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Abstract

Background: This study tested a first-order perturbation method based on Karhunen-Loevè expansion (FP-KLE), to
analyze flood inundation modeling under uncertainty. The floodplain roughness over a 2-dimensional domain was
assumed to be a statistically heterogeneous field with log-normal distributions. Firstly, we attempted to use KLE to
decompose the random field of log-transferred floodplain roughness N(x), which was based on the eigenvalues
and eigenfunctions of the covariance function of N(x), and a set of orthogonal normal random variables. Secondly,
the maximum flow depths were expanded by the first-order perturbation method by using the same set of random
variables as used in the KLE decomposition. Then, a flood inundation model, named FLO-2D, was adopted to numerically
solve the corresponding perturbation expansions.

Results: To illustrate the methodology, a one-in-five-years flood event was chosen as the study case. The results indicated
that the mean of the maximum flow-depth field obtained from the proposed method was fairly close to that
from Monte Carlo Simulation (MCS), but the standard deviation was somewhat higher. However, the FP-KLE
method was computationally more efficient than MCS.

Conclusions: The study verified the applicability of FP-KLE in handling uncertainties of flood modeling in a
more efficient manner; further test with multiple inputs of random fields is desired.

Keywords: Karhunen-Loevè expansion; Roughness coefficient; Flood inundation modelling; Monte Carlo
simulations
Background
Flood inundation mapping is important for helping iden-
tify potential flood profiles, and assist decision makers in
planning and mitigation operations (Jung and Merwade,
2012). Due to inherent complexity and large numbers of
parameters, flood inundation modelling processes often
involve large uncertainties, especially at topographical
formation where no sufficient data are available for
model parameterization, calibration and validation. As a
key global parameter in flood inundation modelling, it
has been recognized that the Manning’s roughness coeffi-
cient (Manning’s n) could notably affect flood inundation
predictions (Beven and Binley, 1992; Aronica et al., 1998;
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Hall et al., 2005). Furthermore, due to different types of
vegetation, surface irregularity and non-uniform/unsteady
flows over the floodplain, the roughness coefficient has
demonstrated a high heterogeneity (Pappenberger et al.,
2005; Liu, 2009). Previously, many studies were devoted to
analyse uncertainty propagation from manning’s roughness
coefficients during flood modelling, such as Generalized
Likelihood Uncertainty Estimation (GLUE) and traditional
Monte Carlo simulations (MCS) (Aronica et al., 1998;
Aronica et al., 2002; Van Vuren et al., 2005; Reza
Ghanbarpour et al., 2011; Jung and Merwade, 2012).
However, most of these studies tend to adopt homogenous
values of roughness coefficient over the study domain, and
this could lead to significant discrepancies between the
observed data and simulation results.
It has been realized that the geological-related process

involving spatial distribution of uncertainty, such as rough-
ness coefficients, can be more practically considered as a
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random field (Ghanem and Spanos, 1991; Lu and Zhang,
2007). Subsequently, the governing equations describing
one- or multi-dimensional physical processes will be trans-
formed into stochastic. The simulation results (such as the
flow depth and flow velocity) are probabilistic distributions
of the outputs, instead of deterministic quantifications. In
recent decades, new stochastic methodologies based on
Karhunen-Loevè expansion (KLE) decomposition have
been proposed, which could consider the spatial distribu-
tion of uncertain parameters in generating realizations
(Huang et al., 2001; Zhang and Lu, 2004; Liu et al., 2006).
KLE decomposition was firstly developed to deal with un-
certain random field with spatial distribution and the cor-
responding uncertainties were treated with an orthogonal
basis of polynomial chaos (Ghanem and Spanos, 1991).
Roy and Grilli (1997) firstly applied KLE to decompose the
random field of hydraulic conductivity in a 2-dimensional
(2D) stationary groundwater flow modelling system. Later
on, Zhang and Lu (2004) developed a new approach called
KLME (which combined KLE with moment equation
method) and applied it to analyze the first and second mo-
ments of the hydraulic head. Despite of quite a large num-
ber of analytical approaches been developed for assessing
parameter uncertainty in flood modeling, studies on the
uncertainty parameters with spatial distribution are relatively
limited. Liu and Matthies (2010) attempted to combine KLE
and Hermite polynomial chaos expansion and examine the
uncertainty from inflow, topography and roughness coeffi-
cient over the entire flood modelling domain using stochas-
tic 2D shallow water equations. In this study, KLE is to be
tested in decomposing the random field of floodplain rough-
ness coefficients (keeping the channel roughness coefficients
fixed) within a coupled 1-dimensional (1D) (for channel
flow) and 2D (for floodplain flow) physical flood inundation
model (i.e. FLO-2D). The method is effective in saving com-
putational efforts without compromising the accuracy of un-
certainty assessment. Previously, no such attempt was made
using FLO-2D.

Results and discussion
Study case
A flood inundation case modified from Aronica et al.
(2002) is chosen to demonstrate the proposed FP-KLE
method. The related settings are listed as follows
(Aronica et al., 2002; Hall et al., 2005; Bates et al., 2008):
(i) 50-meter resolution DEM is used as the topographical
data with 0.25-meter accuracy vertically, changing from
67.73 to 83.79 m; this is relatively moderate compared to
those of the steeply-changing mountain areas; and (ii)
channel cross-section is defined as rectangular with the
size of 25 m (width) by 1.5 m (depth); (iii) the upstream
inflow hydrograph is suggested as steady at 73 m3/s; this
corresponds to a flood event with a 5-years return period
(i.e. December 1992 flood lasting about 27.8 hours). The
channel roughness coefficient n is fixed at 0.03. More de-
tailed description of the study case can be referred to
Bates et al. (2008). For uncertainty assessment, the flood-
plain roughness is assumed as a random field with log-
normal probability distribution function (PDF). Monte
Carlo simulation (MCS), as a traditional stochastic
method, could be used to deal with the stochastic par-
tial differential equations, i.e., 2D shallow water equa-
tions. Although MCS is easy to use, it is restricted by
extensive computational needs, particularly for large-scale
flood inundation modelling problems. It is desired to
apply KLE method for improving the computational
efficiency.

Simplifications of KLE for the random floodplain
roughness field
In order to make the uncertainty analysis with KLE
more practical, some simplifications are made according
to Zhang and Lu (2004) for 1D model: (i) x̂ ¼ x=Lx ,
where Lx is the length of domain at the x direction, (ii)

λ̂i ¼ λi=Lx , (iii) normalized correlation length η̂ ¼ η=Lx ,

and (iv) normalized eigenfuctions f̂ i xð Þ ¼ f i xð Þ ffiffiffiffiffi
Lx

p
: For

simplicity, the tilde is omitted for the above four expres-
sions in the followed equations and expressions within
the parts of results and discussion, and conclusion.
The log floodplain roughness coefficient is assumed an ex-

ponential spatial covariance function (Roy and Grilli, 1997):

CN x; yð Þ ¼ CN x1; x2; y1; y2ð Þ ¼ σNe
−

x1−y1j j
ηx

−
x2−y2j j
ηy

h i
ð1Þ

where η x and η y represent normalized correlation
lengths in the x- and y-directions, respectively; (x1, y1)
and (x1, y1) are the spatial Cartesian coordinates of two
points located in a 2D physical domain.
For a 2D rectangular modelling domain, we have ei-

genvalues for a 2D field and can integrate them as
(Zhang and Lu, 2004):

X∞
n¼1

λn ¼
X∞
i¼1

λi
X∞
j¼1

λj

 !
=σN

2 ¼ DσN
2 ð2Þ

where λn are the eigenvalues for 2D modelling domain;
λi (i =1, 2,…, ∞) and λj (j =1, 2,…, ∞) are the eigenvalues
for the x- and y-directions separately; σN is the standard
deviation of the log-transformed floodplain roughness
coefficient; D is the size of the 2D modelling domain.
In this study, the random field of floodplain roughness

coefficient n(x) is suggested as log-normal PDF with un =
0.06 (mean) and σn = 0.001 (standard deviation), spatially.
The N(x) = ln[n(x)] is a normal distribution with mean
uN = −2.936 and standard deviation σN = 0.495. The
range of N(x) is approximated as [uN -3σN, uN +3σN]
which is (0.012, 0.234). To achieve both efficiency in
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operationality and accuracy in computation, the num-
ber of KLE terms with different normalized correlation
lengths may vary with different scenarios (i.e., various
scales of the domain size) with specific model settings
(i.e., boundary condition settings) and floodplain rough-
ness coefficients (i.e., changing from rural to urban areas)
under consideration. In this case, the numbers of terms
retained in KLE expansion in the x-direction (mx) and
y-direction (my) are set as 20 and 10, respectively;
hence, the total number of KLE terms is 20 × 10 = 200.
The eigenvalues would monotonically reduce as index

n increases, as shown in Equation (2). Figure 1(a) shows
that, for different exponential spatial covariance func-
tions (with different normalized correlation length η ),
the declining rate �λ n (�λ n¼λn= DσN2ð Þ) is different. When
η becomes larger, �λ n would reduce more significantly.
Figure 1(b) illustrates that the summation of �λ n based on
a finite number of terms rather than on an infinite num-
ber, can be considered as a function of the index n. The

value of
X

�λ n would gradually approach to 1 when n is

increasing.
For this study case, the normalized correlation lengths

are set as ηx = 0.15 and ηy = 0.3, and the total number of
KLE terms is m = 200. Figure 2 shows the decreasing
rate of eigenvalues and how much energy of KLE ap-
proximation is obtained. For example, if 200 KLE terms
of N(x) expansion are used in KLE decomposition and
the total energy of the approximation would save by
86.56%, as shown in Figure 2(b). Figures 3 shows two
representations of the random fields of floodplain rough-
ness coefficients over the 2D flood modelling domain
with η x = 0.15 and η y = 0.3 and the number of KLE
terms = 200. These figures show that the KLE decom-
position of the uncertain random field is different from
the Monte Carlo sampling, in which the heterogeneous
Figure 1 (a) Series of �λ n (�λ n¼λn= DσN
2ð Þ) and (b) their finite cumulati

exponential spatial covariance functions (i.e. η = ηx = ηy = 0.15, 0.3, 1.
profile of random field can be represented by smoother
eigenpairs as expressed in Equation (2).

Comparison with MCS
In order to verify the accuracy of the FP-KLE, the mod-
elling results from 5,000 realizations of Monte Carlo
simulations are also presented. Figure 4 shows the distri-
bution statistics of the maximum flow depths h (x) using
KLE and MCS, respectively. From Figures 4a) and 4(b),
it can be seen that the mean of h (x) distribution (vary-
ing from 0 to 2.5 m) simulated by KLE reproduces well
the result from MCS. From Figures 4(c) and 4(d), differ-
ent distributions of the standard deviation of h (x) are
found. The standard deviation of h(x) simulated by FP-
KLE is somewhat higher than that calculated by MCS.
This may because FP-KLE is in lower order (i.e. first-
order) and less capable of achieving a high accuracy,
comparing with MCS.
Figure 5 shows a comparison of the statistics of the h

(x) field along the cross-section x = 43 between FP-KLE
and MCS. It seems that the mean of the h(x) along the
concerned cross section simulated by FP-KLE fits very
well with that simulated by MCS. However, the standard
deviation from the perturbation method is higher than
that from MCS. For example, at the location (x, y) = (43,
30), the standard deviation of the h (x) (i.e. 0.01262 m)
is about 66.42% higher than that (i.e. 0.007583 m) calcu-
lated by MCS; the range of the standard deviation by
FP-KLE is from 0 to 0.01262 m, and that by MCS is
from 0 to 0.00883 m. It indicates that the FP-KLE with
200 terms may not sufficiently capture the simulated
standard deviation results by MCS.
Generally, the FP-KLE is capable of quantifying uncer-

tainty propagation in a highly heterogeneous flood model-
ling system. By comparison, FP-KLE is proved to be more
efficient than traditional MCS in terms of computational
ve sums for the 2D rectangular domain with different
0 and 4.0 respectively).



Figure 2 (a) Series of �λ n, and (b) its finite cumulative sum for 2D rectangular domain with defined exponential spatial covariance function.
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efforts. The presented approach can be used for large-
scale flood domains with high spatial-variability of input
parameters, and it could provide reliable predictions to
the decision-makers in flood risk assessment with rela-
tively a small number of model runs.
Figure 3 The random fields of floodplain roughness coefficients over
Domain size is divided into 76 (in x axis) × 48 (in y axis) grid elements. fn re
Conclusions
This study attempted to use a first-order perturbation
called FP-KLE to investigate the impact of uncertainty as-
sociated with floodplain roughness coefficients on a 2D
flooding modelling process. Firstly, the KLE decomposition
the modelling domain for the (a) 5th and (b) 151th realizations.
present floodplain manning’s roughness coefficients.



Figure 4 Comparison of statistics of maximum flow depth field simulated by the first-order perturbation based on the KLE and MCS:
(a) and (b) are the mean maximum depth distributions calculated by FP-KLE and MCS, respectively; (c) and (d) are the standard
deviation of the maximum depth distributions calculated by FP-KLE and MCS, respectively. Domain size is divided into 76 (in x axis) × 48
(in y axis) grid elements.
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for the log-transformed floodplain random field was made
within a 2D rectangular flood domain represented by pairs
of eigenvalue and eigenfunctions. Secondly, the first-order
expansion of h (x) perturbation was applied to the max-
imum flow depth distribution. Thirdly, the flood inunda-
tion model, i.e. FLO-2D, was used to solve each term of
the perturbation based on the FP-KLE approach. Finally,
the results were compared with those obtained from trad-
itional Monte Carlo simulation (MCS).
The following facts were found from this study: (i) for

the 2D flood case, with parameter setting of ηx = 0.15, ηy =
0.3, and the number of KLE terms = 200, about 86.56% en-
ergy have been saved; this was considered sufficient for
reproduction of statistical characteristics; (ii) the mean of h
Figure 5 Comparison of statistics of max flow depth field simulated b
depth, and (b) standard deviation of max flow depth.
(x) field from FP-KLE reproduced well the results from
MCS, but the standard deviation was somewhat higher;
(iii) the first-order KLE-based perturbation method was
computationally more efficient than MCS with comparable
accuracy. Some limitations need further discussions in fu-
ture studies: (i) compared with the first-order KLE-based
perturbation approach, the second-order (or higher orders)
perturbation may lead to more accurate result, but the re-
quired computational effort would increase dramatically;
further test of the method on higher orders is desired; (ii)
for this study, the simulation is in a steady-state condition;
the KLE-based perturbation method for unsteady state
could be further explored; (iii) the input random field in
this study was assumed in normal distribution, non-normal
y FP-KLE and MCS along the profile x = 43/76: (a) mean max flow
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distributions of the input random fields could be explored
in the future.

Methods
Stochastic flood inundation model
FLO-2D is used in this study as the flood inundation
model. It is based on the full 2D shallow water equations
(also called dynamic wave momentum equation) (FLO-
2D Software, 2012). In the FLO-2D modeling system,
channel flow is 1D with the channel geometry repre-
sented by either rectangular or trapezoidal cross sec-
tions; meanwhile, the overland flow is modelled 2D as
either sheet flow or flow in multiple channels (FLO-2D
Software, 2012). Overbank flow in the channel is com-
puted when the channel capacity is exceeded. Besides, an
interface routine calculates the channel to floodplain flow ex-
change including return flow to the channel. More technical
details of FLO-2D can be referred to Obrien et al. (1993),
O'Brien et al. (1999), and D'Agostino and Tecca (2006).
To describe a 2D flood inundation process, shallow

water equations can be used (Chow et al., 1988; Obrien
et al., 1993; FLO-2D Software, 2012):

∂h xð Þ
∂t

þ ∇ h xð ÞV½ � ¼ I ð3aÞ

Sf ¼ So−∇h xð Þ− 1
g

V ⋅∇ð ÞV−
1
g
∂V
∂t

ð3bÞ

Sf ¼ n xð Þ2
R

4
3

V Vj j ð3cÞ

where, h(x) is the flow depth; V represents the averaged-
in-depth velocity in each direction x; x represents Carte-
sian coordinate spatially, such as x = (x, y) represents 2D
Cartesian coordinate; t is the time; So is the bed slope,
and Sf is the friction slope; and I is lateral flow into the
channel from other sources. Equation (3a) is the con-
tinuity equation or mass conservation equation, and
Equation (3b) is the momentum equation; both of them
are the fundamental equations in the flood modelling. In
Equation (3c), n is the Manning coefficient (Manning’s
n), which is the most commonly applied friction param-
eter in flooding modelling. R is the hydraulic radius.
Equations (3a)-(3c) are solved mathematically in eight
directions by FLO-2D. In this study, n(x) is assumed as a
random function spatially, and Equations (3a)-(3c) are
transformed into stochastic partial differential equations
with random floodplain roughness coefficients and other
items within the model are considered to be determinis-
tic. Our purpose is to solve the mean and standard devi-
ation of the flow depth h(x), which are used to assess
the uncertainty propagation during the flood inundation
modelling.
Karhunen-Loevè expansion (KLE) of log floodplain
manning’s roughness coefficients
Let the n(x) be a random field of floodplain manning’s
roughness coefficient, and N(x) = ln[n(x, ω)], where x ϵ
D and ω ϵ Ω (a probabilistic space). This means N(x)
changes spatially. Its covariance function CN(x, y) = <N’(x, ω)
N’(y, ω) > is assumed as bounded, symmetric, and positive,
which can be expressed as (Ghanem and Spanos, 1991):

CN x; yð Þ ¼
X∞
n¼1

λnf n xð Þf n yð Þ ð4Þ

where λn represent eigenvalues; fn(x) are eigenfunctions,
which are orthogonal and determined by dealing with
the Fredholm equation analytically or numerically as
(Courant and Hilbert, 1989):Z

D

CN x; yð Þf n xð Þdx ¼ λnf n yð Þ ð5Þ

where λn and fn (x) for some specific covariance func-
tions could be solved analytically (Zhang and Lu, 2004).
The KLE representation of floodplain roughness coeffi-
cients can be expressed as:

N x;ωð Þ ¼ μ xð Þ þ
X∞
n¼1

ξn ωð Þ
ffiffiffiffiffi
λn

p
f n xð Þ ð6Þ

where μ (x) represents the mean of N(x, ω); and ξn (ω)
are the orthogonal random variables with standard
Gaussian distribution. For conciseness, ω is omitted in
following related expressions and equations. The calcu-
lated λn can be ranked as monotonically decreasing
series with index n. In order to make the approximation
effective in both computational effort and accuracy, the
KLE representation of N(x) can be written in a finite
form as follows (Liu et al., 2006; Li and Zhang, 2007):

~N xð Þ ¼ μ xð Þ þ
Xm
n¼1

ξn
ffiffiffiffiffi
λn

p
f n xð Þ ð7Þ

Since
ffiffiffiffiffi
λn

p
and fn(x) always appear in pairs, let

gn xð Þ ¼ ffiffiffiffiffi
λn

p
f n xð Þ. Then, Equation (7) can be simplified into:

~N xð Þ ¼ μ xð Þ þ
Xm
n¼1

ξngn xð Þ ð8Þ

where ~N xð Þ is the approximation for the random flood-
plain roughness field. Generally, the more the terms
used in gn(x), the more accurate the random floodplain
roughness filed is represented; this implies that more
random field energy is saved, but with an increasing
computational efforts. For simplicity of expression, the
tilde over the symbol N is omitted in the followed ex-
pressions and functions.



Huang and Qin Environmental Systems Research 2014, 3:9 Page 7 of 7
http://www.environmentalsystemsresearch.com/content/3/1/9
Perturbation method
In this study, the fluctuation of the max flow depths, as
one of the important indicators of the flood inundation
simulation, is affected by the spatial variability of the
floodplain roughness values N(x). The maximum flow
depths h(x) can be expressed with a perturbation expan-
sion in an infinite series as follows (Phoon et al., 2002; Liu
et al., 2006; Li and Zhang, 2007; Lu and Zhang, 2007):

h xð Þ ¼
X∞
i¼0

h ið Þ xð Þ ð9Þ

where, h(i) (∙) is the ith order perturbation term based on
the standard deviation of N(x) (denoted as σN).
Substituting Equations (8) and (9) into Equations

(3a-3c), we can obtain the ith order term of the expansion
h(i) (x) and each order of perturbation is calculated based
on σN. For example, the first-order perturbation expansion
for h (x) can be expressed as h(x) = h(0) (x) + h(1) (x). It can
be seen that the higher the order of the term h (i) (∙) kept
in the expansion of h(x), the more energy could be
retained in the expansion; hence more corrections are
provided for the statistical moments (i.e. mean and vari-
ation) of the simulation results (Roy and Grilli, 1997).
However, in this study, considering the computational re-
quirements of the flood modelling, only the first-order
perturbation expansion based on KLE is investigated.
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