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Abstract 

Background:  Air quality is well recognized as a contributing factor for various physical phenomena and as a pub-
lic health risk factor. Consequently, there is a need for an accurate way to measure the level of exposure to various 
pollutants. Longitudinal continuous monitoring however, is often incomplete due to measurement errors, hardware 
problems or insufficient sampling frequency. In this paper we introduce the discrete sampling theorem for the task of 
imputing missing data in longitudinal air-quality time series. Within the context of the discrete sampling theorem, two 
spectral schemes for filling missing values are presented—a Discrete Cosine Transform (DCT) and Clustering Single 
Variable Decomposition (K-SVD) based methods.

Results:  The evaluation of the suggested methods in terms of accuracy and robustness showed that the spectral 
methods are comparable to the state of the art when the data is missing at random and do have the upper hand 
when data is missing in big chunks. The accuracy was evaluated using a complete very long air pollutants time series. 
Previous studies used incomplete shorter series, altering the results. The robustness of the imputation method was 
evaluated by examining its performance with increasing portions of missing data.

Conclusions:  Spectral methods are a great option for air quality data imputation, which should be considered espe-
cially when the missing data patterns are unknown.

Keywords:  Missing data, Air quality, Univariate, Imputing, Spectral methods, Discrete sampling theorem, Sparse 
coding, K-SVD
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Background
Air quality has a profound effect on our physical and eco-
nomic health (Künzli et  al. 2000; Kampa and Castanas 
2008; Laumbach and Kipen 2012). Air pollution is origi-
nated either from natural phenomenon or from anthro-
pogenic activity (Cullis and Hirschler 1980; Robinson and 
Robbins 1970). Regardless of its sources, air pollution 
undergoes a set of chemical processes in the atmosphere, 
depending on initial concentration and ambient condi-
tions. The large number of sources and the complexity 
of the chemical processes lead to the creation of complex 
scenarios with highly variable spatial and temporal pol-
lution patterns. Thus, the analysis of air-pollution and its 
effects is a challenging task (Nazaroff and Alvarez-Cohen 

2001; Levy et  al. 2014; Moltchanov et  al. 2015; Lerner 
et al. 2015).

One of the primary tools to assess air-pollution pat-
terns is through continuous monitoring of pollutants 
ambient levels. To accomplish this, numerous physico-
chemical methods have been developed and Air quality 
monitoring (AQM) station networks have been deployed 
all around the world. However, any longitudinal data 
acquisitioning system suffers from economical con-
straints, measurement errors, routine downtime due to 
maintenance and technical malfunctions, which result in 
missing data points. Data can be missing in long chunks 
due to a critical failure or in short intervals due to, for 
example, calibration or a temporary power outage. To 
cope with this inherent problem, many imputation meth-
ods have been proposed. The length of the missing inter-
val and the kind of study conducted, are important in 
determining the best method for interpolation.
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Regardless of the method used for assigning the miss-
ing values, one can compute one value per missing sam-
ple, i.e., single imputation, or a few, which are drawn 
from a prior distribution—multiple imputation (Little 
and Rubin 2002). The latter has shown promising results 
in surveys (Rubin 2004; Su et  al. 2011), where the dis-
tribution to draw the imputed values from is known or 
can be assessed from the available samples. Air pollution 
time series are time variant with rapid, sometimes large 
changes, which would limit the use of multiple imputa-
tion methods. Therefore the focus here is on single impu-
tation methods.

Physical imputation models estimate missing values by 
utilizing environmental conditions and air quality meas-
urements acquired in other sites before, at and after the 
fact, and measurements acquired at the same location 
before and after the fact (Hopke 1991). This approach 
works if the physical laws governing the different phe-
nomena are well known and relatively simple. However, 
generally, the nature of the entire physical and chemical 
processes which govern the observed phenomenon, are 
either unknown or too complex to be described by an 
analytical model, thereby rendering the physical model 
approach unsuitable.

Data driven models, typically, do not assume any physi-
cal regime governing the observed phenomenon. These 
methods fill data gaps by using patterns and relations that 
are observed in the available data (Solomatine et al. 2008). 
Data driven methods are either based on a single variable 
or on multi-variable imputation. Single-variable meth-
ods estimate missing values through available measure-
ments of the same environmental variable (e.g., NO2, CO 
or O3). Prominent single variable methods are replacing 
missing values with the available samples’ mean, nearest 
neighbor (NN), linear interpolation and spline (Junninen 
et al. 2004). Multi-variable imputation techniques calcu-
late missing samples using data of more than one vari-
able, exploiting relationships between different variables 
that manifest themselves in the data [e.g., NO2 versus O3 
presence (Lee et al. 2002; Haagen-Smit et al. 1953)]. All 
the aforementioned methods, however, are local methods 
either in space or in time; meaning missing data is recov-
ered by using data from preceding and succeeding availa-
ble samples (i.e., locality in time) or adjacent stations (i.e., 
locality in space). Thus, these methods are mostly effec-
tive for cases with a relatively low number of missing data 
points, they are easy to compute but quickly become less 
accurate as the amount of missing data increases.

Spectral representation of a signal refers to its analysis 
with respect to frequency, rather than time (Hamilton 
1994). Frequency representation of a signal correspond 
to how much of the signal lies within each given fre-
quency band over a range of frequencies. A signal can 

be converted between the time and frequency domains 
through transformations that project the signal onto a set 
of basis-functions which differ in their change rates, i.e., 
frequencies. The Fourier transform (Bracewell 1965), for 
example, projects the time series onto a set of sine waves 
of different frequencies, each of which represents a fre-
quency component. Similarly, the cosine transform pro-
jects the signal on a set of cosine functions oscillating at 
different frequencies. As the AQM acquired air-pollution 
time-series, which are inherently discrete, the discrete 
forms of these transformations—the Discrete Fourier 
Transform (DFT) (Bracewell 1965) and the Discrete 
Cosine Transform (DCT) (Rao et al. 1990) can be used. 
The justification of signals’ spectra for analysis is two-
fold. First, spectral methods are global, i.e. they use the 
complete signal for computation, not just local extremes, 
similar sub-sequences or areas near the missing data. 
Second, as atmospheric composition changes over a 
finite length of time, ambient pollutants levels and mete-
orological variables (i.e., temperature and wind) can be 
viewed as a data signal with a low rate of change. Hence, 
the signal can be represented by a small number of coef-
ficients that correspond to the low frequencies (Varotsos 
et al. 2005; Marr and Harley 2002; Chellali et al. 2010).

A formal mathematical framework for recovering miss-
ing signal’s samples in the frequency domain, the discrete 
sampling theorem, was presented by   Yaroslavsky et. al 
(2009). The discrete sampling theorem states the terms 
and conditions a band-limited frequency representation 
of a signal with missing samples must fulfill so the sig-
nal can be fully recovered, given it is narrow banded in 
any spectral domain. The theorem constitutes the new 
data imputation scheme presented here. Within its con-
text two spectral signal representations are considered: 
The DCT (Rao et  al. 1990; Yaroslavsky et  al. 2009) and 
the sparse coding K-Cluster Single Variable Decomposi-
tion (K-SVD) (Aharon et al. 2006). The application of the 
suggested methods show that they are comparable to the 
state-of-the-art when imputing short missing sequences 
and do hold the upper hand when larger chunks of subse-
quent data are missing.

Prior art
Several mathematical models have been suggested for 
air-pollution data imputation (Junninen et al. 2004; Plaia 
and Bondi 2006; Schneider 2001). These methods include 
local methods, such as Nearest Neighbor (NN), mean, 
linear interpolation, spline and Expectation Maximiza-
tion (EM). All these methods are thoroughly described 
in the literature and are recapitulated here for the sake of 
completeness.

Simple local methods for data imputation such as 
NN, Mean and Linear Interpolation were shown to 
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be effective, especially when signal’s average levels are 
estimated (Junninen et  al. 2004). NN fills missing sam-
ples using the value of its nearest known neighbor. Lin-
ear Interpolation infers the missing values based on a 
weighted average of the neighboring known samples 
based on the temporal distance. Mean interpolation 
replaces missing values with the average of the set of 
known samples within a temporal window around the 
missing sample.

A computational intense local imputation method 
is the Spline interpolation. Spline describes the signal 
between the available samples through a set of continu-
ous functions. It can be thought of setting a rope through 
the available k known samples (nodes). The signal is bro-
ken into k-1 segments, each represented by a third degree 
polynomial function:

For the k−1 segments, Spline will set k−1 piecewise 
functions, composing a total of 4(k−1) unknown param-
eters—

{
[ai, bi, ci, di]i∈[1,k−1]

}
. In order to compute these 

4(k−1) unknowns, it is imposed that the first and second 
derivatives are equal at each node:

This results in 4 · (k − 1)+ 2 equations, i.e., 2 equa-
tions more than the number of unknowns. To deal with 
the extra 2 equations, the second derivatives at the end 
points are set to 0.

The advantage of this method is that while being rela-
tively simple to calculate, the smooth function achieved 
with continuity in the first and second derivatives, better 
describes the changing nature of physical phenomenon 
over time. This method was shown to work well with 
short intervals of missing data points (Junninen et  al. 
2004).

Expectation Maximization (EM) algorithm is often 
used for filling in missing data using available data from 
the entire time series (Junninen et  al. 2004; Dempster 
et al. 1977). The main assumption is that the missing data 
has linear relation with available data. To exploit that the 
data is split into a set of equal length vectors, 

{
d(k)

}
∈ D , 

e.g., daily, weekly or monthly sequees. Then the missing 
samples are assigned with an initial guess of the miss-
ing values (i.e., zeros or, for each vector, the average of its 
available samples). The missing data points in one vector 
are computed by a linear combination of the vectors with 
non-missing corresponding data points. The covariance 
between the vectors is used as a way to determine how 

(1)fi(xi) = aix
3
i + bix

2
i + cixi + di

(2)

dfi(x)

dx
=

dfi−1(x)

dx

d2fi(xi)

d2x
=

d2fi−1(x)

d2x

dominant a particular vector will be in the proposed lin-
ear combination.

Formally, let A be a matrix of G × P data points, where 
G is the number of time periods evaluated (e.g., a week or 
a day) and P is the number of records per the above time 
period (e.g., samples per week or day). Let {a} ⊆ A be the 
set of available data and {m} ⊆ A be the set of missing 
samples. For a given column c, let 

{
aca
}
 and 

{
acm

}
 be the 

sets of available and missing data in c respectively and μc 
is the mean value of 

{
aca
}
. Finally, A\c is matrix A exclud-

ing column c. Using the notation above, missing values of 
A are estimated through the following linear regression 
model:

e is the residual matrix assumed to have a zero mean and 
B is the matrix of the regression parameters to be calcu-
lated using the covariance matrix, Σ:

where, Σaa denotes the sub-convergence matrix of col-
umns of the available values with the columns of the 
available values. Σam denotes the sub-convergence matrix 
of columns of the available values with the columns of the 
missing values.

Applying Eq. 3 results in filling the missing data. Hav-
ing the data in hand, a new mean and covariance matrix 
are calculated. Using the new B and Σ the process is 
repeated for all originally missing samples. The process is 
repeated until convergence.

The Regulated EM algorithm (Smith et  al. 2003) pre-
sents a slight modification in the EM method—the sub-
convergence matrix �−1

aa  is replaced by the following 
equation:

where D is the diagonal of Σaa and h is a scalar regula-
tion parameter. This modification ensures that the matrix 
is positive definite, invertible and converges faster, while 
artificially makes the variance of each vector more dom-
inant with respect to its covariance with the rest of the 
columns.

The EM method may lead to better results especially 
if the missing segments are part of a recurring pat-
tern. But if the pattern is not recurring in a set rhythm, 
this method may not work. Further, this is an iterative 
method which will lead to a greater computational costs 
compared to the local methods described above.

All the aforementioned methods for air quality miss-
ing data imputation have been well documented. How-
ever, all these methods are not sufficiently accurate when 

(3)
{
acm

}
= µc + ({a}A\ca − µA\c)B + e

(4)B = �−1
aa ·�am

(5)�−1
aa ←

(
�aa + h2D

)−1
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longer segments of data are missing or in the event that 
the relationship between the data segments is not lin-
ear. Spectral methods consider the entire signal in their 
evaluation of missing data, which in return present better 
results when large chucks of data are missing.

A quasi-spectral method for air-quality data imputa-
tion, which uses information from the air monitoring 
stations array is Site-Dependent Effect Method (SDEM) 
(Plaia and Bondi 2006). The SDEM assumes that there 
are similarities in air quality sequences throughout the 
week, as well as between a given day of the week e.g. 
Sunday or Monday, and given hour of day. The missing 
data is then imputed by taking the mean value of all the 
non-missing measurements from the other stations at the 
missing time point, and modifying it based on the week, 
day and hour effect of the given station. This method is 
similar to spectral methods in the way it utilizes intuitive 
cycles i.e. hours, days and weeks, but it misses less obvi-
ous cycles, that may contain a lot of information such as 
local-specific phenomena of limited regions. In addition, 
all the weights in this method are arbitrarily set and it 
stands to reason that some cycles have a more profound 
effect than others and thus different weight values may 
produce more accurate results.

Results and discussion
For evaluating the imputation methods and their suitabil-
ity for different scenarios and loss patterns, one must use 
a complete dataset and impose different data loss pat-
terns and portions. The data was acquired from a stand-
ard AQM station, maintained by the Haifa District 
Municipal Association for Environmental Protection 
(HDMAE).1 The station is situated on the roof of the 
HDMAE headquarters building, located at the center of 
the Haifa Bay industrial- commercial area. The station is 
~12 m above ground level and reports every 30 min the 
average temperature, wind speed and direction, PM2.5 
and PM10 levels, O3, NOx, NO2, SO2, and CO. In this 
study two long complete time series of SO2 and NO2 were 
used. SO2 data was acquired using a pulsed fluorescence 
analyzer, over 167  days from Decmber 31st, 2006 until 
July 18th, 2006—a total of 8016 half hour average sam-
ples. NO2 levels were recorded using a chemilumines-
cence analyzer from January 27th, 2008 to June 4th, 
2008—a total of 138 days with 6240 samples. For the EM 
computation the data was divided into 24  h sequences, 
each consists of 48 measurements constructing 167 SO2 
sequences and 138 NO2 sequences.

Previous data imputation studies (Junninen et al. 2004; 
Plaia and Bondi 2006; Schneider 2001) used shorter time 
series with gaps of missing samples in the original data. 

1  http://www.envihaifa.org.il/eng.

To cope with that, the gaps in the original time series 
were imputed as a preprocessing phase. After filling these 
gaps, a deliberate omission of data was executed and 
the omitted data was recovered. The error between the 
values of omitted and recovered samples was reported. 
Thus, the imputed data in the preprocessing phase was 
regarded as ground truth. All imputation methods that 
do not relay on physical models must base their missing 
data estimates on the signals’ characteristics and behav-
ior. Working with time series that has imputed data, alter 
these characteristics and thus hamper the results. In this 
study, working with a complete longitudinal datasets has 
mitigated these biases.

Epidemiologic and exposure studies on health effects 
of air pollution look at long term chronic and short term 
acute health implications (Lebowitz 1996). Chronic stud-
ies look at the long term effects of pollutants. These stud-
ies mainly focus on cumulative exposure and less on 
sudden increase in the concentration of any one pollut-
ant. Acute effects, on the other hand, are transient and 
are a result of time variant exposure (Peng and Dominici 
2008). The evaluation criteria for data imputation must 
account for the different nature of these two classes of 
studies. When chronic exposure is sought, the recon-
struction mean error, typically through the mean squared 
error (MSE), should be the performance measure. For 
acute exposure assessment studies, one should evaluate 
the maximum error in signal’s values and behavior. As an 
assessment how well the reconstructed signal presents 
the original data’s behavior, the difference in the second 
statistical moments of the original and reconstructed sig-
nals are computed. For practicality sake, the runtimes are 
also reported.

In order to evaluate imputation performance, two data 
omission mechanisms were used. The first mechanism 
is omission of data at completely random locations, i.e., 
data Missing Completely At Random (MCAR) (Little and 
Rubin 2002). This type of behavior was found to charac-
terize air quality data standard AQM stations (Junninen 
et  al. 2004; Rubin 1976). The second samples removal 
mechanism removes a single chunk of data starting at a 
completely random time period.

For both data omission mechanisms a series of tests 
were carried out, where at each test, an increasing por-
tion of data was omitted. The data portion that was 
omitted ranged from one sample to 99  % of the entire 
dataset. At each test the number of omitted samples was 
increased by 1. This set of tests extends previous studies, 
which evaluated the methods for small sets (i.e., small 
number of tests) all limited to small portions of miss-
ing samples [3, 10 and 25 %—(Schneider 2001; Plaia and 
Bondi 2006; Junninen et al. 2004) respectively]. The loca-
tion of the omitted samples is chosen at random at each 

http://www.envihaifa.org.il/eng
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run. In order to mitigate a possible bias due to a specific 
location of the omitted data, for each number of omitted 
samples, five random tests were carried out, so at each 
test different random samples were chosen. The aver-
age performance indicator’s value over the five runs is 
reported.

In all cases and scenarios tested here, the spline method 
is never the method of choice. Hence, for all examined 
cases, the spline method was shown to be inferior. In 
some performance criteria, such as MSE, maximum error 
and standard deviation differences for batch omission, 

the error for spline is between five to seven orders of 
magnitudes larger than the rest of the methods, making 
it hard to be put on the same graph. Therefore, the spline 
results are omitted from Fig. 1 through Fig. 4.

Figure 1 depicts the reconstruction MSE for increasing 
portions of missing data for the NO2 (Fig.  1a) and SO2 
(Fig. 1b) time series. The error for each portion of miss-
ing data is computed over five runs, for the two omis-
sion mechanisms described above—randomly scattered 
(Fig. 1a) and batch (Fig. 1b). When data is omitted at ran-
dom, the local methods perform best; namely the Spline 

Fig. 1  Five runs averaged MSE as a function of number of omitted data samples reconstructing the signal with the following imputation methods 
NN (blue), Linear Interpolation (green), substituting missing data with the Mean (cyan), EM (purple), DCT (yellow) and K-SVD (black). The color codes 
are detailed in a panel. The missing data was omitted either in random (a) or in batches (b). a NO2 (random locations). b SO2 (continuous batch)
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in a case of a very low corruption rate and linear interpo-
lation as the rate of corruption increases. When the data 
is missing in segments, the EM, Discrete Cosine Trans-
form (DCT) and K-SVD algorithms preform the best. In 
studies centered on chronic effects of air pollution, if the 
data is missing in short intervals, the linear interpolation 
is the best method for filling in the missing data. But in 
the event of a long missing sequence, the K-SVD should 
be the method of choice.

Figure  2, presents the maximum difference between 
the original signal and the reconstructed one. It can be 
seen that for randomly omitted data (Fig. 2a) the K-SVD 

and the DCT methods have the smallest deviation with 
a slight advantage for the K-SVD over the DCT. Conse-
quentially, studies conducted in order to investigate the 
acute effect of air pollution should fill in missing data 
with the K-SVD method. When the data is missing in seg-
ments (Fig. 2b), for all methods the error is in the same 
magnitude of the signal. Therefore such studies should 
not use time series with long temporal windows missing.

Figure 3 presents the difference in the standard devia-
tion between the reconstructed and the original sig-
nal. For both random and batch omitted data the DCT, 
K-SVD and EM are at par, outperforming the local 

Fig. 2  Five runs averaged max difference as a function of number of omitted data samples reconstructing the signal with the following imputation 
methods NN (blue), Linear Interpolation (green), substituting missing data with the Mean (cyan), EM (purple), DCT (yellow) and K-SVD (black). The color 
codes are detailed in a panel. The missing data was omitted either in random (a) or in batches (b). a NO2 (random locations). b SO2 (continuous batch)
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methods. The standard deviation difference between 
the original signal and the reconstructed one is smallest 
using the DCT method if the data is missing at random. 
The EM method is best if a long sequence is missing. 
Overall the DCT method reconstructs the missing data 
in a way that is more similar to the original signal in 
terms of STD compared to all the other methods.

The computation times of the various methods are pre-
sented in Fig.  4. As expected, the spectral methods i.e. 
K-SVD for signal recovery from sparse dimension, DCT 
and EM are much more costly in terms of computation 
times. In both omission mechanisms, the computation 

time decreases as the portion of missing data increases. 
Even though the spectral methods are more costly in 
terms of computation, one should note that the data 
being processed describes months’ worth of data, when 
the computation times are in the order of minutes. 
Therefore the longer computation times should not pre-
vent one form using these spectral methods for data 
imputation.

Conclusions
In this paper two spectral methods for data imputation, 
originating from the discrete sampling theorem, are 

Fig. 3  Five runs averaged max difference as a function of number of omitted data samples reconstructing the signal with the following imputation 
methods NN (blue), Linear Interpolation (green), substituting missing data with the Mean (cyan), EM (purple), DCT (yellow) and K-SVD (black). The 
color codes are detailed in a panel. The missing data was omitted either in random (a) or in batches (b). a NO2 (random locations). b SO2 (continuous 
batch)
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introduced to air quality time series with missing data. 
The methods are thoroughly evaluated with respect to 
the common practice and the state of the art missing data 
recovery methods. The evaluation of the methods here 
is much more comprehensive than previous studies, as 
it uses much longer air quality time series with no miss-
ing data, under significantly larger number missing data 
scenarios.

The evaluation results are summarized in Fig.  5 and 
Table 1 (for randomly omitted data) and Fig. 6 and Table 2 
(for chunks removal). Figures 5a and 6a depict the average 

MSE for NO2 (randomly omitted data) and SO2 (chunks 
removal) time series. The average is computed over three 
sets of test runs. The first set, low signal degradation due 
to missing data, are all the tests with 1 sample missing up 
to 33 % of missing samples. This set is dubbed low and is 
marked in blue (Low-blue). The second set is all runs with 
33 % samples omitted up to 66 % (Mid-green). The last set 
of runs present 66–99 % samples missing, i.e., high degra-
dation (High-Yellow). For data missing at random, Fig. 5a 
and Table 1 (MSE), the simple imputation methods pro-
vide the best MSE results. However, the spectral methods 

Fig. 4  Five runs averaged max difference as a function of number of omitted data samples reconstructing the signal with the following imputation 
methods NN (blue), Linear Interpolation (green), substituting missing data with the Mean (cyan), EM (purple), DCT (yellow) and K-SVD (black). The 
color codes are detailed in a panel. The missing data was omitted either in random (a) or in batches (b). a NO2 (random locations). b SO2 (continuous 
batch)
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do not fall far behind. For data missing in chunks, Fig. 6a 
and Table  2 (MSE), the spectral methods, DCT and 
K-SVD, present the best performance MSE-wise.

Figure  5b and Table  1 (Diff) and Fig.  6b with Table  2 
(Diff) present the max difference. For randomly miss-
ing data, the spectral methods, i.e., K-SVD and DCT, 

Fig. 5  Results summary—NO2 data missing at random for low signal degradation, i.e. small portion of missing data, mid range signal degradation 
and high signal degradation. The color codes are detailed in panels within each image. a MSE, b Max difference, c STD difference, and d execution 
time

Table 1  Results summary—NO2 data missing at random

KSVD DCT EM MN Sp Lin NN

MSE (ppb)

 Low 4.54 5.77 4.60 5.79 1.68 1.51 2.04

 Mid 5.64 7.47 5.69 5.79 2.24 1.88 2.31

 High 9.80 12.48 9.89 5.79 4.9 3.29 3.69

Diff (ppb)

 Low 40.12 51.81 44.06 113.6 54.23 40.5 109.3

 Mid 58.26 73.40 62.05 136.9 153.5 58.97 71.77

 High 96.83 128.4 95.47 143.9 622.6 95.39 51.84

STD (ppb)

 Low −0.17 −0.11 −0.18 −15.56 −14.89 −14.97 −14.91

 Mid −0.72 −0.55 −0.75 −17.09 −14.52 −15.16 −14.91

 High −2.28 −2.71 −2.23 −19.40 −8.59 −15.66 −14.92

Time (sec)

 Low 303 0.23 26.22 1.78 × 10−5 3 × 10−3 2 × 10−4 7.89 × 
10−5

 Mid 272 0.96 17.07 1.01 × 10−5 2.5 × 10−3 2 × 10−4 1.4 × 
10−4

 High 164 6.6 6.59 2.03 × 10−5 1.5 × 10−3 2.7 × 10−4 4.1 × 
10−4
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have the upper hand. For missing chunks, the error pro-
duced by all methods is so large, that none of them are 
recommended for this case. Figure  5c, Table  1 (STD), 
Fig. 6c and Table 2 (STD) detail the difference in the sec-
ond moment of the original and reconstructed signals. 

For both random and chunks missing data patterns, the 
K-SVD and DCT present the best results.

While the spectral methods do present higher com-
putational times (Fig.  5d, Table  1 (Time), Fig.  6d and 
Table  2 (Time)), these times are still feasible. Moreover, 

Fig. 6  Results summary—SO2 data missing in batches for low signal degradation, i.e. small portion of missing data, mid range signal degradation 
and high signal degradation. The color codes are detailed in panels within each image. a MSE, b Max difference, c STD difference, and d execution 
time

Table 2  Results summary—SO2 data missing in batches

KSVD DCT EM MN Sp Lin NN

MSE (ppb)

 Low 80.76 26.48 40.82 95.06 3.89 × 109 81.17 85.39

 Mid 98.45 35.11 49.74 101.4 7.9 × 1010 99.77 101.8

 High 110.7 58.59 56.07 104.1 3.29 × 1011 112 112.2

Diff (ppb)

 Low 270.9 336.1 270 208.8 3.28 × 1010 302.2 313

 Mid 280.3 356.6 279.3 233.6 5.18 × 1011 304.3 311.2

 High 284.3 348.5 286.4 231.9 1.57 × 1012 295.5 297.9

STD (ppb)

 Low −2.19 −0.97 −50.42 −8.75 2.91 × 109 −2.59 −0.64

 Mid −16.06 −5.17 −57.39 −30.12 7.73 × 1010 −16.42 −11.31

 High −45.48 −26.69 −72.05 −57.86 3.62 × 1011 −46.28 −43.49

Time (sec)

 Low 387.1 0.2 7.86 9.64 × 10−5 11.7 × 10−3 4.78 × 10−4 26.3 × 
10−3

 Mid 207.7 0.49 8.4 8.89 × 10−5 8.41 × 10−3 7.61 × 10−4 0.16

 High 70.06 2.88 7.46 1.02 × 10−4 5.59 × 10−3 1 × 10−3 0.44
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the spectral methods have the upper hand, MSE-wise, 
when the data is missing in chunks and when evaluat-
ing acute exposure, i.e., max-difference and signal behav-
ior through its standard deviation. In the cases where the 
simple methods prevail, the spectral methods do not fall 
far behind. Therefore, we conclude that the spectral meth-
ods in general, K-SVD and DCT in particular, do present 
viable tool for data imputation and should be used as the 
tool of choice in general as it presents the overall best 
performance.

Both the KSVD (Aharon et  al. 2006) and DCT (Yaro-
slavsky et al. 2009) methods assume band-limited signal, 
i.e., only a small portion of signal’s spectral representa-
tion coefficients are non-zero. In most implementations 
the portion of non-zero coefficients is predetermined. 
Choosing larger portions of non-zero coefficient would 
result in longer execution times and may jeopardize 
the convergence of both the DCT and KSVD imputa-
tion methods. Smaller portions of non-zero coefficients 
decrease computation times and mitigate the risk of not 
converging, but may increase the output error. Therefore, 
for using these methods, one should carefully assess what 
is the correct portion of non-zero coefficients in the sig-
nals’ spectra.

Methods
The discrete sampling theorem
Next we outline the discrete sampling theorem, which 
constitute the data imputation scheme presented here.

Let a(t) be a continuous signal and 
{
AN

}
 the set of N 

measurements of the signal. These N samples constitute a 
uniform sampling grid and are acquired is such way that 
if all these N-samples are known, following the Nyquist–
Shannon sampling theorem, (Unser 2000) they are suffi-
cient for representing the continuous signal. Let 

{
AK

}
 be 

the set of K (out of N) available data points taken at irreg-
ular positions of the signal regular sampling grid. Due to 
data loss K < N . Note that the missing samples are 

{
AN

}
 

excluding 
{
AK

}
, 
{
AM

}
=

{
AN

}
\
{
AK

}
. The goal then, 

is to generate out of this incomplete set of K  samples, a 
complete set of N  signal samples that secures the most 
accurate, in a certain metrics—typically L2, approxima-
tion. The discrete sampling theorem (Yaroslavsky  et al. 
2009) states the terms and conditions a signal must ful-
fills in the transform domain so its 

{
AN

}
 samples can be 

recovered from the available 
{
AK

}
 samples:

Theorem  1  The Discrete Sampling Theorem (Yaro-
slavsky et  al. 2009)—Any discrete signal of N  samples 
defined by its K ≤ N  sparse and not necessarily regu-
larly arranged samples, and is known to have only K ≤ N  
non-zero transform coefficients for certain transform ΦN

(i.e., ΦN- transform “band-limited” signal) can be fully 

recovered from exactly K  of its samples provided positions 
of the samples secure the existence an inverse transform 
matrix, 

{
ΦK of N

}−1, where ΦK of N consists of K rows of 
the transform matrix ΦN that correspond to the K sam-
ples positions. If the signal has more than K non-zero 
transform coefficients, the recovery process guarantees 
minimum reconstruction error.

Theorem  1 implies that selecting a transform that 
features the best energy compaction with the small-
est number of transform coefficients secures the best 
approximation of 

{
AN

}
 for a given subset 

{
AK

}
 of its 

samples. The recovery process is based on the following 
simple iterative procedure (Yaroslavsky et al. 2009 ):

Algorithm 1. Discrete sampling theorem imputation 
algorithm.

The mean square error of this algorithm is calculated by:

The transform of choice here is the discrete cosine trans-
form (DCT), given by:

DCT is a widely used function in the field of image pro-
cessing and data compression because of its tendency to 
concentrate most of the energy from a signal in a narrow 
band (Wang et al. 2000).

Sparse coding data imputation
Sparse coding is an emerging spectral approach to data 
analysis (Elad 2010). While classical spectral methods 
utilize predetermined set of basis-functions (e.g., DFT, 

(6)MSE = AN
i −

̂
AN
i

2

2
= Σj /∈R

∣∣∣∣
̂
αN
i (j)

∣∣∣∣
2

(7)

αN (k) = �N−1
j=0 AN

(
j
)
cos

[ π
N

(
j + 0.5

)
k
]
k = 0, . . .N − 1
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DCT) for representing the signal, sparse sensing meth-
ods, compute the set of basis-functions, which results 
in the sparsest representation of the signal, i.e., most 
coefficients of the signal’s representation are zeros. The 
set of basis-functions is referred to as dictionary, where 
each element in the dictionary is an atom. The process of 
computing the basis-functions is called dictionary learn-
ing (Kreutz-Delgado et  al. 2003). K-SVD (Aharon et  al. 
2006) is a dictionary learning algorithm for creating a set 
of basis functions for sparse representations. K-SVD is 
a generalization of the k-means clustering method, and 
it works by iteratively alternating between sparse cod-
ing of the input data (based on the current dictionary), 
and updating the atoms in the dictionary to better fit the 
data.

The discrete sampling theorem suggests that the 
smaller the number of non-zero coefficients in the 
domain transform, the better the reconstruction is. Yet, 
the transform of choice, DCT, is known to have good 
energy compaction in general but it is not costumed 
nor guaranteed for the specific data in hand and may 
or may not yield a sparse representation (Elad 2010). 
To cope with this problem, building a custom trans-
form or dictionary for sparse coding is suggested (Elad 
2010; Aharon et  al. 2006). The dictionary is an over-
complete matrix, D ∈ R

N×P, that consists of P atoms 
(with a length of N) and is designed so a signal AN  can 
be then represented by a sparse linear combination of 
these atoms. For finding D the K-cluster Single Value 
Decomposition (K-SVD) method (Aharon et  al. 2006) 
is employed (for details see Section S1 in the Additional 
file 1), where the matrix AN  is utilized as the training set 
for the process.

Having the dictionary in hand, a sparse representation 
for AN is sought. Given D, the dictionary, or basis func-
tions, the sparse representation, xN, aims at minimizing 
the error between the original signal AN and the estimate 
of the signal using the basis function set, D:

where �·�0 is the ℓ0-norm, counting the non-zero ele-
ments in a vector and ‖B‖F is the Frobenius Norm: 
�B�F =

√∑
ij

(
Bij

)2.

Equation 8 was shown to be NP-hard, i.e., no efficient 
methodology is known for finding xN. The approxima-
tion of the sparse representation can be obtained through 
the matching pursuit (MP) algorithm (Mallat and Zhang 
1993), or through the K-SVD algorithm, which produces 
xN as a byproduct. Note, that xN is guaranteed to be 
both sparse (i.e., band limited) and zero in all coefficients 
outside the band limited area, R. Thus, unlike the DCT 

(8)min
x

{∥∥∥ANDxN
∥∥∥
2

F

}
S.T

∥∥∥xN
∥∥∥
0
< K

solution, there is no need to assume beforehand which 
coefficients are outside R and no need to zero them. Hav-
ing both K-SVD and MP algorithms in hand, Algorithm 1 
becomes:

Algorithm 2. K-SVD imputation algorithm

The data omission, imputation and evaluation codes 
were written as Matlab scripts (Matlab R2012b) and are 
available for academic purposes from http://fishbain.net.
technion.ac.il.
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