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Abstract

straightforward realizations in a visual way.

Background: In this study, we applied the geostatistical modeling to analyze an oil field. The reservoir properties,
thickness, porosity and permeability, were studied. Data analysis tools, such as histogram, scatter plot, variogram and
cross variogram modeling, were employed to capture the interpretable spatial structure and provide the desired input
parameters for further estimation. SK (simple kriging), OK (ordinary kriging), Sgism (Sequential Gaussian Simulation),

SC (simple cokriging), OC (ordinary cokriging) and MM2 (Markov model 2) methods were applied to estimate reservoir
properties. Estimation difference maps were generated to compare the results of each method, providing more

Results: For thickness, results indicated that anisotropic variogram could provide better interpretations for the spatial
relationships than isotropic variogram. Both SK and OK could provide better estimates. In comparison to the
conventional estimation techniques, the simulation method could well reflect the reservoir's intrinsical characteristics in
terms of the associated extreme values. OOIP (Original Oil In Place) was calculated later with the parameters attained
before, including thickness and porosity. Estimation difference maps showed that there was no obvious difference in
SK'vs. OK and SC vs. OC for the study of permeability. However, OC was slightly different from OK, and there were
significant discrepancies between the estimates of OC and MM2 at the unsampled locations. In addition, OC estimates
were closest to the sample data of permeability with the minimum variance.

Conclusions: Geostatistical modeling is an effective way for thickness, porosity, and permeability prediction.
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Background

Maps and mapmaking are integral parts of reservoir
characterization. A map is a numerical model of an attri-
bute’s (e.g., porosity, permeability, thickness, structure)
spatial distribution (Malvi¢ and Jovi¢ 2012; Huysmans
and Dassargues 2013). However, mapping an attribute is
rarely the goal; rather, a map is used to make a predic-
tion about the reservoir. To paraphrase Andre Journel of
Stanford University, “A map is a poor model of reality if
it does not depict characteristics of the real spatial distri-
bution of those attributes that most affect how the reser-
voir responds”.
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The enormous up-front investments for developing he-
terogeneous fields and the desire to increase ultimate
recovery have spurred oil companies to use innovative re-
servoir characterization techniques (Habibnia and Momeni
2012; Abdideh and Mahmoudi 2013). Geostatistics is one
of many new technologies often incorporated into the
process (Cressie and Hawkins 1980; Bueno et al. 2011). For
more than a decade, geostatistical techniques, especially
when incorporating 3-D seismic data, have been an
accepted technology to characterize petroleum reservoirs
(Qi et al. 2007; Abdideh and Bargahi 2012; Esmaeilzadeh
et al. 2013; Fegh et al. 2013).

Geostatistical application necessitates and facilitates
cooperation between geoscientists and reservoir engi-
neers, allowing each discipline to contribute fully. This is
quite different from the past, because the mathematical
formalization was often left to the reservoir engineer.
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Thus, part of the geostatistical philosophy is to ensure that
geologic reality does not get lost during reservoir model
building (Nava et al. 2010; Chen et al. 2011).

Geostatistics attempts to improve predictions by devel-
oping a different type of quantitative model. The goal is to
construct a more realistic model of reservoir heterogeneity
using methods that do not average important reservoir
properties. Like the traditional deterministic approach, it
preserves indisputable “hard” data where they are known
and interpretative “soft” data where they are informative
(Wilson et al. 2011).

However, unlike the deterministic approach, geostatistics
provides numerous plausible results (Zarei et al. 2011). The
degree to which the various models differ is a reflection of
the unknown or a measurement of the “uncertainty”. Some
outcomes may challenge prevailing geologic wisdom and
will almost certainly provide a range of economic scena-
rios, from optimistic to pessimistic. Having more than one
result to analyze changes the paradigm of traditional re-
servoir analysis and may require multiple reservoir flow
simulations (Schmidt and Schréder 2011; Soleymani and
Riahi 2012). However, the benefits outweigh the additional
time and cost.

The Stanford Geostatistical Modeling Software (SGeMS)
is an open-source computer package for solving problems
involving spatially related variables. It provides geosta-
tistics practitioners with a user-friendly interface, an
interactive 3-D visualization, and a wide selection of algo-
rithms (Kelsall and Wakefield 2002). This website serves
as a companion to the book Applied Geostatistics with
SGeMS that provides a step-by-step guide to using
SGeMS algorithms. We recommend getting the book to
get the underlying theory, demonstrations of their imple-
mentation, discussion of potential limitations, and help
about the choice of one algorithm over another.

Users can perform complex tasks using the embedded
Python scripting language, and new algorithms can be
developed using the SGeMS plug-in mechanism. SGeMS
is the first software to provide algorithms for multiple-
point statistics. The SGeMS package provides a versatile
toolkit for Earth Sciences graduates and researchers, as
well as practitioners of environmental, mining and pet-
roleum engineering.

SGeMS provides a (fairly) comprehensive collection of
geostatistical estimation and simulation algorithms and
also provides a nice 3D visualization environment (Kelkar
and Perez 2002; Remy 2004; Geoff 2007; Remy et al 2009).
It provides a more limited selection of options for standard
statistical data analysis and essentially no facilities for data
management (subsetting data sets, etc.). So, you would
probably want to run S-GeMS in tandem with some other
data analysis & management software, such as Excel.

In the following chapters of this study, we will use
SGeMS to make estimation about an oilfiled step by
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step. The user selects in this panel which geostatistics
tool to use and inputs the required parameters. The top
part of that panel shows a list of available algorithms,
e.g. kriging, sequential Gaussian simulation. When an
algorithm from that list is selected, a form containing
the corresponding input parameters appears below the
tools list. One or multiple objects can be displayed in
this panel, e.g. a Cartesian grid and a set of points, in an
interactive 3D environment. Visualization options such
as color-maps are also set in the Visualization Panel.

Results and discussion

This study started by loading data from a file named
Flow Unit 5, a DAT-format data file containing thick,
porosity and permeability data from about 68 wells in
Flow Unit 5 Oil Field.

Thickness

Simple kriging and ordinary kriging of isotropy

Simple kriging Figure la shows the gross thickness
map generated with isotropic simple kriging. Overall, the
map is not that smooth. In the northwest corner, the
conditioning data is undersampled with respect to the
rest of the grid. The isotropic simple kriging variance
map is shown in Figure 1b. The estimation variance is
pretty high through the entire map. Small variance only
exists in places where there are wells distributed. The
histogram, for the simple kriging estimates, is shown in
figure. Most of the data are distributed close to the
centre, with some extreme values more than 10 ft. The
maximum estimate value is 24.61 ft, while the maximum
for the data is 27 ft. There is almost no improvement
compared to the histogram of the conditioning data. 92
points are compared and plotted in the scatter plot of
gross thickness data and isotropic simple kriging estima-
tion data. The correlation coefficient is 2.082, indicating
that isotropic SK tends to overestimate the estimates.

Ordinary kriging Figure 2a shows the gross thickness
map generated with isotropic ordinary kriging. Overall,
the map is not that smooth. The continuity is not that
good even if it is a bit better than the map generated from
simple kriging. In the northwest corner, the conditioning
data is undersampled with respect to the rest of the grid.
The isotropic ordinary kriging variance map is shown in
Figure 2b. The estimation variance is pretty high through
the entire map. Small variance only exists in places where
there are wells distributed. The histogram, for the iso-
tropic ordinary kriging estimates, is shown in figure. Most
of the data are distributed close to the centre, with some
extreme values more than 10 ft. The maximum estimate
value is 25.036 ft, while the maximum for the data is 27 ft.
There is almost no big improvement compared to
the histogram of the conditioning data. 92 points are
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d) Compare with thickness and Isotropic simple kriging.
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Figure 1 Thickness: a) Isotropic Simple Kriging; b) Isotropic Simple Kriging Variance; c) Histogram for Isotropic Simple Kriging;

thickness_iso_SK

compared and plotted in the scatter plot of gross thickness
data and isotropic ordinary kriging estimation data. The
correlation coefficient is 1.384, indicating that isotropic
simple kriging tends to overestimate the estimates.

Simple kriging and ordinary kriging of anisotropy

Simple kriging Figure 3a shows the gross thickness map
generated with simple kriging. Overall, the map has a
smooth appearance that is typical of simple kriging. The
good spatial continuity from east to west corresponds to
the principal direction of the variogram. The north/
south trend, observed in a small area in the northwest

corner of the map, is a result from the configuration of
the conditioning data and the search neighborhood. In
the northwest corner, the conditioning data is under-
sampled with respect to the rest of the grid. The simple
kriging variance map is shown in Figure 3b. The estima-
tion variance is small in gridblocks close to the con-
ditioning data, and it becomes large in area far from the
data. Near the conditioning data, the kriging variance
becomes the nugget effect of the variogram. The his-
togram, for the simple kriging estimates, is shown in
figure. The mean is 543, the median is 4.88 and the
mode is around 4, all of which are pretty close to the
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Figure 2 Thickness: a) Isotropic Ordinary Kriging; b) Isotropic Ordinary Kriging Variance; c) Histogram for Isotropic Ordinary Kriging;

WA

16.08

14.20

11.%)

LRLL))

conditioning data. The standard deviation of simple kri-
ging estimates is 2.63 ft, which for conditioning data, it
4.53 ft. So it is likely that has a narrower spread than the
conditioning data. In general, simple kriging does not
closely reproduce the extreme values of a distribution with
a gross thickness greater than 10 ft, observed in condition-
ing data. The maximum estimate value is 17.57 ft, while
the maximum for the data is 27 ft. Simple kriging tends to
make the data follow normal distribution, most of the data
are distributed close to the mean value. 92 points are
compared and plotted in the scatter plot of gross thickness

data and simple kriging estimation data. Simple kriging
provides good estimates even for values that are much lar-
ger than the mean of the data (5.05 ft). All the plotted
points fall approximately along the straight line, with cor-
relation coefficient 0.891, indicating high accuracy of the
estimates.

Ordinary kriging Figure 4a shows the gross thickness
map generated with ordinary kriging. Overall, the map has
a more smooth appearance than that of simple kriging.
Transition areas exist in ordinary kriging map, which
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d) Compare with thickness and Anisotropic simple kriging.

Figure 3 Thickness: a) Anisotropic Simple Kriging; b) Anisotropic Simple Kriging Variance; c) Histogram for Anisotropic Simple Kriging;
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represent gradual change among the subareas. The good
spatial continuity from east to west corresponds to the
principal direction of the variogram. The north/south
trend, observed in a small area in the northwest corner of
the map, is a result from the configuration of the con-
ditioning data and the search neighborhood. In the north-
west corner, the conditioning data id undersampled with
respect to the rest of the grid. And this area tends to be
larger than that of the simple kriging. Generally, the two
maps are similar with each other. The ordinary kriging
variance map is shown in Figure 4b, which is smoother
than that of the simple kriging variance map. The blue

area that represents small variance tends to be wider,
which stands for a better estimation result compared
to simple kriging. The estimation variance is small in grid-
blocks close to the conditioning data, and it becomes large
in area far from the data. Near the conditioning data,
the kriging variance becomes the nugget effect of the
variogram. The histogram, for the ordinary kriging esti-
mates, is shown in figure. The mean is 5.68, the median is
4.89 and the mode is around 4, all of which are pretty
close to the conditioning data. The standard deviation of
ordinary kriging estimates is 2.98 ft, while for conditioning
data, it is 4.53 ft. So it is likely that has a narrower spread
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Figure 4 Thickness: a) anisotropic ordinary kriging; b) anisotropic ordinary kriging variance; c) histogram for anisotropic ordinary
kriging; d) compare with thickness and anisotropic ordinary kriging.
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than the conditioning data. In general, simple kriging
does not closely reproduce the extreme values of a dis-
tribution with a gross thickness greater than 10 ft, ob-
served in conditioning data. The maximum estimate
value is 18.08 ft, while the maximum for the data is
27 ft. Ordinary kriging tends to make the data follow
normal distribution; most of the data distribute close to
the mean value. 92 points are compared and plotted in
the scatter plot of gross thickness data and ordinary kri-
ging estimation data. Simple kriging provides good esti-
mates even for values that are much larger than the
mean of the data (5.05 ft). All the plotted points fall ap-
proximately along the straight line, with correlation

coefficient 0.825,though it is slightly smaller than the
simple kriging.

Comparison between isotropic and anisotropic variogram
modeling

From the thickness estimate of isotropic and anisotropic
modeling, as shown in Figure 1 and Figure 2, it is ob-
vious that anisotropic variogram is much smoother than
the isotropic one. From the isotropic and anisotropic
variance maps, the estimation variance is much lower
for the anisotropic variogram than the isotropic one.
This can further be demonstrated by the scatter plot of
isotropic OK and anisotropic OK variance, where the
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isotropic variance is much larger than the anisotropic
variance. All these illustrate that anisotropic estimation
is more close to the conditioning data and is more
accurate.

Through the above comparison between the isotropic
modeling and anisotropic modeling, we draw a con-
clusion that anisotropic variogram can achieve better
spatial structure capture more interpretable spatial rela-
tionship. In the following analysis of porosity and
permeability properties, anisotropic variogram is mainly
used to generate the spatial relationship of flow unit 5.

Porosity

Simple kriging

Figure 5a shows the porosity map generated via simple
kriging. Overall, the map has a smooth appearance. The
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good spatial continuity from middle to west corresponds
to the principal direction of the variogram. The simple
kriging variance map is shown in Figure 5b. The esti-
mation variance could be as low as 0.6369 at where grid-
blocks are close to the sample data. However, in the
northeast corner, the estimation variance could be as
large as 64.28 due to the scarcity of sample data. For
porosity data, the mean and median are 0.41 and 0.97,
respectively. They are very close to each other, indicating
symmetry in the distribution. The coefficient of variation
could be obtained via equation, and its value is 0.2735,
indicating a relatively small variation within the sample.
The histogram is shown in Figure 5d. The mean is 0.67,
the median is 0.39 and the variance is 25.5767. Compa-
ring with the histogram of sample data, the estimated
values are generally a little smaller than the sample
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Figure 5 Porosity: a) simple kriging; b) simple kriging variance; c) coefficient of variation; d) histogram of sample data.
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data. However, the maximum and minimum values are
quite close to that of samples respectively, indicating a
relatively fine estimation. Moreover, the estimation vari-
ance is much smaller than the sample variance, which
implies a relatively low variability in the estimated
values. Similar conclusion can also be obtain via the co-
efficient of variation, which is 0.2446.

Ordinary kriging

The porosity map from ordinary kriging is shown in
Figure 6a. In general, this map is quite similar to the
map generated via simple kriging. However, the appear-
ance is much smoother. The variance map is shown in
Figure 6b. The minimum variance is 0.637, which is
quite close to that from simple kriging. However, the
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maximum variance would be as large as 78.21, which is
noticeably larger than the maximum variance from sim-
ple kriging. The true value vs. the estimated value plot
is shown in Figure 6¢c. All the points regularly spread
around the 45° line, indicating that the estimates gene-
rated via ordinary kriging can also match the sample
data properly. The histogram is shown in Figure 6d. The
mean is 0.7169, the median is 0.4647 and the variance is
31.3116. Comparing with the histogram of sample data,
the estimated values are also slightly smaller than the
sample data. However, the maximum and minimum
values are also quite close to that of samples respec-
tively, indicating a relatively fine estimation. Comparing
with the histogram of simple kriging’s estimation, there
is no significant difference in terms of their mean
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Figure 6 Porosity: a) ordianry kriging; b) ordinary kriging variance; c) coefficient of variation; d) histogram of sample data.
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values. However, the estimation variance from ordinary
kriging method is much larger than that from simple
kriging method.

Sequential Gaussian simulation of porosity

Next, we generate five realizations of porosity using se-
quential Gaussian simulation. The sequential Gaussian
simulation will use a normal score transform to turn the
porosity values at the wells into a set of values that per-
fectly follow a standard normal distribution (zero mean,
unit standard deviation) and will then generate grids of
simulated values whose univariate distribution is also
standard normal. Simple kriging is to be applied since
the spatially constant mean will be assumed to be zero.
In addition, we assume that the variogram of the
normal-score transformed data would look very similar
to the variogram of the raw data scaled to a unit sill.
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The simulation map is shown in Figure 7a. As
can be seen from this figure, the distribution trend of
the simulated porosity is quite similar to that from
the simple kriging estimation as well as the ordi-
nary kriging estimation. High porosity locations are
spreading from middle to west. Noticeably, in the
south-west corner, the simulated values of porosity
are higher than either of the estimation results from
the two kriging estimation methods. Figure 7b shows
the true value vs. the simulated value plot. All the
points lie in the 45° line, indicating a perfect match
between true values and simulated values at sampled
locations.

Original Oil In Place (OOIP)
OOIP is calculated with gross thickness and porosity
maps generated with ordinary kriging OOIP in stock
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Figure 7 Porosity: a) plot of sequential gaussian simulation; b) true value vs. the simulated value plot.
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tank barrel (STB) for each gridblock in the map is given
by:

A X h x ng x (¢/100)(1-Sw)

OO0IP =
5.615 x Bo

(1)

A =the surface area of a block (200 x 200 = 40,000 ft2),
h = gross thickness(ft), ng = net to gross ratio, ® = porosity
(%), Sw = the water saturation and Bo = formation vo-
lume factor (rest bbl/STB). So:

40000 x 5.687 x 0.7 x (20.717/100)(1-20%)

[P =
00 5.615x 1.2

~3916.76
(2)

Permeability

When considering the permeability, the values of K range
from as low as 0.01 to 750 md, the majority of the values
are at the lower end of the region. This type of histogram
is rarely useful for characterizing a sample because the
values are clustered at one end. One way to overcome this
problem is to transform the sample data in some way so
that some sample characteristics are evident from the
histogram plot. The most commonly used approach for
permeability values is the log transform. From analysis,
the log k distribution is much more symmetric than the
permeability distribution. In addition, the log k and poro-
sity histogram are remarkably similar. Both show similar
trends with two peaks in the histogram plot, one of which
is at the higher end of the values. Although this needs to
be validated, such characteristic similarity way indicates a
relationship between log k and porosity.

Simple kriging

Figure 8 shows the permeability map generated via simple
kriging. Overall, the map has a smooth appearance. The
good spatial continuity from middle to west corresponds
to the principal direction of the variogram. The simple
kriging variance map is shown in Figure 8b variance of
permeability. The estimation variance could be as low as
0.6369 at where gridblocks are close to the sample data.
However, in the northeast corner, the estimation variance
could be as large as 64.28 due to the scarcity of sample
data. Then we use the Scatter Plot to compare the value
of log k (hard data) with SK value of logk. The plot shows
that result of comparison is close to a 45° slant, which
means the value of estimation is really match the hard
data very well.

Ordinary kriging

The permeability map from ordinary kriging is shown in
Figure 9a. In general, this map is quite similar to the map
generated via simple kriging. However, the appearance is
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much smoother. The variance map is shown in Figure 9b.
The minimum variance is 0.637, which is quite close to
that from simple kriging. However, the maximum variance
would be as large as 78.21, which is noticeably larger than
the maximum variance from simple kriging.

Simple cokriging

Figure 10a shows the gross thickness map generated with
simple cokriging. Overall, the map has a smooth appea-
rance. The estimated distribution matches the original dis-
tribution well. The yellow and red areas represent the
areas of which the permeability is relatively higher, while
the blue areas stand for where the permeability is rela-
tively lower. The good spatial continuity corresponds to
the principal direction of the variogram. The small areas
in the corner and bound of the map, is a result from the
configuration of the conditioning data and the search
neighborhood. In the northwest corner, the conditioning
data is undersampled with respect to the rest of the grid.
The simple cokriging variance map is shown in Figure 10b.
The estimation variance is small in gridblocks close to the
conditioning data, and it becomes large in area far from
the data. Near the conditioning data, the kriging variance
becomes the nugget effect of the variogram. The histo-
gram, for the simple kriging estimates, is shown in figure.
The mean is 1.90, the median is 1.95, both of which are a
bit smaller than the conditioning data. The standard de-
viation of simple cokriging estimates is 0.78; while for
conditioning data, it is 0.941. So it is likely that has a
narrower spread than the conditioning data. In general,
Co-simple kriging tends to gather the data to the center,
making the data follow normal distribution. That is, most
of the data distributes close to the mean value. 55 points
are compared and plotted in the scatter plot of gross log k
data and simple cokriging estimation data. Simple kriging
provides good estimates even for values that are a bit
smaller than the mean of the data (1.90 to 2.13). All the
plotted points fall approximately along the straight line,
indicating high accuracy of the estimates.

Ordinary cokriging

Figure 11a shows the gross thickness map generated with
ordinary cokriging. Overall, the map has a more smooth
appearance than that of simple cokriging. Transition areas
exist in ordinary cokriging map, which represent gradual
change among the subareas. The estimated distribution
matches the original distribution well. The yellow and red
areas represent the areas of which the permeability is rela-
tively higher, while the blue areas stand for where the per-
meability is relatively lower. The good spatial continuity
corresponds to the principal direction of the variogram.
The small areas in the corner and bound of the map, is a
result from the configuration of the conditioning data and
the search neighborhood. In the northwest corner, the
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Figure 8 Permeability: a) simple kriging; b) simple kriging variance; c) coefficient of variation.

conditioning data is undersampled with respect to the rest
of the grid. The ordinary cokriging variance map is shown
in Figure 11b, which is more smooth than that of the
simple cokriging variance map. The blue area that repre-
sents small variance tends to be wider, which stands for a
better estimation result compared to simple cokriging.
The estimation variance is small in gridblocks close to
the conditioning data, and it becomes large in area far
from the data. Near the conditioning data, the kriging
variance becomes the nugget effect of the variogram.

The histogram, for the ordinary cokriging estimates, is
shown in figure. The mean is 1.79, the median is 1.84,
both of which are a bit smaller than the conditioning
data. The standard deviation of ordinary cokriging esti-
mates is 0.887; while for conditioning data, it is 0.941.
So it is likely that has a narrower spread than the condi-
tioning data. In general, ordinary cokriging tends to
gather the data to the center, making the data follow
normal distribution. That is, most of the data distributes
close to the mean value. 92 points are compared and
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Figure 9 Permeability: a) ordinary kriging; b) ordinary kriging variance.
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plotted in the scatter plot of gross log K data and ordi-
nary cokriging estimation data. Ordinary cokriging pro-
vides good estimates even for values that are much
larger than the mean of the data (1.79 to 2.13). All the
plotted points fall approximately along the straight line,
indicating high accuracy of the estimates.

MM2 models
Figure 12a shows the gross thickness map generated with
MM2 cokriging. Overall, the map has a more smooth ap-
pearance. Transition areas exist in the estimate map,
which represent gradual change among the subareas. The
estimated distribution matches the original distribution
well. The yellow and red areas represent the areas of
which the permeability is relatively higher, while the blue
areas stand for where the permeability is relatively lower.
The good spatial continuity corresponds to the principal
direction of the variogram. The small areas in the corner
and bound of the map, is a result from the configuration
of the conditioning data and the search neighborhood. In
the northwest corner, the conditioning data is under-
sampled with respect to the rest of the grid.

The MM2 cokriging variance map is shown in Figure 12b,
which is smoother than that of the Co-simple kriging va-
riance map. The blue area that represents small variance

tends to be wider. The estimation variance is small in grid-
blocks close to the conditioning data, and it becomes large
in area far from the data. Near the conditioning data, the
kriging variance becomes the nugget effect of the vario-
gram. The histogram, for the MM2 cokriging estimates, is
shown in figure. The mean is 1.86, the median is 1.99,
both of which are a bit smaller than the conditioning data.
The standard deviation of MM2 kriging estimates is 0.879;
while for conditioning data, it is 0.941. So it is likely that
has a narrower spread than the conditioning data. 92
points are compared and plotted in the scatter plot of
gross log K data and MM2 estimation data. All the plotted
points fall approximately along the straight line, indicating
high accuracy of the estimates.

Thickness SK vs OK

To have a thorough understanding of the results, the
difference analysis among the three methods is required.
The difference in the estimation results from the two
methods is shown in Figure 13. We can see that the
map is, in general, covered with light orange (less than
0.3 from color bar), indicating the slight difference bet-
ween the two methods. The estimate mean of OK is a
bit larger than that of SK. In the west-north region, the
light blue color implies the estimate of OK mean in this
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Figure 10 Permeability: a) simple cokriging; b) simple cokriging variance; c) histogram for simple cokriging; d) compare with true and
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region is less than that of SK. This maybe mainly be-
cause this region is undersampled and there is less data
available.

Porosity

Simple kriging estimation vs. Ordinary kriging estiamtion
The difference in the estimation results from the two
methods is shown in Figure 14a. We can see that the
map is, in general, covered with light blue, which implies
the less difference between the two methods. After

checking the sample data, we can find out that the light
blue regions are where the true values exist. It thus well
explains why there is less difference between the two
methods. However, at where sample data are not avail-
able, the estimation difference between the two methods
is remarkable. For example, in the north-east corner, the
estimated values from simple kriging are significantly
higher than that of ordinary kriging. In comparison, the
estimated values, in the south-west region, are slightly
lower than the values obtained via ordinary kriging. The
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Figure 11 Permeability: a) ordinary cokriging; b) ordinary cokriging variance; c) histogram for ordinary cokriging; d) compare with

difference in the estimation variance of the two methods
is shown in Figure 14b. In general, the difference is in-
considerable. However, in the north-east corner, simple
kriging estimates’ variance is remarkably lower than the
variance from ordinary kriging estimation.

Simple & ordinary kriging estimation vs. Simulation

The two sets of estimation results are compared with
the simulation results, as shown in Figure 15. Overall,
the two maps are quite similar to each other. We can

see that, in the north region, estimation results are lower
than the simulation results. However, in the south region
as well as the north-east corner, the estimation results
are much larger than the simulation results.

Permeability

SK vs OK

The difference in the estimation results from the two
methods is shown in Figure 16a. We can see that the
map is, in general, covered with light blue, which implies
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the less difference between the two methods. After chec-
king the sample data, we can find out that the light blue
regions are where the true values exist. However, at where
sample data are not available, the estimation difference
between the two methods is remarkable. In the northeast
corner, the estimated values from simple kriging are sig-
nificantly higher than that of ordinary kriging.

Simple cokriging vs ordinary cokriging

The difference in the estimation of the two methods is
shown in Figure 16b. In general, the difference is incon-
siderable. However, in the northeast, southwest and south-
east corner, simple kriging estimate is remarkably higher
than the that of ordinary kriging estimation, where sample
data is undersampled.
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Figure 13 Difference analysis for thickness SK vs. OK.
.

OK vs ordinary cokriging

The difference in the estimation results from the two
methods is shown in Figure 16¢c. The map is, in general,
saturated with light blue, which implies less difference
between the two methods. However, in the places where
the color is dark blue and red, the estimation difference
between these two methods are remarkable. This hap-
pens mainly because there is no enough data collected
in these regions.

Ordinary cokriging vs MM2
The difference in the estimation results from the two
methods is shown in Figure 16d. We can see that the

map is, in general, covered with orange (with the value
of 0.05 from colorbar), indicating the slight difference
between the two methods. And the estimate mean of
ordinary kriging is a bit larger than that of MM2. Dark
blue only exists in a few regions. These are where the
estimate of MM2 is remarkably large than ordinary
cokriging. This happens because there is not enough
data collected.

Thickness comparison between SK and OK

a. The scatter plot of the simple kringing estimate and the
ordinary kriging estimate is shown in Figure 17. The cor-
relation coefficient is 0.973, indicating a high similarity

Figure 14 Porosity: a) difference in the estimation of SK and OK; b) difference in the estimation variance of SK and OK.
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Figure 15 Porosity: simple (a) & ordinary kriging (b) estimation results are compared with the simulation results.
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between these two estimates. Most differences occur for
gross thickness between 4 and 7 ft. And the ordinary
kriging estimate tends to be a little larger than the simple
kriging estimate. b. The scatter plot of the simple kringing
variance and the ordinary kriging variance is shown in
Figure 17. Ordinary kriging tends overestimate thickness.
Figure 17 shows that the simple kriging variance is smaller
than the error variance estimated with the ordinary kri-
ging. In view of the estimation mean and variance,
although SK estimate tends to be more close to the condi-
tioning data for this case, OK and SK both can generate
good estimation result.

Porosity comparison between SK and OK

a. The scatter plot of the simple kringing estimate and the
ordinary kriging estimate is shown in Figure 18. The cor-
relation coefficient is 0.984, indicating a high similarity
between these two estimates. Most differences occur for
gross thickness between 12 and 19. The ordinary kriging
estimate tends to be a little larger than the simple kriging
estimate. b. The scatter plot of the simple kringing variance
and the ordinary kriging variance is shown in Figure 18.
The simple kriging variance is only slightly smaller than
the error variance estimated with the ordinary kriging.

Log K comparison between SK and OK
a. The scatter plot of the simple kringing estimate and
the ordinary kriging estimate is shown in Figure 19. The

correlation coefficient is 0.982, indicating a high simi-
larity between these two estimates. Most differences
occur for gross thickness between 0.5 and 1. And the
ordinary kriging estimate tends to be a little larger than
the simple kriging estimate. b. The scatter plot of the
simple kringing variance and the ordinary kriging va-
riance is shown in Figure 19. The correlation coeffi-
cient is 0.998, indicating there is almost no difference
between the estimation variance of the two.

Log K comparison between simple cokriging and ordinary
cokriging

a. The scatter plot of the simple cokringing esti-
mate and the ordinary cokriging estimate is shown in
Figure 20. The correlation coefficient is 0.972, indica-
ting a high similarity between these two estimates.
Most differences occur for log K between 1 and 3.
And the ordinary cokriging estimate tends to be a
little larger than the simple cokriging estimate. b. The
scatter plot of the simple cokringing variance and the
ordinary cokriging variance is shown in Figure 20.
Figure 20 shows that the simple kriging variance is
smaller than the error variance estimated with the
ordinary kriging. In view of the estimation mean and
variance, although simple kriging estimate tends to be
more close to the conditioning data for this case,
ordinary and simple kriging both can generate good
estimation result.
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Log K comparison between ordinary kriging and ordinary
cokriging

a. The spatial distributions of log K are significantly diffe-
rent for ordinary cokriging and ordinary kriging methods.
The map, generated with ordinary cokriging is not as
smooth as ordinary kriging. The influence of porosity adds
some unique features to the log k data map that ordinary
kriging cannot capture with a single variogram model.
The ordinary cokriging and ordinary kriging estimates
differ significantly, as shown in Figure 21b. Ordinary kri-
ging tends to overestimate log K. Figure 21b shows that

the cokriging variance was smaller than the error variance
estimated with the ordinary kriging. This shows that add-
itional information used in cokriging reduces the error
variance in estimates.

Log K comparison between ordinary cokriging and MM2

a. The spatial distributions of log K are significantly diffe-
rent for MM2 and ordinary cokriging methods. From the
scatter plot of both, the MM2 estimates tend to be larger
than the ordinary full cokriging estimates, as shown
in Figure 22b. MM2 cokriging tends overestimate log K.
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Figure 18 Porosity: a) The scatter plot of SK estimate and OK estimate for porosity; b) the scatter plot of SK variance and OK variance
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Figure 22b shows that the full cokriging variance is
smaller than the error variance estimated with the MM2.
This shows that additional information used in ordinary
cokriging reduces the error variance in estimates.

Conclusions

Log transformation of the permeability can be applied to
overcome the problem that the permeability data are
clustered at the lower end of the study region. This would
minimize the effect of the extreme and order-of-magni-
tude variations within the data points, and result a better
identification of the spatial structure.

From an estimation point of view, it is always prefe-
rable to start with an isotropic variogram structure be-
fore the investigation of anisotropy. From studying the
case of flow unit 5, a conclusion is made that anisotropic
variogram could achieve better spatial structure and
capture more interpretable spatial relationship than iso-
tropic variogram.

Generally, the estimation results of the ordinary kriging
and simple kriging method are similar. The correlation
coefficient between the two estimates is quite close to 1
for thickness, porosity and log K. However, the variance
maps of the estimates obtained via ordinary kriging are
much smoother than that via simple kriging. Transition
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Figure 20 Permeability: a) the scatter plot of simple cokriging and ordinary cokriging for permeability; b) the scatter plot of simple

cokriging variance and ordinary cokriging variance for permeability.
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Figure 21 Permeability: a) the scatter plot of OK and ordinary cokriging for permeability; b) the scatter plot of OK variance and
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areas exist in ordinary kriging map, showing more gradual
change among the subareas. This is because the sam-
ple mean value has been ignored in ordinary kriging
estimation.

The estimation methods such as simple kriging and
ordinary kriging tend to eliminate the extreme values
observed in the sample data, and narrow the spread of
the data distribution. Consequently, these two methods
appear to gather the data to the center and make the
data follow normal distribution. This is the reason why
most of the data distribute close to the mean value.

Compared with conventional estimation techniques,
the simulation method could well reflect the reservoir’s
intrinsical characteristics in terms of the associated

extreme values. From the case study of the porosity, we
can see that both the estimation and simulation methods
could obtain the similar results. There is almost no any
remarkable difference at where the sample data are
sufficient. However, at the unsampled locations, the
estimation results are much larger than the simulation
results. For example, the south region as well as the
north-east corner.

Cokriging estimation employs the secondary variable
to estimate the first variable. The two variables should
be linearly related and have a strong relationship with
each other. Unlike ordinary kriging, in which we only
use the values surrounding the sampled locations to esti-
mate the unsampled locations, Cokriging method could
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Figure 22 a) The scatter plot of ordianary cokriging and MM2 for permeability; b) the scatter plot of ordianary cokriging variance and
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be able to improve the estimation and reduce the uncer-
tainty of the estimation with the assist of the spatial in-
formation available from the secondary variable.

Furthermore, employing porosity as the secondary va-
riable would add some unique features to the estimation
of log K, and these features cannot be captured by either
of the simple kriging and ordinary kriging methods via a
single variogram model. In addition, Cokriging would tend
to reduce the error variance compared with the simple
and ordinary kriging methods.

For thickness, both the ordinary kriging and the sim-
ple kriging methods could achieve better estimation re-
sults than others. For porosity, the simple kriging, the
ordinary kriging and the Sigsm methods could generate
similar estimation results. For permeability, there is no
much difference between the results of simple cokriging
and ordinary cokriging methods. However, ordinary cok-
riging method could produce better results than both of
the ordinary kriging and the MM2 methods.

Cross validation can be used to select the optimum
kriging parameters, which can be utilized further in the
kriging methods if it is permitted. The cross-validation is
verified by the existence of strong relationship between
the estimate and gross data, as well as the small correla-
tions between the estimated values and their errors.
However, it is a trial and error procedure and time con-
suming job.

Methods

Once initial data sets are prepared, quality controlled,
and loaded into the geostatistical software (like SGeMS),
a typical work flow, with iterations, might be: (1) data
mining; (2) spatial continuity analysis and modeling;
(3) search ellipse design; (4) model crossvalidation;
(5) kriging; (6) conditional simulation; (7) model uncer-
tainty assessment.

Data mining

An early and fundamental step in any science starts at
the descriptive stage. Until facts are accurately gathered
and described, an analysis of their causes is premature.
Because statistics generally deals with quantities of data,
not with a single datum, we need some means to deal
with the data in a manageable form. Thus, much of sta-
tistics deals with ways of describing the data and under-
standing relationships between pairs of variables. Data
speak most clearly when they are organized (Isaaks and
Srivastava 1989).

Because there is no one set of prescribed steps in data
mining, you should follow your instincts in explaining
anomalies in the data set. By using various tools, you
gain clearer understanding of your data and also dis-
cover possible sources of errors. Errors are easily over-
looked, especially in large data sets and when computers
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are involved, because we simply become detached from
our data. Thorough analysis fosters an intimate under-
standing of the data that can flag spurious results.

Classical statistical data analysis includes data posting,
computation of means and variances, making scatter-
plots to investigate the relationship between two varia-
bles, and identification of subpopulations and potential
outliers.

Histograms, graphical representations of the data distri-
bution of a single variable, record how often values fall
within specified intervals or classes. A bar depicts each
class, and its height is proportional to the number of
values within that class. The histogram shape informs us
about the distribution of the data values. Ideally, we like to
see a bell-shaped, symmetrical distribution around the
mean value. This is referred to as a normal, or Gaussian,
distribution and has a predictable shape based on the data
mean and variance. Many statistical and geostatistical
methods assume such a data model. If the shape is skewed
to either side of the mean, then often it is necessary to ad-
just the shape by transforming the data into Gaussian
form. Complex histograms may indicate mixing of mul-
tiple distributions. Categorization of the data (e.g., by
facies) often identifies the underlying distributions.

Spatial continuity analysis and modeling

Variables of interest in the petroleum industry (e.g., por-
osity, permeability, saturation, sand/shale volumes, etc.)
are the product of a vast number of complex physical
and chemical processes. These processes superimpose a
spatial pattern on reservoir rock properties, and it is im-
portant to understand the scales and directional aspects
of these features for efficient hydrocarbon production.
The spatial component makes these variables compli-
cated, and we are forced to admit uncertainty about
their distribution between wells. Because deterministic
models do not handle uncertainties associated with these
variables, a geostatistical approach is used because its
foundation is probabilistic theory (covariance models)
that recognizes these inevitable uncertainties.

The spatial model
Spatial continuity analysis quantifies the variability of
sample properties with respect to distance and direction
(geographic location is considered only if the data ex-
hibit a trend, a property known as nonstationarity).
Quantifying spatial information involves comparing
data values at one location with values of the same attri-
bute at other locations. For example, two wells in close
proximity are more likely to have similar reservoir pro-
perties than two wells farther apart. The key question—
what we want to know—is what measured values tell us
about reservoir properties at unsampled locations.
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Geometric Anisotropy

Geometric Anisotropy typically is observed when the
variograms in the directions of maximum and minimum
continuity show a similar shape and sill but different
range. The range in the direction of maximum con-
tinuity, u, is u a, while the range in the direction of
minimum continuity is v a. We assume that the two
directions are perpendicular to each other.

To model the two variograms with the same sill, we
have to use the same combination of linear models in
both directions expect with different ranges. For ex-
ample, with a linear combination of nugget and spherical
models, the model in the u direction is

Yu(L) = Co + CiMs,, (L). (3)
And the model in the v

¥,(L) = Co + C1Msq, (L). (4)

Modeling of Cross Variograms

Cross Variograms can be modeled with the same models
used to model variograms. As before, the rule of the use
of a minimum number of parameters to model the vario-
gram applies, and the rule of the condition of positive
definiteness should be satisfied.

To satisfy the condition of positive definiteness, cer-
tain additional restrictions are imposed when modeling
the cross variogram. If x and y are considered as two
variables, the variograms for the two variables x and y
are modeled, respectively, as

Y+(L) = Cox + CrMsa(L) (5)
YV(L) = COV + CIVMSa(L)- (6)

Note that both variograms need to be modeled with
the same linear combination of structures and that
the range for both variograms must be the same. The
only difference between the two structures are sill
values, which can be different. To model the cross
variogram between the two variables, we can write

Yva(L) = C()xv + ClvaSa(L)' (7)

As in modeling variograms, we are restricted by the
same linear combinations of models in modeling the cross
variogram, and the range must also be the same for the
cross-variogram structure. In addition, the coefficients of
the model should be defined so that the following two
conditions are satisfied.

COx COJ’ > C%xy (8)
CiCy > C1,,. (9)
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That is, for a given model, the product of the coef-
ficients of individual variable variogram models should
be greater than the square of the coefficient of the cross
variogram.

Search ellipse design

Because computers are used in mapping, we must instruct
the program how to gather and use control points during
interpolation. Most familiar with computer mapping know
that this involves designing a search ellipse or neighbor-
hood. We must specify the length of the search radius, the
number of sectors (typically four or eight), and the num-
ber of data points per sector. Most common mapping pro-
grams allow the user to specify only one radius; thus, the
search ellipse is circular (isotropic). However, during geos-
tatistical analysis, we often find that the spatial model is
anisotropic. Thus, we should design the search ellipse
based on the spatial model correlation scales, aligning the
search ellipse azimuth with the major axis of anisotropy.

Kriging is a geostatistical interpolation technique. It is
a linear weighted-averaging method, similar to inverse
weighted distance. However, kriging weights depend on
a model of spatial correlation. Therefore, it is possible to
create a map exhibiting strong anisotropy, resulting in a
map that “looks” more geologically plausible.

Depending on the specific application, different proce-
dures have been used for the purpose of estimation. In
this study, we will introduce the Simple Kriging (CK),
Ordinary Kriging (OK) and Cokriging with a case study
in the following chapters. Here we will briefly recall the
definition of these algorithms.

Simple kriging

Simple kriging requires a knowledge of population mean,
which may not be known in practice because without
prior assumptions. Therefore, this type of kriging proce-
dure is not quite popular.

Ordinary kriging

Ordinary kriging is the most popular techbique, which
eliminates the need for knowledge of mean value. It also
is easier to adapt to local variations. It is, without ques-
tion, is the most widely applied kriging technique.

Cokriging

The Cokriging algorithm integrates the information car-
ried by a secondary variable related to the primary attri-
bute being estimated. The kriging system of equations is
then extended to take into account that extra information.
The Markov Model 1 (MM1) and the Markov Model 2
(MM2). The Markov models ( MM1 or MM2) can only
be solved with simple cokriging; using ordinary cokriging
would lead to ignoring the secondary variable since the
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sum of weights for the secondary variable must be equal
to zero.

Kriging is a deterministic method that has a unique
solution offering the best estimate. It does not pretend
to represent the actual variability of the studied attribute.
It can be used in the traditional way that other mathe-
matical interpolation methods have been used. It has the
added value of incorporating the spatial model and thus
more reliably depicting the shapes of geologic features.

Abbreviations

SGeMS: Stanford Geostatistical Modeling Software; SK: Simple kriging;

OK: Ordinary kriging; Sgism: Sequential Gaussian Simulation; SC: Simple
cokriging; OC: Ordinary cokriging; MM2: Markov model 2; OOIP: Original oil
in place.
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