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Global existence and convergence rates for the
smooth solutions to the compressible
magnetohydrodynamic equations in the half
space
Qing Chen1* and Zhong Tan2

Abstract

Background: With the characteristics of low pollution and low energy consumption, the magnetohydrodynamics
has made widely attention. This paper provides the standard energy method to solve the magnetohydrodynamic
equations (MHD) in the half space R3+. It proves the global existence for the compressible (MHD) by combining the
careful a priori estimates and the local existence result. This study also considers the large time behaviors of the
solutions.

Results: The interactions between the viscous, compressible fluid motion and the magnetic field are modeled by the
magnetohydrodynamic system which describes the coupling between the compressible Navier-Stokes equations and
the magnetic equations. This study has applied the analytical method to obtain the solutions to (MHD) in R

3+. It
proves that under the assumption that the initial data are close to the constant state, the global existence of smooth
solutions can be established. Moreover, the various decay rates of such solutions in Lp-norm with 2 ≤ p ≤ +∞ and
their derivatives in L2-norm can also be derived from combining the decay estimates of the linearized system and the
energy method.

Conclusions: This study demonstrates that the global existence and the decay rates for the compressible (MHD) can
be established under the similar initial assumptions as for the compressible Navier-Stokes equations. Especially, the
results suggest that if the initial velocity is small, the velocity decays at a certain rate. This implies that only under the
initial assumption that the data are large, it may reach the requirements of (MHD) power generation, which can be
used to achieve the value of industrial application and environmental protection.
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Background
Magnetohydrodynamics, which combines the environ-
mental fluid mechanics and electrodynamics theories
to study the interaction discipline between the con-
duction fluid and electromagnetic, is the theory of the
macroscopic, and it has spanned a very large range of
applications (Gerebeau et al. 2006). Due to the lower envi-
ronmental pollution, especially in energy industry, mag-
netohydrodynamic power generation is used to conserve
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energy and mitigate pollution in order to protect the
environment. In virtue of the industrial importance and
theoretical challenges, the study on (MHD) has attracted
many scientists. In the present paper, we are inter-
ested in the well-posedness theory of (MHD). Many
results concerning the existence and uniqueness of (weak,
strong or smooth) solutions in one dimension can be
found in (Chen and Wang 2002, 2003; Kawashima and
Okada 1982) and the references cited therein. In multi-
dimensional case the global existence of weak solutions
for the bounded domains has been established recently
in (Ducomet and Feireisl 2006; Tan and Wang 2009).
The local unique strong solution has been obtained in
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(Fan and Yu 2009). In (Chen and Tan 2010, 2012) we estab-
lished the global existence and decay rates of the smooth
solutions for the Cauchy problem. However, many fun-
damental problems for the compressible (MHD) in the
half space are still open. In this paper, we will extend
our results (Chen and Tan 2010) to the initial boundary
problem in the half space.

Results
In this paper, we will consider the initial bound-
ary value problem for the compressible magnetohy-
drodynamic equations (MHD) in the half space R

3+ ={
x = (x′, x3) : x′ ∈ R

2, x3 > 0
}
(cf. (Gerebeau et al. 2006)):⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u − P) = μ0curlH × H,

Ht − curl(u × H) + 1
σμ0

curlcurlH = 0, divH = 0.

(1)

Here ρ,u = (
u1,u2,u3

)
,H = (

H1,H2,H3) represent
the density, velocity of the fluid and the magnetic field
respectively. μ0 > 0 stands for permeability of free space,
and σ > 0 is the electric conductivity. The stress tensor
P is given by

P = −pI + μ
(
∇u + ∇uT

)
+ λdivuI,

where p = p(ρ) is the pressure and the viscosity coeffi-
cients λ, μ satisfy

2μ + 3λ > 0 and μ > 0.

For convenience, we reformulate the system (1) as⎧⎪⎨⎪⎩
ρt + div(ρu) = 0,
ρut + ρu · ∇u + ∇p = �u + ∇divu + curlH × H,
Ht + curl(u × H) − �H = 0, divH = 0,

(2)

in (0,∞) × R
3+. Notice that we have normalized some

physical constants to be unit but without reducing any
essential difficulties for our analysis. We complement (2)
the initial condition

(ρ,u,H)(0, x) = (ρ0(x),u0(x),H0(x)), x ∈ R
3+, (3)

and the following boundary conditions

u|{x3=0} = 0, H|{x3=0} = 0, (4)

or

u|{x3=0} = 0, H ·n|{x3=0} = 0, curlH×n|{x3=0} = 0, (5)

where n = (0, 0,−1) is the normal vector of R3+. We
assume that throughout the paper the initial boundary
data satisfy certain compatibility conditions as usual in
(Matsumura and Nishida 1983).
Before stating out our results, we shall introduce some

standard notations.
Notations.We denote by Lp, Wm, p the usual Lebesgue

and Sobolev spaces on R
3+ and Hm = Wm,2, with norms

|·|Lp , |·|Wm,p , |·|Hm respectively. For the sake of conciseness,
we do not precise in functional space names when they
are concerned with scalar-valued or vector-valued func-
tions. We denote ∇ = ∂x = (∂1, ∂2, ∂3)t , where ∂i = ∂xi ,
and put ∂ lx f = ∇ lf = ∇ (∇ l−1f

)
for l = 1, 2, 3, · · · . We

assume that C be a positive generic constant throughout
this paper that may vary at different places and the inte-
gration domain R

3+ will be always omitted without any
ambiguity. Now our main results can be formulated as
the following theorems. Firstly we state the results on the
global existence and uniqueness of smooth solutions as:

Theorem 1. Assume that the initial data are close
enough to the constant state (ρ̄, 0, 0)with ρ̄ > 0, i.e., there
exists a constant δ0 such that

| (ρ0 − ρ̄,u0,H0) |H3 ≤ δ0. (6)

Then there exists a unique globally smooth solution
(ρ,u,H) of the initial boundary problem (2)–(4) or (2), (3)
and (5) such that for any t ∈[0,∞), it holds

|(ρ − ρ̄,u,H)(·, t)|2H3 +
∫ t

0
|∂xρ(·, s)|2H2 + |(∂xu, ∂xH)(·, s)|2H3ds

≤ C|(ρ0 − ρ̄,u0,H0)|2H3 .
(7)

Remark 1. We will only prove Theorem 1 under the
boundary condition (4). Due to the special geometry of
the boundary of the half space, a simple calculation shows
that the boundary conditions onH in (5) are equivalent to
the following Dirichlet-Neumann boundary conditions:

∂3H1|{x3=0} = ∂3H2|{x3=0} = 0, H3|{x3=0} = 0.

Hence to treat H1,H2 as in (Matsumura and Nishida
1983), we can also prove Theorem 1 under the boundary
conditions (5) in the similar way as we will proceed.
By imposing some additional conditions on the initial

data we will establish the following various decay rates of
the solutions obtained in Theorem 1:

Theorem 2. Let (ρ,u, H) be the solution obtained in
Theorem 1 and assume in addition that the initial data
(ρ0 − ρ̄,u0,H0) ∈ L1

(
R
3+
)
and there exists δ1 > 0 such

that

|(ρ0 − ρ̄,u0,H0)|L1 + |(ρ0 − ρ̄,u0,H0)|H3 < δ1, (8)
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then for all t ≥ 0, it holds that

|(ρ − ρ̄,u,H)(t)|Lp = O
(

(1 + t)−
3
2

(
1− 1

p

))
, ∀ p ∈[2,∞] ,

(9)

|∂x(ρ − ρ̄,u,H)(t)|L2 = O
(
(1 + t)−

5
4
)
, (10)

and

|(ρ−ρ̄,u,H)(t)|H3 ≤ C(δ1)
(
(1 + t)−

( 3
4−ε1

))
, ∀ 0 < ε1< ε̃,

(11)

where ε̃ is some positive number.
Moreover, if the data satisfy (ρ0 − ρ̄,u0,H0) ∈ H4 (

R
3+
)

and there exists δ2 > 0 such that

|(ρ0 − ρ̄,u0,H0)|L1 + |(ρ0 − ρ̄,u0,H0)|H4 < δ2, (12)

then

|∂x(ρ−ρ̄,u,H)(t)|H3 ≤ C(δ2)(1+t)−
( 5
4−ε2

)
, ∀ 0 < ε2 < ε̂,

(13)

for all t ≥ 0, where ε̂ < ε̃ is a positive number. In fact, it
holds

| (∂2xρ, ∂2xu, ∂2xH, ∂3xH
)
(t)|L2 ≤ C(δ2)(1 + t)−

5
4 , (14)

for all t ≥ 0.

We will prove the global existence of smooth solutions
by the standard energy method in spirit of (Matsumura
and Nishida 1983, 1979, 1980). And we remark that we
can also obtain the global existence of strong solutions
for the small initial data in the H2-framework, which can
be proved in the similar way. On the other hand, the
L2-L∞ decay rates for the smooth solutions and the L2
decay rates for the derivatives of first order are optimal
since (9)–(10) concerning (ρ − ρ̄,u) and H are the same
as the optimal decay rates for the compressible Navier-
Stokes equations (Kagei and Kobayashi 2005) and the heat
equation respectively. Related convergence rates of solu-
tions for the Navier-Stokes equations on the unbounded
domain can be found in (Kobayashi 2002; Kobayashi
and Shibata 1999; Matsumura and Nishida 1979) and
the references cited therein. Although our proofs are in
spirit of those for the Navier-Stokes equations, (Kagei and
Kobayashi 2005; Kobayashi 2002; Kobayashi and Shibata
1999; Matsumura and Nishida 1979, 1980), we should
derive the new estimates arising from the presence of the
magnetic field and overcome the strong coupling between
the mass, momentum equations and magnetic equation.
However, it is easy to obtain the optimal decay rates of H
and its first derivatives by the properties of heat kernel.

Indeed, we can rewrite the equation (19)3 analogously to
the form of (19)1–(19)2, i.e.,{

0t + divH = 0,
Ht + ∇0 − �H − ∇divH = S3.

Thus, we can get the estimates of (0, H) which are sim-
ilar to (	, v) in the system (19)1–(19)2. Moreover, we will
get the better decay rate of the magnetic field by the
elliptic system.

Discussion
As well known, the heavy emissions of Greenhouse gases,
such as CO2, CH4, N2O, SF6 cause global warming, and
also result in a great deal of harm to the environment.
It has been a hot topic and widespread concern to study
on how to strictly control the greenhouse gases emis-
sions. In order to profoundly reduce the environment
pollution, we must focus on energy structure adjustment.
Without any course of mechanical motion, Magnetohy-
drodynamics (MHD) power generation technology, also
called plasma power generation technology, transforms
thermal energy and kinetic energy directly into electricity.
Thus by applying (MHD) power generation technology,
we can realize the desulphuriz and reduce the produc-
tion of NOx effectively, so as to achieve the effect of high
efficiency and low pollution.
To complete the (MHD) generation process, which is

of high industrial application value, a conductive gas
(plasma) will be directed through a magnetic field with
a large velocity, under a high temperature condition. In
this situation, how to control the initial velocity of the
conductive gas has to be considered. From the results in
Section Results, we can conclude that if we assume that
the initial data are close enough to the constant state, then
there exists a unique globally solution to the (MHD) sys-
tem and the solution decays at some rates. This indicates
that if the initial velocity is sufficiently small, although
the solution to the (MHD) system exists globally, then the
velocity will decays and never be large, which implies that
it may never reach the requirements of (MHD) power gen-
eration. However, the problem of the global existence of
the solutions with the large initial data is still open.

Conclusions
In this paper, we demonstrate that the global existence
and the decay rates for the compressible (MHD) in R

3+
can be established under the similar initial assumptions as
for the compressible Navier-Stokes equations which can
be seen in (Matsumura and Nishida 1983). It implies that
the magnetic field does not affect the decay rates of the
velocity. Indeed, the results (9)–(13) in Theorem 2 sug-
gest that the decay rates for the derivatives of themagnetic
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field are the same as the velocity’s. And in (14), we can-
not get the estimates for ∂3xu but ∂3xH. Furthermore, the
results suggest that if the initial velocity is small, the veloc-
ity decays at the optimal rate. This implies that it may
never reach the requirements of (MHD) power generation
unless giving the gas an large initial velocity.

Methods
Proof of theorem 1
In this section, we will prove the existence part of
Theorem 1 and the uniqueness is standard so it will be
omitted.

Some elementary inequalities
The first bright idea to reduce many complicated compu-
tations lies in that we just need to do the lowest-order and
highest-order energy estimates for the solutions. This is
motivated by the following observation:

| f |2Hk ≤ C|
(
f , ∂kx f

)
|2L2 , ∀f ∈ Hk (

R
3+
)
. (15)

The inequality (15) can be easily proved by combing
Young’s inequality and Gagliardo-Nirenberg’s inequality

|∂ ixf |Lp ≤ C(p)|f |αLq |∂kx f |(1−α)
Lr , ∀f ∈ Hk (

R
3+
)

(16)

where 1
p − i

3 = 1
qα +

(
1
r − k

3

)
(1 − α) with i ≤ k. Indeed

(16) can be proved by the extension technique together
with Gagliardo-Nirenberg’s inequality in the whole space.
We can obtain the following useful inequality by Hölder
inequality and (16):

|∂kx ( fg)|L2 ≤ C
(
| f |L∞|∂kx g|L2 + |∂kx f |L2 |g|L∞

)
,

∀f , g ∈ Hk (
R
3+
)
, k ≥ 2

(17)

and the general form of (3) can be deduced directly in the
following:

| f1 f2 · · · fs|k ≤ C
∑s

j=1
| f1|L∞ · · · | fj−1|L∞| fj|k | fj+1|L∞ · · · | fs|L∞ ,

∀fj ∈ Hk (
R
3+
)
, k ≥ 2, for j = 1, 2, · · · , s.

The linearized system
We will linearize the problem (2)–(4) as follows. Setting
γ = √

P′(ρ̄), μ = 1/ρ̄ and introducing new variables by

	 = ρ − ρ̄, v = 1
μγ

u, H = H. (18)

Hence the initial boundary value problem (2)–(4) can be
reformulated as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

	t + γdivv = S1,
vt + γ∇	 − μ�v − μ∇divv = S2,
Ht − �H = S3, divH = 0,
(	, v,H)(x, 0) = (	0, v0,H0)(x) = (ρ0 − ρ̄, v0,H0),
v|{x3=0} = H|{x3=0} = 0,

(19)

where

S1 = −μγdiv(	v), (20)

S2 = 1
μγρ

curlH × H +
(
1
ρ

− 1
ρ̄

)
�v +

(
1
ρ

− 1
ρ̄

)
∇divv

− μγ v · ∇v − 1
μγ

[
P′(ρ)

ρ
− P′(ρ̄)

ρ̄

]
∇	,

(21)

and

S3 = −μγ curl(v × H). (22)

In order to state our results more concisely, we define an
energy functional as:

N(t1, t2) =
{

sup
t1≤t≤t2

|(	, v,H)(t)|23 +
∫ t2

t1
|∂x	(s)|22

+ |(∂xv, ∂xH)(s)|23dx
} 1

2
,

and change the condition of the initial data (6) as

|(	0, v0,H0)|H3 ≤ δ′
0 = max

(
1

2μγ
, 1

)
δ0. (23)

Local and global existence
We will finish the proof of Theorem 1 in this subsection.
First we state out the local existence without proof, since it
can be proved in a standard way (Matsumura and Nishida
1980) or can be found in (Ströhmer 1990, Vol’pert and
Hudjaev 1972):

Theorem 3. (local existence) Under the assumption
(23), there exists a positive constant T such that the ini-
tial boundary value problem (19) has a unique solution
(	, v,H) which is continuous in [0,T]×R

3 together with
its derivatives of first order in t and of second order in x.
Moreover, there exists a constantC1 > 1 such that it holds
N(0, t) ≤ C1N(0, 0), for any t ∈[0,T].
We will prove in this subsection the following a priori

estimate:
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Theorem 4. (a priori estimate) There exists a constant
δ � 1 such that ifN(0,T) ≤ δ, then there exists a constant
C2 > 1 such that N(0,T) ≤ C2N(0, 0).
The global existence of smooth solutions will be proved

via a continued argument by combining the local existence
theorem and the a priori estimate theorem. We shall state
the global existence of smooth solutions to the linearized
problem (19) as follows.

Proposition 3.1. (global existence) Under the assump-
tions of Theorem 1, the initial boundary value problem
(19) has a unique global solution such that for t ∈[0,∞),
it holds N(0, t) ≤ CN(0, 0). Thus (ρ,u,H) which satis-
fies (4) uniquely solves the initial boundary value problem
(2)–(4) for all time.

Proof. See in (Chen and Tan 2010).

A priori estimates
We observe that the a priori assumption in Theorem 4
and the embedding inequality together with the continuity
equation (19)1 imply

sup
0≤t≤T

|(	, 	t , ∂x	, v, ∂xv,H, ∂xH)(t)|

≤ C sup
0≤t≤T

|(ρ − ρ̄, v,H)(·, t)|H3 ≤ Cδ.
(24)

In particular
ρ̄

2
≤ ρ = 	 + ρ̄ ≤ 2ρ̄. (25)

In the sequel, we will always use the smallness assump-
tion of δ and (24)–(25).
Next we shall do some preparatory work from

Lemma 3.1 to Lemma 3.7 . Firstly, we regard the equations
(19)2–(19)3 as the elliptic system with respect to x vari-
ables, i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩

�v + ∇divv = 1
μ
vt + γ

μ
∇ρ − 1

μ
S2,

�H = Ht − S3,
v|{x3=0} = 0, H|{x3=0} = 0.

Thus we have the following estimates which we can
found in (Cho et al. 2004):

Lemma 3.1. Under the assumptions of Theorem 4, we
have for k = 2, 3, 4 that

|∂kx v|L2 ≤ C
{|vt|k−2 + |∂x	|k−2 + |S2|k−2 + |v|L2

}
,
(26)

and

|∂kxH|L2 ≤ C
{|Ht|k−2 + |S3|k−2 + |∂xH|L2

}
. (27)

Next we derive the following stokes equation from the
equations (19)1–(19)2:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γdivv = g = −dρ

dt
− μγ	divv,

− μ�v + γ∇ρ = h = −vt − μ

γ
∇g + S2,

v|{x3=0} = 0.

(28)

We have the following estimates which can be found in
(Galdi et al. 1994):

Lemma 3.2. Under the assumptions of Theorem 4, we
have for k = 2, 3, 4 that

|∂kx v|2L2 + |∂k−1
x ρ|2L2 ≤ C

{|g|2k−1 + |h|2k−2
}
. (29)

Next we shall do the estimates for the terms contained
in N(0, t).

Lemma 3.3. Under the assumptions of Theorem 4, we
have that

|(	, v,H)|2L2 +
∫ t

0
|∂x(v,H)|2L2ds ≤ CN(0, 0)2 + CδN(0, t)2,

(30)

and

|(	t , vt ,Ht)|2L2 +
∫ t

0
|∂x(vt ,Ht)|2L2ds ≤ CN(0, 0)2 + CδN(0, t)2.

(31)

Proof. By multiplying the equations (19)1–(19)3 by 	,
v and H respectively, integrating over R3+ and adding the
resulting equations, we have

1
2
d
dt

|(	, v,H)|2L2 + μ|(div, ∂xv)|2L2 + |∂xH|L2
= 〈S1, 	〉 + 〈S2, v〉 + 〈S3,H〉.

We shall estimate the terms in the right-hand side term
by term as:

〈S1, 	〉 =
∫

γμ(	v) · ∂x	dx ≤ C|	|L3 |v|L6 |∂x	|L2
≤ C|	|H1 |(∂xv, ∂x	)|2L2 ≤ Cδ|(∂xv, ∂x	)|2L2 ,

〈S2, v〉 ≤ C|(	, v,H)|L3 |(∂x	, ∂xv, ∂2x v, ∂xH)|L2 |v|L6
≤ C|(	, v,H)|H1 |(∂x	, ∂xv, ∂2x v, ∂xH)|2L2
≤ Cδ|(∂x	, ∂xv, ∂2x v, ∂xH)|2L2 ,

〈S3,H〉 ≤ C|(v,H)|L3 |(∂xv, ∂xH)|L6 |H|L2
≤ C|(v,H)|H1 |(∂xv, ∂xH)|L6 |H|L2
≤ Cδ|(∂xv, ∂xH)|2L2 ,

where Hölder’s inequality and Sobolev’s inequality are
used. Thus by integrating the above inequality in time and
the definition of N(0, t), we have got (30).
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Similarly, by taking ∂t to (19)1–(19)3, multiplying by
	t , vt and Ht respectively and integrating the resulting
inequalities, we obtain

|(	t , vt ,Ht)|2L2 +
∫ t

0
|∂x(vt ,Ht)|2L2ds

≤ CN(0, 0)2+C
∣∣∣∣∫ t

0
〈∂tS1, 	t〉+〈∂tS2, vt〉+〈∂tS3,Ht〉ds

∣∣∣∣ .
Thus we have to estimate the terms in the right-hand

side of the above inequality.

〈∂xS1, 	t〉 =
∫

γμ∂t(	divv + ∇	 · v)∂t	dx
≤ C|(	, ∂x	, v, ∂xv)|L3 |(	t , ∂x	t , vt , ∂xvt)|L2 |	t|L6
≤ C|(	, ∂x	, v, ∂xv)|H1 |(	t , ∂x	t , vt , ∂xvt)|2L2
≤ Cδ|(∂x	, ∂2x	, ∂xv, ∂2x v, ∂3x v, ∂xH, ∂2xH)|2L2
≤ CδN(0, t)2,

where we can get the L2-norm estimates of 	t , ∂x	t , vt ,
and ∂xvt with the aid of the equation (19)1–(19)2 and (24).
Similarly we have that

〈∂tS2, vt〉 ≤ C|〈∂t(	curlH × H, 	�v, 	∇divv, v · ∇v, 	 · ∇	), vt〉|
≤ C|(	, 	t , v, ∂xv,H, ∂xH)|L3

×|(∂x	, ∂x	t , vt , ∂2x v, ∂xvt , ∂2x vt , ∂xH,Ht , ∂xHt)|L2 |vt |L6
≤ C|(	, ∂x	, v, ∂xv,H, ∂xH)|H1

×|(∂x	, ∂2x	, ∂3x	, ∂xv, ∂2x v, ∂3x v, ∂4x v, ∂xH, ∂2xH, ∂3xH)|2L2
≤ Cδ|(∂x	, ∂2x	, ∂3x	, ∂xv, ∂2x v, ∂3x v, ∂4x v, ∂xH, ∂2xH, ∂3xH)|2L2 ,

and
〈∂tS3,Ht〉 ≤ C|〈∂tcurl(v × H),Ht〉|

≤ C|(v, ∂xv,H, ∂xH)|L3 |(vt , ∂xvt ,Ht , ∂xHt)|L2 |Ht |L6
≤ C|(v,H)|H2 |(∂x	, ∂2x	, ∂xv, ∂2x v, ∂3x v, ∂xH, ∂2xH, ∂3xH)|2L2
≤ Cδ|(∂x	, ∂2x	, ∂xv, ∂2x v, ∂3x v, ∂xH, ∂2xH, ∂3xH)|2L2 .

Together with these inequalities, we can deduce the
inequality (31). Hence the proof of Lemma 3.3 is
complete.

Next we estimate the L2-norm of the first derivatives of
v andH.

Lemma 3.4. Under the assumptions of Theorem 4, we
have

|∂x(v,H)|2L2 +
∫ t

0
|(	t , vt ,Ht)(s)|2L2ds ≤ CN(0, 0)2

+ CδN(0, t)2,
(32)

and

|∂x(vt ,Ht)|2L2 +
∫ t

0
|(	tt , vtt ,Htt)(s)|2L2ds ≤ CN(0, 0)2

+ CδN(0, t)2.
(33)

Proof. By multiplying 	t , vt and Ht to the equations
(19)1–(19)3 respectively, integrating over R3+ and adding
the resulting equations, we have

d
dt

∫ (
μ

2
|∂xv|2 + μ

2
|divv|2 + 1

2
|∂xH|2 − γ 	divv

)
dx

+
∫ (

	2
t + |vt|2 + |Ht|2 + 2γ 	tdivv

)
dx

=
∫

〈S1, 	t〉 + 〈S2, vt〉 + 〈S3,Ht〉dx
≤ ε

(|	t|2L2 + |vt|2L2 + |Ht|2L2
)+ C(ε)

(|S1|2L2 +|S2|2L2 +|S3|2L2
)
.

(34)

Since

|S1|2L2 ≤ C|(	, v)|L∞|∂x(	, v)|2L2 ≤ Cδ|∂x(	, v)|2L2 ,

|S2|2L2 ≤ C|(	, v,H)|L∞|(∂x	, ∂xv, ∂2x v, ∂xH)|2L2
≤ Cδ|(∂x	, ∂xv, ∂2x v, ∂xH)|2L2 ,

and

|S3|2L2 ≤ C|(v,H)|L∞|∂x(v,H)|2L2 ≤ Cδ|∂x(v,H)|2L2 ,
thus by integrating (34) in time and with the aid of the
smallness of ε and Cauchy’s inequality, we obtain

|∂x(v,H)|2L2 + ∫ t
0 |(	t , vt ,Ht)(s)|2L2ds

≤ CN(0, 0)2+ CδN(0, t)2+ C
(
|	|2L2 +

∫ t
0 |∂xv(s)|2L2ds

)
,

which together with (30) yields (32). And we can also
get (33) in the similar way. The proof of Lemma 3.4 is
complete.

Next we estimate the L2-Norms of the first derivatives
of 	. We shall divide the estimates into two parts. Firstly
we denote the tangential derivatives by ∂ = (∂1, ∂2). And it
is easy to see that the tangential derivatives of the solution
of (19) satisfy the same boundary conditions in (19).
By taking ∂ to the equations (19)1–(19)2 andmultiplying

them with ∂	 and ∂v respectively, we can deduce that

1
2
d
dt

∫
|∂	|2 + |∂v|2dx +

∫
μ|∂∂xv|2 + μ|∂divv|2dx

= 〈∂S1, ∂	〉 + 〈∂S2, ∂v〉.
(35)

Define thematerial derivative
dρ

dt
= ρt+∇ρ ·u. Then by

the continuity equation (19)1 and the formula of variable
substitution (18), we have

D	

Dt
= −γdivv − μγ	divv, (36)
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where
D	

Dt
= dρ

dt
= 	t + μγ∇	 · v. By taking ∂ to the

equation (36), we can obtain the following inequality:∣∣∣∣∂ (
D	

Dt

)∣∣∣∣2
L2

≤ C
(
∂∂xv|2L2 + |∂(	divv)|2L2

)
,

then by multiplying a small enough constant α to it,
together with (35), and integrating in time, we have

|∂(	, v)|2L2 +
∫ t

0

∣∣∣∣∂ (
D	

Dt
, ∂xv

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + C
∣∣∣∣∫ t

0
〈∂S1, ∂	〉 + 〈∂S2, ∂v〉ds

∣∣∣∣
+ C

∫ t

0
|∂(	divv)|2L2ds

≤ CN(0, 0)2+ CN(0, t)2+ C
∣∣∣∣∫ t

0
〈∂S1, ∂	〉 + 〈∂S2, ∂v〉ds

∣∣∣∣ .
Similarly, we can obtain the following lemma and we

omit the proof of it.

Lemma 3.5. Under the assumptions of Theorem 4, we
have for k = 1, 2, 3 that

|∂k(	, v)|2L2 +
∫ t

0

∣∣∣∣∂k (
D	

Dt
, ∂xv

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + CN(0, t)2 + C
∣∣∣∣∫ t

0
〈∂kS1, ∂k	〉

+ 〈∂kS2, ∂kv〉ds
∣∣∣ .

(37)

Next we have to obtain the estimates for the nor-
mal derivatives of solution. We can derive the following
equations from (19)1–(19)2.

∂3	t + γ ∂3divv = −μγ ∂3(	divv) − μγ ∂3(∇	 · v),
v3t + γ ∂3	 − μ�v3 − μ∂3divv = S32,

where S2 = (
S12, S22, S32

)T . To eliminate the term ∂33v3, we
have the following equality from the above equalities

2μ
γ

∂3	t+γ ∂3	 = −v3t +μ
(
∂11v3+ ∂22v3+ ∂13v1+ ∂23v2

)
− 2μ2∂3(	divv) − 2μ2∂3(∇	 · v) + S32.

(38)

And we can also derive the following equality from (36)

2μ
γ

∂3

(
D	

Dt

)
+ γ ∂3	 = −v3t + μ

(
∂11v3+ ∂22v3+ ∂13v1+ ∂23v2

)
− 2μ2∂3(	divv) + S32.

(39)

By multiplying (38) with ∂3	 and integrating on R
3+, we

have

μ

γ

d
dt

|∂3	|2L2 + γ |∂3	|2L2

=
∫ {−v3t + μ

(
∂11v3 + ∂22v3 + ∂13v1 + ∂23v2

)
−2μ2∂3(	divv) − 2μ2∂3(∇	 · v) + S32

}
∂3	dx

≤ γ

2
|∂3	|2L2 + C(γ )| (vt , ∂∂xv, ∂3(	divv), S2) |2L2

+ C
∣∣∣∣∫ ∂3(∇	 · v)∂3	dx

∣∣∣∣ ,
(40)

then integrating this in time, it implies

|∂3	|2L2 +
∫ t

0
|∂3	(s)|2L2ds

≤ CN(0, 0)2 + C
∫ t

0
|(vt , ∂∂xv, ∂3(	divv), S2)|2L2

+ |
∫

∂3(∇	 · v)∂3	dx|ds

≤ CN(0, 0)2 + C
∫ t

0
|(vt , ∂∂xv)|2L2ds + CδN(0, t)2.

(41)

Similarly, by multiplying ∂3
(
D	
Dt

)
to (39) and integrating

it, we have

|∂3	|2L2 +
∫ t

0
|∂3

(
D	

Dt

)
(s)|2L2ds

≤ CN(0, 0)2 + C
∫ t

0
|(vt , ∂∂xv, ∂3(	divv), S2)|2L2

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0
|(vt , ∂∂xv)|2L2 .

This together with (41) yields

|∂3	|2L2 +
∫

|∂3	(s)|2L2 + |∂3
(
D	

Dt

)
(s)|2L2ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0
|(vt , ∂∂xv)|2L2ds.

(42)

Similarly, by taking ∂k∂ l3 to (38) and (39), multiplying
with ∂k∂1+l

3 	 and ∂k∂1+l
3

(
D	
Dt

)
respectively, we will get the

general form of (42) as follows:
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Lemma 3.6. Under the assumptions of Theorem 4, we
have for k + l = 0, 1, 2 that

|∂k∂1+l
3 	|2L2 +

∫ t

0
|∂k∂1+l

3 	|2L2 + |∂k∂1+l
3

(
D	

Dt

)
(s)|2L2ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0
|∂k∂ l3(vt , ∂∂xv)|2L2ds.

(43)

Proof. Here we only to prove the case when k + l = 2.
As in (42), we can obtain

|∂k∂1+l
3 	|2L2 +

∫ t

0
|∂k∂1+l

3 	|2L2 + |∂k∂1+l
3

(
D	

Dt

)
(s)|2L2ds

≤ CN(0, 0)2 + C
∫ t

0
|∂k∂ l3(vt , ∂∂xv, ∂3(	divv), S2)|2L2

+ |
∫

∂k∂1+l
3 (∇	 · v) · ∂k∂1+l

3 	dx|ds.
(44)

By (17), we have

∫ t

0
|∂3x (	divv)|2L2ds ≤ C

∫ t

0
|	, divv|2L∞|∂3x	, ∂3xdivv|2L2ds

≤ CδN(0, t)2.

Similarly,

∫ t

0
|∂2x S2|2L2ds ≤ C

∫ t

0
|	, v, H|2L∞|∂3x	, ∂3x v, H|2L2ds

+ C
∫ t

0
|	, ∂x	|2L∞|∂2x v|21+|∂2x	|2L4 |∂2x v|2L4ds

≤ CδN(0, t)2 + C
∫ t

0
|∂2x	|21|∂2x v|21ds

≤ CδN(0, t)2.

Moreover, by using the identity

(∂k∂1+l
3 ∇	 · v) · ∂k∂1+l

3 	 = ∇ |∂k∂1+l
3 	|2
2

· v

and integration by parts, we shall obtain

∫ t

0

∫
∂k∂1+l

3 (∇	 · v) · ∂k∂1+l
3 	dxds ≤ CδN(0, t)2.

Substituting these inequalities into (44), we get (43).

Last by taking ∂ lx∂
k to (28), and by Lemma 3.2, we have

Lemma 3.7. Under the assumptions of Theorem 4, we
have for k + l = 0, 1, 2 that∫ t

0
|∂2+l
x ∂kv|L2 + |∂1+l

x ∂k	|L2ds ≤ C
∫ t

0
|∂kvt|l

+ |∂k
(
D	

Dt

)
|1+lds + CδN(0, t)2.

(45)

Now we will finish the proof of Theorem 4 by doing the
estimates for the lowest-order and highest-order deriva-
tives. In the sequel, we divide the a priori estimates into
three parts.

Part 1: estimates for the lowest derivatives of 	, v,H

Proposition 3.2. Under the assumptions of Theorem 4,
we have

|(	, v,H)|2L2 +
∫ t

0
|∂x(	, v,H)(s)|2L2ds ≤ CN(0, 0)2

+ CδN(0, t)2.
(46)

Proof. Due to (30), we have only to estimate∫ t
0 |∂x	(s)|2L2ds. First by Lemma 3.5 , k = 0, 1, we have

∫ t

0
|D	

Dt
(s)|2L2 + |∂

(
D	

Dt

)
(s)|2L2 + |∂∂xv|2L2ds

≤ CN(0, 0)2 + CδN(0, t)2 + Cδ

∫ t

0
|(S1, S2, S3)(s)|2L2ds

≤ CN(0, 0)2 + CδN(0, t)2.
(47)

And by (42), we have∫ t

0
|∂3

(
D	

Dt

)
|2L2ds ≤ CN(0, 0)2 + C

∫ t

0
|(vt , ∂∂xv)|2L2ds

+ CδN(0, t)2.
(48)

Thus (47)–(48) together with (32) implies∫ t

0
|D	

Dt
(s)|21ds ≤ CN(0, 0)2 + CδN(0, t)2. (49)

By Lemma 3.4, k = l = 0, and integrating in time, we
obtain∫ t

0
|∂x	|2L2ds ≤ C

∫ t

0
|vt|2L2 + |

(
D	

Dt
|21
)
ds + CδN(0, t)2.

This combining with (49) and (32), yields the estimate
for

∫ t
0 |∂x	(s)|2L2ds.
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Part 2: estimates for the highest derivatives of 	, v,H

Proposition 3.3. Under the assumptions of Theorem 4,
we have

|∂3x (	, v,H)|2L2 +
∫ t

0
| (∂3x	, ∂4x v, ∂4xH

)
(s)|2L2ds ≤ CN(0, 0)2

+ CδN(0, t)2.
(50)

Proof. We divide the proof into three steps as follows.

i) By Lemma 2.8, k = 3 and Lemma 2.9, k = 2, l = 0, we
have

∣∣∂2∂x	∣∣2L2 +
∫ t

0

∣∣∣∣(∂2∂3	, ∂2∂x
(
D	

Dt

)
, ∂3∂xv

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∣∣∣∣∫ t

0

〈
∂kS1, ∂k	

〉
+

〈
∂kS2, ∂kv

〉
ds

∣∣∣ + C
∫ t

0
|∂2vt|2L2

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0
|∂2vt|2L2ds,

(51)

where we get the last inequality as in the proof of
Lemma 3.6. By Lemma 3.7, k = 2, l = 0, we have

∫ t

0

∣∣(∂2x ∂2v, ∂x∂2	
)∣∣2
L2 ds ≤ C

∫ t

0

∣∣∣∣(∂2vt , ∂2∂x

(
D	

Dt

)∣∣∣∣2
L2
ds

+ CδN(0, t)2.

This together with (51) yields

∣∣∂2∂x	∣∣2L2 +
∫ t

0

∣∣∣∣(∂2∂x	, ∂2∂x
(
D	

Dt

)
, ∂2∂2x v

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0

∣∣∂2vt∣∣2L2 ds.
(52)

By Lemma 3.6, k = l = 1, and (52), we have

∣∣∂∂2x	
∣∣2
L2 +

∫ t

0

∣∣∣∣(∂∂2x	, ∂∂2x

(
D	

Dt

)
, ∂2∂2x v

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0

∣∣∂2x vt∣∣2L2 ds.
(53)

Then by Lemma 3.7, k = l = 1, and with the help of
(15), (31) and (47), we have∫ t

0

∣∣(∂3x ∂v, ∂2x ∂	
)∣∣2
L2 ds

≤ C
∫ t

0

∣∣∣∣(∂xvt , ∂2x vt , ∂
(
D	

dt

)
, ∂∂x

(
D	

dt

)
, ∂∂2x

(
D	

Dt

)∣∣∣∣2
L2
ds

+ CδN(0, t)2

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0

∣∣∣∣∂2x vt , ∂∂2x

(
D	

Dt

)∣∣∣∣2
L2
ds,

which together with (53) yields

∣∣∂∂2x	
∣∣2
L2 +

∫ t

0

∣∣∣∣(∂∂2x	, ∂∂2x

(
D	

Dt

)
, ∂∂3x v

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0

∣∣∂2x vt∣∣2L2 ds.
(54)

By Lemma 3.6, k = 0, l = 2, and by (54), we have

∣∣∂3x	
∣∣2
L2 +

∫ t

0

∣∣∣∣(∂3x	, ∂3x
(
D	

Dt

)
, ∂∂3x v

)∣∣∣∣2
L2
ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0

∣∣∂2x vt∣∣2L2 ds.
(55)

Thus by Lemma 3.7, k = 0, l = 2, we have∫ t

0

∣∣(∂4x v, ∂3x	
)∣∣2
L2 ds ≤ CN(0, 0)2 + CδN(0, t)2

+ C
∫ t

0

∣∣∣∣(∂2x vt , ∂3x
(
D	

Dt

)∣∣∣∣ 2
L2
ds,

together it with (55), then we have got

∣∣∂3x	
∣∣2
L2 +

∫ t

0

∣∣∣∣(∂3x	, ∂3x
(
D	

Dt

)
, ∂4x v

)∣∣∣∣2
L2
ds ≤ CN(0, 0)2

+ CδN(0, t)2 + C
∫ t

0

∣∣∂2x vt∣∣2L2 ds.
(56)

ii) By Lemma 3.1, k = 3, we have

∣∣∂3x (v,H)
∣∣2
L2 ≤C

(|(∂x	, vt ,Ht)|21 + |(S2, S3)|21 + |(v, ∂xH)|2L2
)

≤CδN(0, t)2+C
∣∣	, ∂3x	,v, vt , ∂xvt , ∂xH,Ht , ∂xHt

∣∣2
L2 ,

(57)

which together with (30)–(33), (46) and (56) implies

∣∣∂3x (v,H)
∣∣2
L2 ≤ CN(0, 0)2 + CδN(0, t)2 + C

∫ t

0

∣∣∂2x vt∣∣2L2 ds.
(58)



Chen and Tan Environmental Systems Research 2014, 3:20 Page 10 of 20
http://www.environmentalsystemsresearch.com/content/3/1/20

iii) By Lemma 3.1, k = 4, we have∫ t

0

∣∣∂4xH∣∣2
L2 ds ≤ C

∫ t

0
|Ht|22 + |S3|22 + |∂xH|2L2ds

≤ CN(0, 0)2 + CδN(0, t)2 +
∫ t

0

∣∣∂2xHt
∣∣2
L2 ds,

this together with (56) and (58), then it implies

∣∣∂3x (	, v,H)
∣∣2
L2 +

∫ t

0

∣∣(∂3x	, ∂4x v, ∂4xH
)
(s)

∣∣2
L2 ds

≤ CN(0, 0)2 + CδN(0, t)2 + C
∫ t

0

∣∣∂2x (vt ,Ht)
∣∣2
L2 ds.

(59)

We can derive from Lemma 3.1 that∣∣∂2x (vt ,Ht)
∣∣2
L2 ≤ C(|(∂x	t , vt , vtt , ∂xHt ,Htt , ∂tS2, ∂tS3)|2L2 .

Here with the help of (19)1, we have∫ t

0
|∂x	t|2L2 ds≤ C

∫ t

0
|∂2x	|2L2 + ∣∣∂2x v∣∣2L2 ds

≤ C(ε)

∫ t

0
|∂x	, ∂xv|2L2 ds + ε

∫ t

0
|∂3x	, ∂4x v|2L2ds,

where the terms in the right-hand side can be absorbed by
(46) and (59). Thus by (30)–(33), we obtain∫ t

0

∣∣∂2x (vt ,Ht)
∣∣2
L2 ds ≤ CN(0, 0)2 + CδN(0, t)2,

which together with (59) implies (50).

Part 3: Conclusion

Combining the inequalities in Proposition 3.2 and
Proposition 3.3, it yields

∣∣(	, ∂3x	, v, ∂3x v,H, ∂3xH
)∣∣2
L2 +

∫ t

0

∣∣(∂x	, ∂3x	, ∂xv, ∂4x v, ∂xH, ∂4xH
)∣∣2
L2 ds

≤ CN(0, 0)2 + CδN(0, t)2.
(60)

Thanks to (15), we can obtain that the left-hand side of
(60) is equivalent toN(0, t)2. Thus by the smallness of δ, it
finished the proof of Theorem 4.

Proof of Theorem 2
In this section we shall prove the decay rates of the
solution obtained in Theorem 1 to finish the proof of
Theorem 2.

Some elementary decay-in-time estimates
We shall consider the convergence rates of the solution
(	, v,H) for the linearized problem (19). To use the Lp-Lq
estimates of the linear problem for the nonlinear problem

(19)1–(19)2, we rewrite the solution of (19)1–(19)2 as

U(t) = E(t)U0 +
∫ t

0
E(t − s)F(U(s),H(s))ds, (61)

where we have used the notations

U =[ 	, v]T ,U0 =[ 	0, v0]T , F =[ S1, S2]T , (62)

and the fact that E(t) is the solution semigroup defined
by E(t) = e−tA, t ≥ 0, with A being a matrix-valued
differential operator given by

A =
(

0 γ∇T

γ∇ −μ� − μ∇div

)
.

The semigroup E(t) has the following decay-in-time
properties which can be found in (Kagei and Kobayashi
2005; Kobayashi 2002).

Lemma 3.8. There exist positive constants C and C0
such that for any t ≥ 1 and l = 1, 2, we have
i)

|E(t)U0|L2 ≤ C
{
t−

3
4 |U0|L1 + e−C0t (∣∣	0|L2 + |v0

∣∣
L2

)}
,

(63)

∣∣∣∂ lxE(t)U0

∣∣∣
L2

≤ C
{
t−

3
4− l

2 |U0|L1 + e−C0t(|	0|l + |v0|l−1)
}
,

(64)

∣∣∂3x E(t)U0
∣∣
L2 ≤ C

{
t−

15
8 |U0|L1 + e−C0t(|	0|3 + |v0|2)

}
,

(65)

and

|E(t)U0|L∞ ≤ C
{
t−

3
2 |U0|L1 + e−C0t(|	0|2 + |v0|1)

}
.

(66)

ii)∣∣∣∂ lx∂tE(t)U0

∣∣∣
L2

≤ C
{
t−

5
4− l

2 |U0|L1 +e−C0t(|	0|l + |v0|l−1)
}
.

(67)

Lemma 3.9. For any k ∈ Z, k ≥ 0, the following
inequalities hold uniformly in 0 < t ≤ 1,

|E(t)U0|H1∩L2 ≤ C|U0|H1∩L2 , (68)

∣∣∣∂kx′∂xE(t)U0

∣∣∣
L2

≤ Ct−
1
2 |U0|Hk+1∩Hk , (69)

and

|E(t)U0|L∞ ≤ Ct−(1−ε̄)|U0|H2∩H1 , (70)

for some ε̄ > 0. Here | · |X∩Y = | · |X + | · |Y .
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To treat the magnetic field, we notice that the solution
to the heat equation (19)3 has the following convergence
estimates which one can refer to (Kagei and Kobayashi
2005; Kobayashi 2002).

Lemma 3.10. For the solution H to the heat equation
(19)3 with the initial data H(x, 0) = H0 and the boundary
conditionH|{x3=0} = 0, there exists a constant C such that

|H|Lq ≤ C(1 + t)−
3
2

(
1− 1

q

)
|H0|L1∩Lq

+ C
∫ t

0
(1 + t − s)−

3
2 (1− 1

q )|S3(·, s)|L1∩Lqds,
(71)

and

|∂xH|L2 ≤ C(1 + t)−
5
4 |H0|L1∩H1 + C

∫ t

t−1
(t − s)−

1
2 |S3|L2ds

+ C
∫ t−1

0
(1 + t − s)−

5
4 |S3(·, s)|L1ds,

(72)

for any t ≥ 1, 2 ≤ q ≤ +∞.

Convergence rates of the lower-order derivatives

Proposition 3.4. Let s ≥ 3. Under the assumptions of
Proposition 3.1, if there exists δ′

1 > 0 such that the initial
data (	0, v0,H0) ∈ Hs ∩ L1 and

|(	0, v0,H0)|Hs∩L1 ≤ δ′
1,

then the solution (	, v,H) of (19) satisfies

|(	, v,H)(t)|Lp = O
(
t−

3
2 (1− 1

p )
)
, ∀p ∈[ 2,∞] .

and

|∂x(	, v,H)(t)|L2 = O
(
t−

5
4
)

as t → ∞.

Proof. We firstly estimate the L2-estimate of the solu-
tion and its derivatives in Proposition 3.4. For simplicity,
we shall introduce some notation in the sequel. Set

Ms
σ (t) = sup

0≤τ≤t
(1 + τ)σ |∂sx(	, v,H)(τ )|L2 ,

We will show that

M0
3
4
(t) + M1

5
4
(t) ≤ C

{
|(	0, v0,H0)|L1 + N(0, t) + M0

3
4
(t)2

+M1
5
4
(t)2

}
,

(73)

where t ≥ 0. Thus we can derive the L2 estimates in
Proposition 3.4 from (73) by using a standard method
under assumption of the smallness of initial data.
Now we shall consider the L2 estimates ofU(t) andH(t)

respectively. Thanks to Proposition 3.1, we only have to
show the decay rate part of Proposition 3.4 for the case
t ≥ 1. Thus we assume that t ≥ 1 and decompose U(t) as

U(t) = E(t)U0 +
∫ t

t−1
E(t − s)F(U(s),H(s))ds

+
∫ t−1

0
E(t − s)F(U(s),H(s))ds

= I0(t) + I1(t) + I2(t).
(74)

By Lemma 3.8, we have∣∣∣∂ lxI0(t)∣∣∣L2 ≤ Ct−
3
4− l

2 |U0|L1∩H1 ≤ C(1 + t)−
3
4− l

2

× {|U0|L1 + N(0, t)
}
, l = 0, 1.

(75)

Lemma 3.11. Under the assumptions of Proposition 3.4,
the following inequalities hold for all t ≥ 0,

|S1, ∂xS1, S2, S3|L2 ≤ C(1 + t)−
5
4

{
M1

5
4
(t)2 + N(0, t)2

}
,

(76)

and

|S1, S2, S3|L1 ≤C(1 + t)−
11
8

{
M0

3
4
(t)2+ M1

5
4
(t)2+ N(0, t)2

}
.

(77)

Proof. Since by (16) and (17), we have

|S1, S3|L2 ≤ C|(	, v,H)|L∞|∂x(	, v,H)|L2
≤ C(1 + t)−

5
4M1

5
4
(t)N(0, t)

≤ C(1 + t)−
5
4

{
M1

5
4
(t)2 + N(0, t)2

}
,

|∂xS1|L2 ≤ C|∂x(	, v)|L∞|∂x(	, v)|L2 +|	, v|L6
∣∣∂2x (	, v)

∣∣ 12
L6

∣∣∂2x (	, v)
∣∣ 12
L2

≤ C(1+t)−
5
4 M1

5
4
(t)N(0, t)+|∂x(	, v)|L2

∣∣∂2x	,∂3x	,∂2x v, ∂3x v
∣∣
L2

≤ C(1 + t)−
5
4

{
M1

5
4
(t)2 + N(0, t)2

}
,

and

|S2|L2 ≤ C|(	, v,H)|L∞|∂x(	, v,H)|L2 + C
∣∣∂2x v∣∣ 12L2 ∣∣∂2x v∣∣ 12L6 |	|L6

≤C(1 + t)−
5
4

{
M1

5
4
(t)2 + N(0, t)2

}
,
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together with these inequalities, we can easily get (76).
Moreover, (77) follows from

|S1, S3|L1 ≤ C|(	, v,H)|L2 |∂x(	, v,H)|L2
≤ C(1 + t)−2M0

3
4
(t)M1

5
4
(t) ≤ C(1 + t)−2

×
{
M0

3
4
(t)2 + M1

5
4
(t)2

}
,

and

|S2|L1 ≤ C|(	, v,H)|L2 |(∂x	, ∂xv, ∂xH)|L2 + C|	|L2 |
∣∣∂2x v∣∣L2

≤ C(1 + t)−2M0
3
4
(t)M1

5
4
(t) + C |	|L2

∣∣∣∣|∂xv| 12L2
∣∣∣∣ ∂3x v| 12L2

≤ C(1 + t)−2
{
M0

3
4
(t)2 + M1

5
4
(t)2

}
+ C(1 + t)−

11
8 M0

3
4
(t)M1

5
4
(t)

1
2N

1
2 (0, t)

≤ C(1 + t)−
11
8

{
M0

3
4
(t)2 + M1

5
4
(t)2 + N(0, t)2

}
.

Nowwe have to estimate I1(t) and I2(t). For l = 0, 1, and
by Lemma 3.9 and Lemma 3.11, we have

|∂ lxI1(t)|L2 ≤ C
∫ t

t−1
(t − τ)−

l
2 (|S1|1 + |S2|L2)dτ

≤ C
∫ t

t−1
(t − τ)−

l
2 (1 + τ)−

5
4 dτ

{
M1

5
4
(t)2+ N(0, t)2

}
≤ C(1 + t)−

5
4

{
M1

5
4
(t)2 + N(0, t)2

}
,

(78)

where the last inequality is obtained by taking l = 1 and
l = 2 respectively.
For I2(t), we can derive from Lemma 3.8 and Lemma 3.9

that

|∂ lxI2(t)|L2 ≤ C
∫ t−1

0
(t − τ)−

3
2− l

2 |F(U(τ ),H(τ ))|L1
+ e−C0(t−τ)|U(τ )|1dτ

≤ C
∫ t−1

0
(t − τ)−

3
2− l

2 (1 + τ)−
11
8 dτ

×
{
M0

3
4
(t)2 + M1

5
4
(t)2 + N(0, t)2

}
+ C

∫ t−1

0
e−C0(t−τ)(1 + τ)−

5
4 dτ

×
{
M1

5
4
(t)2 + N(0, t)2

}
≤ C(1 + t)−

3
4− l

2

{
M0

3
4
(t)2+M1

5
4
(t)2+N(0, t)2

}
.

(79)

Now we turn to do the estimates for H(t). By (71) in
Lemma 3.10, we can deduce that

|H|L2 ≤ C(1 + t)−
3
4 |H0|L1∩L2 +

∫ t

0
(1 + t − s)−

3
4 |S3|L1∩L2ds

≤ C(1 + t)−
3
4
{
|H0|L1 + N(0, t)

}
+ C

{
M0

3
4
(t)2 + M1

5
4
(t)2 + N(0, t)2

}
×

∫ t

0
(1 + t − s)−

3
4 (1 + s)−

11
8 ds

≤ C(1 + t)−
3
4

{
|H0|L1 + N(0, t) + M0

3
4
(t)2+ M1

5
4
(t)2

}
,

and similarly by (72), we have

|∂xH|L2 ≤ C(1 + t)−
5
4 |H0|L1∩H1 +

∫ t

t−1
(t − s)−

1
2 |S3|L2ds

+
∫ t−1

0
(1 + t − s)−

5
4 |S3|L1ds

≤ C(1 + t)−
5
4

{
|H0|L1 + N(0, t) + M0

3
4
(t)2+ M1

5
4
(t)2

}
.

Combining these with (75), (78) and (79), it implies (73).
Now we shall do the L∞ estimate. Define

M∞(t) = sup
0≤τ≤t

(1 + τ)
3
2 |(	, v, H)(τ )|L∞ ,

and

Ms
σ (t) =

s∑
k=0

Mk
σ (t) =

s∑
k=0

sup
0≤τ≤t

(1+τ)σ |∂kx (	, v, H)(τ )|L2 .

By Lemma 3.8, we have

|I0|L∞ ≤ Ct−
3
2 (|U0|L1 + |	0|2 + |v0|1)

≤ C(1 + t)−
3
2 (|U0|L1 + N(0, t)).

(80)

To estimate I1(t) and I2(t), we state the following esti-
mates for S1 and S2.

Lemma 3.12. Under the assumptions of Proposition 3.4,
there exists a sufficiently small constant ε̃ > 0 such
that for any 0 < ε < ε̃, the following inequalities hold
uniformly in t ≥ 0.

i)

|S1|2, |S2|1≤C(1+ t)−
3
2

{
M∞(t)2+ M1

5
4
(t)2+M3

3
4−ε

(t)2
}
,

(81)
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and

|S1, S2|L1 ≤ Ct−( 74−ε)

{
M0

3
4
(t)2 + M1

5
4
(t)2 + M3

3
4−ε

(t)2
}
.

(82)

ii)

|S1|3, |S2|2≤C(1 + t)−
3
2

{
M∞(t)2+ M1

5
4
(t)2+ K4

3
4−ε

(t)2
}
,

(83)

and

|∂tS1|1, |∂tS2|L2 ≤C(1 + t)−
5
4

{
K4

3
4−ε

(t)2+ M∞(t)2+M1
5
4
(t)2

}
,

(84)

here we define

Ks
σ (t) = Ms

σ (t) +
[ s2 ]∑
j=1

sup
0≤τ≤t

(1 + τ)σ |∂ jτ (v, H)(τ )|s−2j

+
[ s+1

2 ]∑
j=1

sup
0≤τ≤t

(1 + τ)σ |∂ jτ 	(τ )|s+1−2j.

Proof. For l = 0, 1, 2, we have

|∂ lxS1|L2 ≤ C|∂ l+1
x (	v)|L2

≤ C
(

|	, v|L∞|∂x(	, v)|2 + |∂x(	, v)|
1
2
L2 |∂2x (	, v)|

3
2
1

)
≤ C

{
(1 + t)−

( 9
4−ε

)
M∞(t)M3

3
4−ε

(t)

+ (1 + t)−
( 7
4− 3

2 ε
)
M1

5
4
(t)

1
2M3

3
4−ε

(t)
3
2

}
≤ C(1 + t)−

3
2

{
M∞(t)2+ M1

5
4
(t)2 + M3

3
4−ε

(t)2
}
,

and for l = 0, 1, we have

|∂ lxS2|L2 ≤ C
(

|	, v,H|L∞|∂x(	, v,H)|2

+ |∂x(	, v,H)|
1
2
L2 |∂x(	, v,H)|

3
2
1

)
≤ C(1 + t)−

3
2

{
M2∞ + M1

5
4
(t)2 + M3

3
4−ε

(t)2
}
.

Then we get (81). Similarly,

|S1|L1 ≤ C|	, v|L2 |∂x(	, v)|L2 ≤C(1 + t)−2
{
M0

3
4
(t)2+M1

5
4
(t)2

}
,

and

|S2|L1 ≤ C
(|	, v,H|L2 |∂x(	, v,H)|L2 + |	|L2 |∂2x v|L2

)
≤ C

(
|	, v,H|L2 |∂x(	, v,H)|L2 + |	|L2 |∂xv|

1
2
L2 |∂3x v|

1
2
L2

)
≤ C

{
(1 + t)−2M0

3
4
(t)M1

5
4
(t)

+ (1 + t)−
( 7
4−ε

)
M0

3
4
(t)M1

5
4
(t)M3

3
4−ε

(t)
}

≤ C(1 + t)−( 74−ε)

{
M0

3
4
(t)2 + M1

5
4
(t)2+ M3

3
4−ε

(t)2
}
.

Thus we obtain (82). We shall get the inequalities in
ii) in the similar way. Here we only estimate |∂3x S1|L2 and
|∂t(	�v)|L2 as follows.

|∂3x S1|L2 ≤ C
(|	, v|L∞|∂4x (	, v)|L2

≤ C
{
(1 + t)−

( 9
4−ε

)
M∞(t)K4

3
4−ε

(t)

≤ C(1 + t)−
3
2

{
M2∞ + K4

3
4−ε

(t)2
}
,

and

|∂t(	�v)|L2 ≤ |	|L∞|�vt|L2 + |	t|1|∂3x v|L2

≤ C
{
(1 + t)−

( 9
4−ε

)
M∞(t)K4

3
4−ε

(t)

+ (1 + t)−
( 3
2−2ε

)
K4

3
4−ε

(t)2

≤ C(1 + t)−
5
4

{
M2∞ + K4

3
4−ε

(t)2
}
.

By Lemma 3.9 and (81), we have

|I1|L∞ ≤ C
∫ t

t−1
(t − τ)−(1−ε̄)(|S1|2 + |S2|1)dτ

≤ C
{
M2∞ + M1

5
4
(t)2 + M3

3
4−ε

(t)2
}

×
∫ t

t−1
(t − τ)−(1−ε̄)(1 + τ)−

3
2 dτ

≤ C(1 + t)−
3
2

{
M2∞ + M1

5
4
(t)2 + M3

3
4−ε

(t)2
}
.

(85)
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As for I2, we can deduce from Lemma 3.8 that

|I2(t)|L∞ ≤ C
{∫ t−1

0
(t − τ)−

3
2 |(S1, S2)(τ )|L1

+
∫ t−1

0
e−C0(t−τ)(|S1(τ )|2 + |S2(τ )|1)dτ

}
≤ C

{
M0

3
4
(t)2 + M1

5
4
(t)2 + M3

3
4−ε

(t)2
}

×
∫ t−1

0
(t − τ)−

3
2 (1 + τ)−

( 7
4−ε1

)
dτ

+ C
{
M2∞ + M1

5
4
(t)2 + M3

3
4−ε

(t)2
}

×
∫ t−1

0
e−C0(t−τ)(1 + τ)−

3
2 dτ

≤ C(1 + t)−
3
2

{
M2∞ + M0

3
4
(t)2 + M1

5
4
(t)2

+M3
3
4−ε

(t)2
}
.

(86)

At last, we have to estimate |H|L∞ to finish the L∞
estimate. By Lemma 3.3, For q = ∞, we have

|H|L∞

≤ C(1 + t)−
3
2 |H0|L1∩L∞ + C

∫ t

0
(1 + t − τ)−

3
2 |S3(τ )|L1∩L∞dτ

≤ C(1 + t)−
3
2
{
|H0|L1 + N(0, t)

}
+ C

{
M0

3
4
(t)2 + M1

5
4
(t)2 + M∞(t)2 + N(0, t)2

}
×

∫ t

0
(1 + t − τ)−

3
2 (1 + τ)−

3
2 dτ

≤ C(1 + t)−
3
2

{
|H0|L1 + N(0, t) + M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

}
,

(87)

where we have used

|S3|L1 ≤ C(1 + t)−2
{
M0

3
4
(t)2 + M1

5
4
(t)2

}
,

which is in the proof of Lemma 3.12, and

|S3|L∞ ≤|v, H|L∞|v, H|3≤C(1+t)−
3
2
{
M∞(t)2+N(0, t)2

}
.

Thus, (80) and (85)–(87) imply

M∞ ≤ C
{
|	0, v0,H0|L1 + N(0, t) + M∞(t)2 + M0

3
4
(t)2

+M1
5
4
(t)2 + M3

3
4−ε

(t)2
}
.

This together with (73), the estimate of K4
3
4−ε

(t) in
Proposition 3.5 in the next subsection, it yields the L∞-
estimate in Proposition 3.4. Hence by interpolation, we

get the Lp-estimate for 2 ≤ p ≤ ∞. The proof of
Proposition 3.4 is complete.

Convergence rates of the higher-order derivatives
Nowwe shall do the estimates for the higher-order deriva-
tives to finish the proof of Theorem 2.

Proposition 3.5. There exists a positive number ε̃ such
that under the assumptions of Proposition 3.4, the solu-
tion (	, v,H) of (19) satisfies

|(	, v,H)(t)|s ≤ C(|	0, v0,H0|L1 + |	0, v0,H0|s)
× (1 + t)−

( 3
4−ε1

)
, ∀0 < ε1 < ε̃

for all t ≥ 0.
Set

Ls
σ =

⎧⎪⎨⎪⎩
∫ t

0
(1 + τ)2σ (|∂x(v,H)|s+1 + |∂x	|s)dτ

+
[ s+1

2 ]∑
j=1

∫ t

0
(1 + τ)2σ |∂ jτ (	, v,H)|s+1−2jdτ

⎫⎪⎬⎪⎭
1
2

,

and

N s
σ =

⎧⎪⎨⎪⎩
[ s−1

2 ]∑
j=0

sup
0≤τ≤t

(1 + τ)2σ |∂ jτS1(τ )|2s−1−2j

+
[ s2 ]∑
j=0

∫ t

0
(1 + τ)2σ |∂ jτ (	divv)(τ )|2s−2jdτ

+
[ s−1

2 ]∑
j=0

∫ t

0
(1 + τ)2σ |∂ jτ (v · ∇	)|2s−1−2jdτ

+
[ s−2

2 ]∑
j=0

sup
0≤τ≤t

(1 + τ)2σ |∂ jτ (S2, S3)(τ )|2s−2−2j

+
[ s−1

2 ]∑
j=0

∫ t

0
(1 + τ)2σ |∂τ (S2, S3)|2s−1−2jdτ

+
∑

0≤k+2j≤s

∫ t

0
(1 + τ)2σ |

〈
∂k∂

j
τS, ∂k∂

j
τV

〉
|dτ

+
∑

0≤k+2j≤s−1

∫ t

0
(1 + τ)2σ |

〈
∂k∂

j
τS, ∂k∂

j+1
τ V

〉
|dτ

+
∑

0≤k+l+2j≤s−1

∫ t

0
(1 + τ)2σ γμ|

〈
∂k∂ l+1

3 ∂
j
τ

× (v · ∇	), ∂k∂ l+1
3 ∂

j
τ 	

〉
|dτ

⎫⎪⎬⎪⎭
1
2

,
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where S = (S1, S2, S3)T and V = (	, v,H)T . As in the
proof of (11.6) in (Kagei and Kobayashi 2005), we have the
following inequality in the similar way:

Lemma 3.13. Under the assumptions of Proposition 3.4,
the following inequality holds uniformly in t ≥ 0 and for
σ ≥ 1

2 ,

Ks
σ (t)2 + Ls

σ (t)2 ≤ C|	0, v0,H0|2s + CLs
0(t)

2

+ C
{
N s

σ (t)2+
∫ t

0
(1 + τ)2σ−1|(	, v,H)(τ )|2L2dτ

}
.

(88)

Proof. Here we only estimate the magnetic field. We
shall show that,

(1 + t)2σ |H(t)|s +
[ s2 ]∑
j=1

(1 + t)2σ |∂ jtH(t)|s−2j

+
[ s+1

2 ]∑
j=1

∫ t

0
(1 + τ)2σ |∂ jτH(t)|s+1−2jdτ

≤ C
{
|	0, v0,H0|2s + Ls

0(t)
2 + N s

σ (t)2

+
∫ t

0
(1 + τ)2σ−1|H|2L2dτ

}
.

(89)

Then we estimate these as follows:

i) Taking ∂
j
t to (19)3, multiplying (1 + t)2σ ∂

j
tH, and inte-

grating on R
3+, it implies

1
2
d
dt

∫
(1 + t)2σ |∂ jtH(t)|2dx + (1 + t)2σ

∫
|∂x∂ jτH|2dx

= σ(1 + t)2σ−1
∫

|∂ jtH(t)|2dx + (1 + t)2σ
〈
∂
j
tS3, ∂

j
tH

〉
.

Integrating this from 0 to t yields

(1 + t)2σ |∂ jtH(t)|2L2 +
∫ t

0
(1 + τ)2σ |∂x∂ jτH|2L2dτ

≤ C|	0, v0,H0|2s + C
∫ t

0
σ(1 + τ)2σ−1|∂ jτH|2L2dτ

+ C
∫ t

0
(1 + τ)2σ

∣∣∣〈∂ jτS3, ∂ jτH〉∣∣∣ dτ ,

(90)

for 2j ≤ s.

ii) Taking ∂
j
t to (19)3, multiplying (1 + t)2σ ∂

j+1
t H, and

integrating on R
3+, it holds∫

(1 + t)2σ |∂ j+1
t H(t)|2dx + 1

2
d
dt

∫
(1 + t)2σ |∂x∂ jtH(t)|2dx

= σ(1 + t)2σ−1
∫

|∂x∂ jtH(t)|2dx + (1 + t)2σ
〈
∂
j
tS3, ∂

j+1
t H

〉
.

By integrating this from 0 to t, we get

(1 + t)2σ |∂x∂ jtH(t)|2L2 +
∫ t

0
(1 + τ)2σ |∂ j+1

τ H|2L2dτ

≤ C|	0, v0,H0|2s + C
∫ t

0
σ(1 + τ)2σ−1|∂x∂ jτH|2L2dτ

+ C
∫ t

0
(1 + τ)2σ |

〈
∂
j
τS3, ∂

j+1
τ H

〉
|dτ ,

(91)

for 2j + 1 ≤ s.

iii) Due to Lemma 3.7, we have

(1 + t)2σ
∣∣∣∂k+2

x ∂
j
tH(t)

∣∣∣2
L2

≤ C(1 + t)2σ

×
(∣∣∣∂ jtH∣∣∣2

k
+

∣∣∣∂ jtS3∣∣∣2k +
∣∣∣∂x∂ jtH∣∣∣2

L2

)
,

for k + 2j + 2 ≤ s

(92)

and ∫ t

0
(1 + τ)2σ |∂k+2

x ∂
j
τH|2L2 ≤ C

∫ t

0
(1 + τ)2σ

×
(
|∂ jτH|2k + |∂ jτS3|2k + |∂x∂ jτH|2L2

)
dτ ,

(93)

for k + 2j + 1 ≤ s.
By Cauchy inequality and σ ≥ 1

2 , we have (1+ t)2σ−1 ≤
C(α)+α(1+t)2σ ,∀α > 0. This combining with (90)–(91),
we get

[ s
2 ]∑

k=0

{
(1 + t)2σ |∂kt H(t)|2L2 +

∫ t

0
(1 + τ)2σ |∂x∂kτ H|2L2dτ

}

+
[ s−1

2
]∑

j=0

{
(1 + t)2σ |∂x∂ jtH(t)|2L2 +

∫ t

0
(1 + τ)2σ |∂ j+1

τ H|2L2dτ

}

≤ C

⎛⎜⎝|	0, v0,H0|2s +
∫ t

0
(1 + τ)2σ−1|H|2L2dτ +

[ s
2 ]∑

k=1

∫ t

0
|∂kτ H|2L2dτ

+
[ s−1

2
]∑

j=0

∫ t

0
|∂x∂ jτH|2L2dτ +

[ s
2 ]∑

k=0

∫ t

0
(1 + τ)2σ |

〈
∂kτ S3, ∂kτ H

〉
|dτ

+
[ s−1

2
]∑

j=0

∫ t

0
(1 + τ)2σ |

〈
∂
j
τS3, ∂

j+1
τ H

〉
|dτ

⎞⎟⎠ .

(94)
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Multiplying (92) and (93) for k = 0, 1 with a
sufficiently positive number β , and combining with (94),
it yields

∑
2j+k≤s, k≤3

⎧⎨⎩(1+t)2σ |∂ jtH(t)|2k +
∑

2j+k≤s+1, k≤3

∫ t

0
(1+τ)2σ |∂ jτH|2kdτ

⎫⎬⎭
≤ C

⎛⎝|	0, v0,H0|2s +
∫ t

0
(1 + τ)2σ−1|H2

L2dτ +
[ s2 ]∑
k=1

∫ t

0
|∂kτ H|2L2dτ

+
[ s−1

2 ]∑
j=0

∫ t

0
|∂x∂ jτH2

L2dτ +
[ s2 ]∑
k=0

∫ t

0
(1 + τ)2σ |

〈
∂kτ S3, ∂kτ H

〉
|dτ

+
[ s−1

2 ]∑
j=0

∫ t

0
(1+τ)2σ |〈∂ j

τ S3, ∂
j+1
τ H〉|dτ +

∑
2j+k≤s, 2≤k≤3

(1+ t)2σ |∂ j
τ S3|2k−2

+
∑

2j+k+1≤s, 2≤k≤3

∫ t

0
(1 + τ)2σ |∂ jτ S3|2k−2dτ

⎞⎠ .

(95)

For k ≥ 2, the first term in the right-hand side of (92)
and (93) can be absorbed by the left-hand side of (92) and
(93) for k = k−2. Thus together with (95), we get (89).

In the proof of Subsubsection A priori estimates, we can
obtain that Ks

0(t)2 + Ls
0(t)2 ≤ C|	0, v0,H0|2s . Combining

this with Proposition 3.4, we can derive from Lemma 3.13,
for σ = 3

4 − ε1 that

Ks
3
4−ε1

(t)2 + Ls
3
4−ε1

(t)2 ≤ C(δ′
1) + CN s

3
4−ε1

(t)2, (96)

here C(δ′
1) → 0, as δ′

1 → 0. Hence it remains to estimate
N s

3
4−ε1

(t). We shall show that

N s
3
4−ε1

(t)2≤εLs
3
4−ε1

(t)2+C(ε)

{
Ks

3
4−ε1

(t)4+Ks
3
4−ε1

(t)2Ls
0(t)

2
}
.

Thus Proposition 3.5 follows. Since the other terms
can be estimated in the similar way or we can see
in (Kagei and Kobayashi 2005, here we only estimate∫ t

0

∣∣∣〈∂k∂ jτ (
1
ρ
curlH × H

)
, ∂k∂ jτv

〉∣∣∣ dτ with k = s − 2j and
s ≥ 3 as∣∣∣∣〈l∂k∂ jτ (

1
ρ
curlH × H

)
, ∂k∂ jτv

〉∣∣∣∣
=

∣∣∣∣〈∂s−1−2j∂
j
τ (

1
ρ
curlH × H), ∂s+1−2j∂

j
τv

〉∣∣∣∣
≤ |∂s−1−2j∂

j
τ

(
1
ρ
curlH × H

)
|L2 ||∂s+1−2j∂

j
τv|L2

≤ C(ε)|∂s−1−2j∂
j
τ (

1
ρ
curlH × H)|2L2 + ε

2
|∂s+1−2j∂

j
τv|2L2 .

In virtue of (17) and its general form, and with the help
of the smallness assumption in Proposition 3.4, we have

i) While j = 0,

|∂s−1
(
1
ρ
curlH × H

)
|2L2 ≤

∣∣∣∣ 1ρ
∣∣∣∣2
L∞

|H|2L∞|∂xH|2s−1

+
∣∣∣∣ 1ρ

∣∣∣∣2
L∞

|H|2s−1|∂xH|2L∞

+
∣∣∣∣∂x ( 1

ρ

)∣∣∣∣2
L∞

|H|2L∞|∂xH|2s−2

+
∣∣∣∣∂x ( 1

ρ

)∣∣∣∣2
L∞

|H|2s−2|∂xH|2L∞

+
∣∣∣∣∂x ( 1

ρ

)∣∣∣∣2
s−2

|H|2L∞|∂xH|2L∞

≤ C|	,H|2s−1|∂xH|2s−1.

ii) While 1 ≤ j ≤ [ s−1
2

]
,∣∣∣∣∂s−1−2j∂

j
t

(
1
ρ
curlH × H

)∣∣∣∣2
L2

≤
∑

1≤j1+j2+···+jk≤j

∣∣∣f (
ρ; j1, j2, · · · , jk−2

) (
sgn(j1)∂

j1
t 	

)
· · ·

×
(
sgn(jk−2)∂

jk−2
t 	

)
×

(
curl∂ jk−1

t H × ∂
jk
t H

)∣∣∣2
s−1−2j

≤ C
[ s−1

2 ]∑
j=1

|∂ jt(	,H)|2s−1−2j

[ s−1
2 ]∑

l=1
|∂x∂ ltH|2s−1−2l,

where f = c
ρm , c is a nonzero integer and m =

m( j1, j2, · · · , jk−2) is some positive integer. And the last
inequality in ii) can be derived from the continuous
equation (19)1 and the smallness assumption of initial
data. This together with the definition of Ls

0(t), Ls
3
4−ε1

(t)
and Ks

3
4−ε1

(t), it implies∫ t

0
(1 + τ)2

( 3
4−ε1

)
t〈∂k∂ jτ

(
1
ρ
curlH × H

)
, ∂k∂ jτv〉dτ

≤ εLs
3
4−ε1

(t)2 + C(ε)Ks
3
4−ε1

(t)2Ls
0(t)

2.

Now we shall finish the proof of the last part of
Theorem 2.

Proposition 3.6. Let s ≥ 4. Under the assumptions of
Proposition 3.5, if there exists a positive constants δ2 such
that |	0, v0,H0|s + |	0, v0,H0|L1 ≤ δ′

2, then we have

|∂x(	, v,H)|2 ≤ Cδ′
2(1 + t)−

( 5
4−ε2

)
, ∀0 < ε2 < ε̂

for all t ≥ 0, where ε̂ ≤ ε̃ is some positive number.
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In order to prove Proposition 3.6, we first set
M̃3

σ (t) = sup
0≤τ≤t

(1+ τ)σ
(
∂2x (	, v,H)(τ )|L2 + |∂τ (	, v,H)(τ )|1

)
,

K̃s
σ =

⎧⎨⎩
s∑

k=3
Mk

σ +
[ s2 ]∑
j=1

sup
0≤τ≤t

(1 + τ)
3
4−ε|∂ jτ v(τ )|s−2j

+
[ s+1

2
]∑

j=1
sup
0≤τ≤t

(1 + τ)
3
4−ε|∂ jτ 	(τ )|s+1−2j

⎫⎪⎬⎪⎭
1
2

,

L̃s
σ =

⎧⎪⎨⎪⎩
∫ t

0
(1 + τ)2σ (|∂x∂v|s + |∂3v|2s−2

+ |∂2x	|s−2 + |∂x∂τ (	, v)|2s−2

+
[ s+1

2
]∑

j=2

∫ t

0
(1 + τ)2σ |∂ jτ (v, 	)|s+1−2j)dτ

⎫⎪⎬⎪⎭
1
2

,

and

Ñ s
σ =

⎧⎨⎩ sup
0≤τ≤t

(1 + τ)2σ |∂2x S1(τ )|2s−3

+
[ s−1

2
]∑

j=1
sup
0≤τ≤t

(1 + τ)2σ |∂ jτS1(τ )|2s−1−2j

+
∫ t

0
(1 + τ)2σ

⎛⎝|∂x(	divv)(τ )|2s−1

+
[ s
2 ]∑

j=1
|∂ jτ (	divv) (τ )|2s−2j

⎞⎠ dτ

+
∫ t

0
(1 + τ)2σ

⎛⎝|∂2x (v · ∇	)(τ )|2s−3

+
[ s−1

2
]∑

j=1
|∂ jτ (v·∇	)(τ )|2s−1−2j

⎞⎟⎠dτ+(1+τ)2σ |∂x(S2, S3)(τ )|2s−3

+
[ s−2

2
]∑

j=1
sup
0≤τ≤t

(1 + τ)2σ |∂ jτ (S2, S3)(τ )|2s−2−2j

+
∫ t

0
(1 + τ)2σ

⎛⎜⎝|∂xS2|2s−2 +
[ s−1

2
]∑

j=1
|∂ jτ (S2, S3)|2s−1−2j

⎞⎟⎠ dτ

+
∑

0≤k+2j≤s, (k,j)�=(0,0)

∫ t

0
(1 + τ)2σ

∣∣∣〈∂k∂ jτS, ∂k∂ jτV 〉∣∣∣ dτ

+
∑

0≤k+2j≤s−1, (k,j)�=(0,0)

∫ t

0
(1 + τ)2σ

∣∣∣〈∂k∂ jτS, ∂k∂ j+1
τ V

〉∣∣∣ dτ

+
∑

0≤k+l+2j≤s−1, (k,l,j)�=(0,0,0)

∫ t

0
(1 + τ)2σ γμ

∣∣∣〈∂k∂ l+1
3 ∂

j
τ

× (v · ∇	), ∂k∂ l+1
3 ∂

j
τ 	

〉∣∣∣ dτ

⎫⎬⎭
1
2

.

As in the proof of Lemma 3.13 or we can see in (Kagei
and Kobayashi 2005), the following inequality can be
easily deduced:

Lemma 3.14. Let s ≥ 2. Then under the assumptions of
Proposition 3.5, the following inequalities hold uniformly
in t ≥ 0,

K̃s
5
4−ε2

(t)2 + L̃s
5
4−ε2

(t)2

≤ C
{
Ks

0(t)
2 + Ls

0(t)
2 + Ñ s

5
4−ε2

(t)2

+
∫ t

0
(1 + τ)2

( 5
4−ε2

)−1 (|∂x(	, v,H)|2L2 + |∂τ (	, v,H)|2L2
)
dτ

}
.

(97)

And we estimate Ñ s
5
4−ε2

(t) as:

Lemma 3.15. Let s ≥ 2. Then under the assumptions of
Proposition 3.5, the following inequalities hold uniformly
in t ≥ 0,

Ñ s
5
4−ε2

(t)2 ≤ CKs
3
4−ε1

(t)4 + Ks
3
4−ε1

(t)2Ls
3
4−ε1

(t)2

+ C
{
M∞(t) + M1

5
4
(t) + M̃3

5
4
(t) + K̃s

5
4−ε2

(t)
}

× Ls
3
4−ε1

(t)2.

(98)

Proof. Set Ñ s
5
4−ε2

(t) = J1 + J2 + · · · + J10. Here we only
consider s ≥ 4 since the case while 2 ≤ s < 4 can be
deduced more easily. Thus we will estimate J1-J10 term by
term.

J1, J2 ≤ C sup
0≤τ≤t

(1 + τ)2
( 5
4 −ε2

) ⎛⎜⎝|∂3x (	v)|2s−3 +
[ s−1

2
]∑

j=1
|∂ jτ (	v)|2s−2j

⎞⎟⎠
≤ C sup

0≤τ≤t
(1 + τ)2

( 5
4 −ε2

) ⎛⎜⎝|	, v|2L∞|	, v|2s +
[ s−1

2
]∑

j=1
|	, v|2L∞|∂ jτ (	, v)|2s−2j

+
[ s−1

2
]∑

j=1

j−1∑
k=1

∣∣∣∂kτ 	, ∂ j−k
τ v|2L∞|∂kτ 	, ∂ j−k

τ v
∣∣∣2
s−2j

⎞⎟⎠
≤ C sup

0≤τ≤t
(1 + τ)2

( 5
4 −ε2

) ⎛⎜⎝|	, v|4s + |	, v|2s

[ s−1
2

]∑
j=1

|∂ jτ (	, v)|2s−2j

+
[ s−1

2
]−1∑

k=1
|∂kτ 	|2s−2k−1

[ s−1
2

]−1∑
l=1

|∂ lτ v|2s−2l−1

⎞⎟⎠
≤ CKs

3
4 −ε1

(t)4.

And this holds similarly for J5, J6. For the terms J3, J4
and J7, we only estimate

∫ t
0 (1 + τ)2(

5
4−ε2)|∂x(	divv)|2s−1dτ
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contained in J3. The estimates of the other terms can
arrive in the similar way.∫ t

0
(1 + τ)2

( 5
4−ε2

)
|∂x(	divv)|2s−1dτ

≤ C
∫ t

0
(1 + τ)2

( 5
4−ε2

)
|	divv|2s dτ

≤ C
∫ t

0
(1 + τ)2

( 5
4−ε2

) (|	|2L∞|∂xv|2s + |	|2s |∂xv|2L∞
)
dτ

≤ C
∫ t

0
(1 + τ)2

( 5
4−ε2

)
|	|2s |∂xv|2s dτ

≤ CKs
3
4−ε1

(t)2Ls
3
4−ε1

(t)2.

For J8-J10, we only estimate the term
∑

1≤k≤s−1∫ t
0 (1 + τ)2

( 5
4−ε2

)
|∂kx S3||∂kx ∂τH|dτ as

∑
1≤k≤s−1

∫ t

0
(1 + τ)2

( 5
4−ε2

)
|∂kx S3||∂kx ∂τH|dτ

≤ C
∑

1≤k≤s−1

∫ t

0
(1 + τ)2

( 5
4−ε2

)
|∂k+1
x (v × H)||∂kx ∂τH|dτ

≤ C
∑

1≤k≤s−1

∫ t

0
(1 + τ)2

( 5
4−ε2

) ⎛⎝|v, H|L∞|∂k+1
x (v,H)|L2

+ |∂x(v,H)|L3 |∂kx (v,H)|L6

+
∑

2≤j≤k−1
|∂ jx(v,H)|L6 |∂k+1−j

x (v,H)|L3
⎞⎠ |∂kx ∂τH|L2dτ

≤ C
∑

1≤k≤s−1

∫ t

0
(1 + τ)2

( 5
4−ε2

) ⎛⎝|v, H|L∞ + |∂x(v,H)|L2

+|∂2x (v,H)|L2 +
∑
3≤j≤k

|∂ jx(v,H)|L2
⎞⎠ |∂k+1

x (v,H)|L2 |∂kx ∂τH|L2dτ

≤ C
{
M∞(t) + M1

5
4
(t) + M̃3

5
4
(t) + K̃s

5
4−ε2

(t)
}
Ls

3
4−ε1

(t)2,

which finished the proof of Lemma 3.15.

By virtue of Lemma 3.14 and Lemma 3.15, it remains to
estimate M̃3

5
4−ε2

(t) to finish the proof of Proposition 3.6.

Lemma 3.16. Let s ≥ 4. Then under the assumptions of
Lemma 3.13, the following inequalities hold uniformly in
t ≥ 0,

M̃3
5
4
(t)2 ≤ C

{
Ks

3
4−ε1

(t)2 + M0
3
4
(t)2 + M1

5
4
(t)2 + M∞(t)2

}
.

(99)

Proof. By Lemma 3.8 ii), we have

|∂ lx∂tI0(t)|L2 ≤ Ct−
5
4
{|U0|L1 + |	0|2 + |v0|1

}
,

for t ≥ 1 and l = 0, 1. Now we shall estimate ∂ lx∂tI1(t).
Since

∂tI1(t) = E(t−τ)F(U ,H)(τ )|tt−1 +
∫ t

t−1
Et(t−τ)F(U ,H)(τ )dτ

= E(t−τ)F(U ,H)(τ )|tt−1 −
∫ t

t−1
Eτ (t−τ)F(U ,H)(τ )dτ

=
∫ t

t−1
E(t−τ)∂τF(U ,H)(τ )dτ ,

then by Lemma 3.9 and Lemma 3.12, we have

|∂ lx∂tI1(t)|L2 ≤ C
∫ t

t−1
(t − τ)−

l
2 |∂τF(U ,H)(τ )|H1×L2dτ

≤ C
∫ t

t−1
(t − τ)−

l
2 {|∂tS1|1 + |∂tS2|L2}dτ

≤ C(1 + t)−
5
4

{
K4

3
4−ε

(t)2 + M∞(t)2 + M1
5
4
(t)2

}
.

Similarly, we can get

∂tI2(t) = E(1)F(U ,H)(t − 1) +
∫ t−1

0
∂tE(t−τ)∂τF(U ,H)(τ )dτ .

Thus by Lemma 3.8, Lemma 3.11 and Lemma 3.12,

|∂ lx∂tI2(t)|L2
≤ C|F(U ,H)(t − 1)|1

+ C
∫ t−1

0
(t − τ)−

5
4 |F(U ,H)(τ )|L1

+ e−C0(t−τ)|F(U ,H)(τ )|H1×L2dτ

≤ C
∫ t

t−1
τ− 1

2
{|∂tS1|1 + |∂tS2|L2

}
dτ

≤ C(1 + t)−
5
4

{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

+K3
3
4−ε1

(t)2 + N(0, t)2
}
.

It then follows that

|∂tU(t)|1 ≤ C(1 + t)−
5
4

{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

+K4
3
4−ε1

(t)2 + N(0, t)2
}
.

This together with the magnetic term which can be
treated in the similar way, one has

|∂t(	, v, H)|1 ≤ C(1 + t)−
5
4

{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

+K4
3
4−ε1

(t)2 + N(0, t)2
}
.

(100)

Next we estimate |∂2xU(t)|L2 and |∂∂2x v|L2 . For k = 1, 2,
we see from Lemma 3.8 that

|∂k∂xI0(t)|L2 ≤ Ct−
7
4
{|U0|L1 + |	0|k+1 + |v0|k

}
.
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And by Lemma 3.9 and Lemma 3.12,

|∂k∂xI1(t)|L2 ≤ C
∫ t

t−1
(t − τ)−

1
2 (|S1|k+1 + |S2|k)dτ

≤ C
{
M∞(t)2 + M1

5
4
(t)2 + Kk+2

3
4−ε1

(t)2
}

×
∫ t

t−1
(t − τ)−

1
2 (1 + τ)−

3
2 dτ

≤ C(1 + t)−
3
2

{
M∞(t)2 + M1

5
4
(t)2 + Kk+2

3
4−ε1

(t)2
}
.

By Lemma 3.8 and Lemma 3.12,

|∂k∂xI2(t)|L2
≤ C

∫ t−1

0
(t − τ)−

5
4 |(S1, S2)(τ )|L1dτ

+ C
∫ t−1

0
e−C0(t−τ)(|S1(τ )|k+1 + |S2(τ )|k)dτ

≤ C
{
M0

3
4
(t)2 + M1

5
4
(t)2 + Kk+2

3
4−ε1

(t)2
}

×
∫ t−1

0
(t − τ)−

5
4 (1 + τ)−

( 7
4−ε1

)
dτ

+ C
{
M∞(t)2 + M1

5
4
(t)2 + Kk+2

3
4−ε1

(t)2
}

×
∫ t−1

0
e−C0(t−τ)(1 + τ)−

3
2 dτ

≤ C(1+t)−
5
4

{
M∞(t)2+ M0

3
4
(t)2+ M1

5
4
(t)2+ Kk+2

3
4−ε1

(t)2
}
.

Combining these with the magnetic term which has the
similar estimates, it yields

|∂k∂x(	, v,H)|L2 ≤ C(1 + t)−
5
4

{
δ′
1 + M∞(t)2

+M0
3
4
(t)2 + M1

5
4
(t)2 + Kk+2

3
4−ε1

(t)2
}
(101)

for k = 1, 2.
Next, we consider ∂23 (	, v). From the equation (19)2, we

have

2μ∂23v = vt + γ∇	 − μ(∂ · ∂)v − μ∂divv
− μ∂3(∂1v1 + ∂2v2) − S2.

Thus by (100) and (101), it follows that

|∂ l∂23v|L2 ≤ C
(
|∂ lvt|L2 + |∂ l∂x	|L2 + |∂ l+1∂xv|L2 + |∂ lS2|L2

)
≤ C(1 + t)−

5
4

{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

+K4
3
4−ε1

(t)2 + δ′
1

}
.

(102)

Similarly by (19)1–(19)2, we have

∂3	t + γ 2

2μ
∂3	 = γ

2μ
v3t − γ

2
∂3(∂1v1 + ∂2v2)

+ γ

2
(∂ · ∂)v3 + ∂3S1 + γ

2μ
S2.

Differentiating this in x3, multiplying ∂23	 to the result
equation, and integrating on R

3+, we have
d
dt

|∂3	|L2 + γ

μ
|∂3	|L2 ≤ C(|∂xvt , ∂∂2x v, ∂2x S1, ∂xS2|L2),

Thus by Gronwall’s inequality, and with the help of
Lemma 3.12, and (87)–(89), we obtain

|∂23	|L2
≤ e−

γ
4μ (t−1)|∂23	(1)|L2 + C

∫ t

1
e−

γ
2μ (t−τ)

× (|∂xvt , ∂∂2x v, ∂2x S1, ∂xS2|L2
)
dτ

≤ CN(0, t)e−
γ
4μ (t−1)

+ C
{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2 + K4

3
4−ε1

(t)2 + δ′
1

}
×

∫ t

1
e−

γ
2μ (t−τ)

(1 + τ)−
5
4 dτ

≤ C(1 + t)−
5
4

{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

+K4
3
4−ε1

(t)2 + δ′
1

}
,

this together with (101) and (102), we get the estimate
of |∂2x (	, v)|L2 . Hence it remains to estimate |∂2xH|L2 . By
Lemma 2.4 and (100), we have

|∂2xH|L2 ≤ C(|Ht|L2 + |S3|L2 + |∂xH|L2)
≤ C(1 + t)−

5
4

{
M∞(t)2 + M0

3
4
(t)2 + M1

5
4
(t)2

+K4
3
4−ε1

(t)2 + η21

}
.

(103)

Combining this with the above estimates, Lemma 3.16
follows.

As in (103), we can deduce the decay rates of higher
order derivatives for the magnetic field by Lemma 3.8,
Lemma 3.16 and (100). Thus we state the result
which is better than one in Proposition 3.6 in the
following:

Proposition 3.7. Under the assumptions of
Proposition 3.6, the solution H of (19)3 satisfies that for
all t ≥ 0,

|∂3xH(t)|L2 ≤ C(1 + t)−
5
4 .
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In view of the above established, the proof of Theorem 2
is complete.
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