα, is defined as

(4)QM(y,µ) =
n∑

i=1

QM

(
yi,µi

)
,

(5)

QM

(
yi,µi

)
=

∫ µi

s̃
v
(
yi, t

)
w(X i)dt

− 1

n

n∑

j=1

∫ µj

t̃
E
[
v
(
yj , t

)
w
(
X j

)]
dt

(6)ψc(r) =
{
r, |r| < c,
c sign(r), |r| ≥ c,

(7)DQM(y,µ) = −2QM(y,µ) = −2

n∑

i=1

QM

(
yi,µi

)
.

(8)g(µi,α) = XT
i,αβα

where, Xi,α denotes the sub-vector of Xi containing com-
ponents indexed by α, βα is a pα-vector, and pα denotes 
cardinality of α. Suppose αN denotes all necessary pre-
dictors. Following Shao (1993) and using the notations 
similar to Hu and Shao (2008), Sakate and Kashid (2013, 
2014), we define two exclusive classes of models. If the 
model Mα contains all the necessary predictors then it 
is a correct model. Collection of all such correct mod-
els is the class of correct models and is denoted by Mc. 
Therefore,

Similarly, if the model Mα doesn’t contain at least 
one necessary predictor then it is a wrong model. 
Collection of all such wrong models is the class of 
wrong models and is denoted by Mw. Therefore, 
Mw =

{
Mα : at least one necessary predictor is missing

}
,  

i.e.Mw = {Mα : αN�α} . The model Mα is called the 
optimal model if it contains only all the necessary predic-
tors. It is denoted by MαN. In the following, we discuss 
robust model selection.

Müller and Welsh (MW) model selection criterion
Müller and Welsh (2009) combined a robust penalized 
measure of fit to the sample with a robust measure of out 
of sample predictive ability that is estimated using post-
stratified m-out-of-n bootstrap to define a robust model 
selection criterion A(Mα) in GLM. Let βα be the vector 
of regression coefficients in the model Mα , g be the link 
function, ρ be a non negative loss function, δ be a speci-
fied function of sample size n, V (Yi) = σ 2var

(
XT
i,αβα

)
 

where, σ2 is a scale parameter and var
(
XT
i,αβα

)
 is the vari-

ance function and ỹ be a vector of future observations at X 
that are independent of y. Then the model Mα is selected 
for which the criterion function (Müller and Welsh 2009)

is small. A common choice of δ(n) is 2 log n (Schwarz 
1978; Müller and Welsh 2005). σ2 is usually known. If it is 
unknown, it is estimated based on the full model by Pear-
son Chi square divided by its degrees of freedom. Let β̂ 
and µ̂ be the estimate of β and μ based on the full model. 
The in-sample term in the criterion function in Eq. (9) is 
estimated by σ̂ 2

{
A1(Mα)+ 1

nδ(n)pα

}
, where

Mc =
{
Mα : all the necessary predictors are present

}
,

i.e.Mc = {Mα : αN ⊆ α}

(9)

A(Mα) =
σ 2

n

{
E

n∑

i=1

w
(
X i,α

)
ρ

[
yi − g

−1
(
XT

i,αβα

)

σV
(
XT
i,αβα

)
]
+ δ(n)pα

+E

(
n∑

i=1

w
(
X i,α

)
ρ

[
ỹi − g

−1
(
XT
i,αβα

)

σV
(
XT
i,αβα

)
]∣∣∣∣∣y,X

)}
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To compute the second term, a proportionally allocated, 
stratified m-out-of-n bootstrap is implemented. It can 
be summarized in the following steps (Müller and Welsh 
2009).

Step I	� Compute and order Pearson residuals from the 
full model.

Step II	� Set the number of strata K between 3 and 8 
(Cochran 1977, pp. 132–134) depending on 
the sample size.

Step III	� Set stratum boundaries at the 
K−1, 2K−1, . . . , (K − 1)K−1 quantiles of the 
Pearson residuals.

Step IV	� Allocate observations to the strata in which 
the Pearson residuals lie.

Step V	� Sample (number of observations in stratum K )m
n  

(rounded if necessary) rows of (y, X) indepen-
dently with replacement from stratum K so 
that the total sample size is m.

Step VI	� Use these data to construct the estimator β̂
∗

α,m,  
repeat steps V and VI, B independent times 
and then estimate the conditional expected 
prediction loss by σ̂ 2A2(Mα), where 

and E∗ denotes expectation with respect to the bootstrap 
distribution. Combining Eqs. (10) and (11) we get an esti-
mate of the criterion function given in Eq. (9) as

Müller and Welsh (2009) suggest using n4 ≤ m ≤ n
2 for 

moderate sample size n (50 ≤ n ≤ 200) and if n is large, m 
can be smaller than n4.

The robust model selection criterion A(Mα) due to 
Müller and Welsh (2009) requires computations of the 
quantities given in Eqs.  (10) and (11). Also, a computer 
intensive proportionally allocated, stratified m-out-of-n 
bootstrap is required to compute the quantity in Eq. (11). 
This makes its implementation by a researcher quite 

(10)

A1(Mα) =
1

n

n�

i=1

w
�
X i,α

�
ρ




yi − g−1

�
XT
i,α
�βα

�

�σV
�
XT
i
�β
�





(11)

A2(Mα) =
1

n

n�

i=1

w
�
X i,α

�
ρ




yi − g

−1
�
X
T

i,α

�
�β
∗

α,m − E∗

�
�β
∗

α,m − �βα

���

�σV
�
X
T
i
�β
�





(12)Â(Mα) = σ̂ 2

{
A1(Mα)+

1

n
δ(n)pα + A2(Mα)

}

difficult. There is a need of a robust criterion which is 
easy to implement. We propose a robust version of devi-
ance based criterion (DBC) called robust DBC (RDBC).

Proposed robust model selection criterion
The DBC proposed by Sakate and Kashid (2014) is 
defined as

where, C(n, pα) is a penalty term which measures the 
complexity of the model.

Instead of deviance, we use robust quasi deviance 
(Cantoni 2004) as a measure of discrepancy of the fitted 
GLM. Using the notion behind the DBC, we combine the 
robust discrepancy measure between a nested model Mα 
and the full model with the measure of complexity of the 
model Mα to define a robust model selection criterion 
in GLM. The robust measure of discrepancy between a 
nested model Mα and the full model (Cantoni and Ron-
chetti 2001) is

where, µ̂α and µ̂ are robust estimators of μα and μ 
respectively.

We define the robust version of DBC (RDBC) as

RDBC selects the model Mα if RDBC(Mα) is minimum in 
the class of all possible sub models. In the following, we 
establish the consistency property of the criterion given 
in Eq. (14). Note that, ΛQM is always positive and vanishes 
when Mα is a full model. We require the following condi-
tion to establish the consistency property.

Condition 1  For Mα ∈ Mw and Mα∗ ∈ Mc,

The following theorem ensures that the model selected 
using RDBC falls in the class of the correct models as n 
tends to infinity.

Theorem  1  Under the Condition  1, for any correct 
model Mα∗ ∈ MC and any wrong model Mα we have,

The proof of the Theorem is deferred to the “Appendix”. 
The next Theorem establishes the consistency property of 

DBC(Mα) =
D
(
y, β̂α

)
− D

(
y, β̂

)

ϕ
− (k − pα)+ C(n, pα),

(13)�QM = DQM

(
y, µ̂α

)
− DQM

(
y, µ̂

)
,

(14)RDBC(Mα) = �QM + C(n, pα).

lim
n→∞

inf
(
DQM

(
y, µ̂α

)
− DQM

(
y, µ̂α∗

)

+C(n, pα)− C
(
n, pα∗

))
> 0.

lim
n→∞

inf Pr
(
RDBC(Mα) > RDBC

(
Mα∗

))
= 1.
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RDBC. Let Mn be the model selected using RDBC when 
sample size is n.

Condition  2  C(n, pα) = o(n) and C(n, pα) ↑ ∞ as 
n → ∞.

Theorem  2  Under the Condition  2, with probability 
approaching to one, as n tends to infinity, RDBC selects 
the optimal model 

(
MαN

)
 in the class of all correct models 

(Mc) i.e. 

The proof of the Theorem is deferred to the “Appendix”. 
RDBC criterion is based on robust estimator which is 
biased. Therefore, to improve the performance of RDBC, 
we make use of bias reduction technique like bootstrap 
to modify RDBC.

Bootstrap RDBC
It is well known fact that the robust estimators of the 
unknown regression coefficients in the GLM are not 
unbiased and their bias is non negligible for small to 
moderate sample sizes. RDBC is based on the robust 
estimator due to Cantoni and Ronchetti (2001) which is 
a biased estimator. Therefore, we propose a modified ver-
sion of RDBC using proportionally allocated, stratified 
m-out-of-n bootstrap.

The simulation study in Shao (1996), Wisnowski et al. 
(2003) and Simpson and Montgomery (1998) indicate 
that a straightforward implementation of the bootstrap 
fails in general in the presence of outliers. Müller and 
Welsh (2005) attributed this partly to non-robust loss 
function and hence non robust selection criterion and 
partly to the fact that some of the bootstrap samples may 
consist almost entirely of outliers. Proportionally allo-
cated, stratified m-out-of-n bootstrap was used by Müller 
and Welsh (2005) for the first time in robust model selec-
tion. We propose a modified version of RDBC by replac-
ing β̂ by a proportionally allocated, stratified m-out-of-n 
bootstrap estimate of β. We call this modified version of 
RDBC as bootstrap RDBC (B-RDBC). It is given by

w h e r e ,�∗
QM

= 1

B

∑
B

j=1

(
DQM

(
y, µ̂∗

α,m,j

)
− DQM

(
y, µ̂∗

m,j

))
 , 

µ̂
∗

α,m,j = g−1
(
Xα,m,jβ̂

∗
α,m,j

)
,µ̂∗

m,j = g−1
(
Xm,jβ̂

∗
m,j

)
 and 

Xm,j is the jth m-out-of-n bootstrap sample of size m 
from the matrix X. To compute the first term in B-RDBC 
defined in Eq.  (15), we use the same algorithm given in 
section “Results and discussion” with Step VI replaced by 
Step VI*.

lim
n→∞

Pr
(
Mn = MαN

)
= 1.

(15)B-RDBC(Mα) = �∗
QM + C(n, pα),

Step VI*	� Use these data to construct the estimator 
β̂
∗

α,m,j, repeat steps V and VI*, B independent 
times and then compute �∗

QM.

Simulation results
Simulated data is used to compare the performance of the 
RDBC and B-RDBC with the MW criterion. The simula-
tion design used to generate the data is described in detail 
in the “Methods” section. Table 1 gives the percentage of 
optimal model selection by RDBC, B-RDBC and MW cri-
terion. From the Table 1, it is quite evident that B-RDBC 
outperforms RDBC for 5 % as well as 10 % contamination 
for all the sample sizes considered. Use of bootstrapping 
elevated the optimal model identification ability of RDBC 
when sample size is small. The performance of B-RDBC 
with penalty P2 is compatible with MW criterion for small 
sample sizes. For large sample sizes, the performance of 
RDBC and B-RDBC with penalty P2 is compatible with 
MW criterion. As sample size increases, the performance 
of all the criteria considered in this paper, becomes more 
or less same. This is because negligible bias is introduced 
in robust estimates of the regression coefficients when 
sample size is large. As such, RDBC which is easy to under-
stand and implement can be used in place of MW criterion 
for model selection in GLM when sample size is large.

Real data application
We illustrate the proposed criterion using data on diver-
sity of arboreal marsupials (possums) in montane ash for-
est (Australia). This data is described by Lindenmayer et al. 
(1990, 1991) and is a part of the ‘robustbase’ package in R 
(possumDiv.rda). For details on the study under considera-
tion and the data collection method employed, we refer 
to Lindenmayer et  al. (1990, 1991). The response is the 
count of different species (diversity) observed on n = 151 
sites. Hence, a Poisson regression model is considered. 
The explanatory variables are shrubs, stumps, stags, bark, 
acacia, habitat, Eucalyptus and aspect. Cantoni and Ron-
chetti (2001) found observation number 59, 110, 133 and 
139 as potentially influential data points. In the presence of 
these influential points in the data, Cantoni and Ronchetti 
(2001) advocated the use of robust estimator over MLE. 
We apply the proposed criterion, MW method, AIC and 
BIC for model selection on arboreal marsupials data. The 
results are reported in Table  2. B-RDBC and Müller and 
Welsh method based on Mallows’ quasi-likelihood estima-
tor select the same model based on the minimum number 
of variables. RDBC, AIC and BIC tend to select a model 
with larger number of variables.

The GLM are providing a satisfactory answer to many 
practical problems in the emerging quantitative analy-
sis in the fields like environmental science and ecology. 
The data produced in the studies of air pollution, ozone 
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exceedance, ground water contamination, avian popula-
tion monitoring, boreal treeline dynamics, aquatic bacte-
rial abundance, conservation biology, marine and fresh 
water fish populations, etc. can be analyzed using GLM. 
GLM will provide a satisfactory solution to model based 
inference if only relevant variables are included in the 
model and there is no deviation from the assumed dis-
tribution of response. Identification and safe removal of 
the redundant predictors from the model in the presence 
of slight deviation from the assumed distribution of the 
response can be effectively done by the proposed crite-
rion. Our criterion is robust to outliers which are com-
mon in any real data. It is also shown to be a consistent 
model selection criterion. Hence, our criterion is a good 

addition to easy implement and consistent model selec-
tion toolbox of researchers.

Methods
Simulation design
The empirical comparison of the proposed and existing model 
selection criteria is done using simulation study. The simulated 
data was generated according to a Poisson regression model 
with canonical link (log) and three predictors with intercept 
i.e. logµi = β0 + β1Xi1 + β2Xi2 + β3Xi3 . The predictors 
were generated from the standard uniform distribution i.e., 
Xij ~ U(0, 1), j = 1, 2, 3. The observations on the responses 
Yi’s were generated from Poisson distribution P(μi) and a per-
turbed distribution of the form (1− ǫ)P(µi)+ ǫP(γµi), 
where, ǫ = 0.05, 0.10 and γ = 2, 5, 10.

To simulate the data, the regression parameters were 
set to β0 = 1, β1 = 1, β2 = 2 and β3 = 0. The choice of 
these parameters is not intentional but only for the pur-
pose of illustration. We considered three different sam-
ple sizes, n = 64, 128 and 192. To compute B-RDBC and 
A(Mα), we divided the entire sample into eight equal-
sized strata based on the Pearson residuals from the full 
model. In case of sample size n = 64, we draw 3 obser-
vations from each strata with replacement so that the 
sample size becomes 24. Similarly, for n = 128 and 192, 
we draw 5 and 7 observations and sample size becomes 
40 and 56 respectively. This is in the accordance with the 
algorithm mentioned in section “Results and discussion”. 

Table 1  Percentage of optimal model selection

ǫ γ n RDBC B-RDBC A(Mα)

P1 P2 P1 P2

0.05 2 64 89 93 98 99 98

128 92 95 99 100 99

192 94 96 100 100 100

5 64 87 93 93 96 99

128 89 93 99 99 100

192 91 93 99 99 99

10 64 86 91 91 96 98

128 91 94 98 99 99

192 92 95 99 99 100

0.10 2 64 88 91 96 98 97

128 90 93 98 99 99

192 92 95 99 100 99

5 64 78 85 78 87 99

128 85 89 94 97 100

192 86 90 96 98 100

10 64 78 83 70 80 98

128 84 88 92 96 99

192 86 91 97 99 100

Table 2  Selected models

Selection criterion Selected variables in the best model

RDBC Stags, bark, acacia, habitat, aspect

B-RDBC Stags, habitat

MW method based on Mallows’ 
quasi-likelihood estimator

Stags, habitat

MW method based on bias cor-
rected Mallows’ quasi-likelihood 
estimator (stratified bootstrap)

Stags, habitat

AIC Stags, bark, acacia, habitat, aspect

BIC Stags, bark, acacia, aspect
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In such a way, we obtain B =  50 bootstrap samples for 
each sample size. To implement RDBC and B-RDBC, 
we used the penalty functions P1 = pαlog(n) and 
P2 = pα

(
log(n)+ 1

)
 for C(n, pα). The Huber score func-

tion with tuning constant c = 2 was used to compute the 
robust estimator due to Cantoni and Ronchetti (2001). It 
can be easily computed using the robustbase (Rous-
seeuw et al. 2014) package in R software. This experiment 
was repeated 1000 times and the percentage of optimal 
model selection using these three criteria was obtained.

Appendix

Proof of Theorem 1  Consider,

 Therefore using Condition 1 we have,

Pr
(
RDBC(Mα) > RDBC

(
Mα∗

))

= Pr
(
DQM

(
y, µ̂α

)
− DQM

(
y, µ̂α∗

)

+C(n, pα)− C
(
n, pα∗

)
> 0

)
.

Conclusions
We proposed a robust model selection criterion in GLM 
called as RDBC. RDBC takes into account goodness of 
fit as well as complexity of the model. The consistency 
property of RDBC is also established. Performance evalu-
ation and comparison with MW method is done using 
simulation study. These methods are also applied to the 
real ecological data. We also defined a bootstrap version 
of RDBC and called it as B-RDBC. Any suitable pen-
alty function can be used without changing the form of 
RDBC and B-RDBC.

In case of quantitative analysis of environmental and 
ecological data using GLM, the distribution of response 
may deviate from the assumed distribution in the model 
and there might be some redundant predictors pre-
sent in the model which are to be identified and safely 
removed from the model. The proposed criterion can be 
used effectively to perform model selection in GLM. It 
is robust to slight deviations from the assumed response 
distribution and the presence of outliers in the data. 
Overall, the proposed model selection criterion is robust, 
consistent and easy to implement model selection crite-
rion as compared to its competitors.
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lim
n→∞

inf Pr
(
RDBC(Mα) > RDBC

(
Mα∗

))

= lim
n→∞

inf
{
Pr
(
DQM

(
y, µ̂α

)
− DQM

(
y, µ̂α∗

)
+ C(n, pα)− C

(
n, pα∗

)
> 0

)}

> Pr
{
lim
n→∞

inf
(
DQM

(
y, µ̂α

)
− DQM

(
y, µ̂α∗

)
+ C(n, pα)− C

(
n, pα∗

)
> 0

)}
= 1.

Proof of Theorem 2  In the light of Theorem 1, to prove 
Theorem 2 it is enough to prove that the value of RDBC 
for any correct model is larger than that for the optimal 
model as n tends to infinity. For this consider,

 According to Proposition 1 in Cantoni and Ronchetti 
(2001), DQM

(
y, µ̂αN

)
− DQM

(
y, µ̂α∗

)
 is distributed as 

T, where, T is a linear combination of independent Chi 
square random variables with positive coefficients. Thus, 
T is a positive valued random variable. Therefore,

Under the Condition  1 and pα∗ > pαN, we have, 
C
(
n, pα∗

)
− C

(
n, pαN

)
> 0 and increases to infinity as n 

tends to infinity, we have

This indicates that, with probability approaching to one, 
asymptotically value of RDBC for the optimal model is 
the smallest in the class of all correct models. Moreover, 
RDBC selects that model for which its value is minimum 
among all possible models. Therefore,

� □

Pr
(
RDBC

(
Mα∗

)
> RDBC

(
MαN

))

= Pr
(
DQM

(
y, µ̂α∗

)
− DQM

(
y, µ̂αN

)

+C
(
n, pα∗

)
− C

(
n, pαN

)
> 0

)

= Pr
(
DQM

(
y, µ̂αN

)
− DQM

(
y, µ̂α∗

)

< C
(
n, pα∗

)
− C

(
n, pαN

))

Pr
(
RDBC

(
Mα∗

)
> RDBC

(
MαN

))

= Pr
(
T < C

(
n, pα∗

)
− C

(
n, pαN

))

lim
n→∞

Pr
(
RDBC

(
Mα∗

)
> RDBC

(
MαN

))
= Pr (T < ∞) = 1

lim
n→∞

Pr
(
Mn = MαN

)
= 1.
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