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Abstract

Background: In the process of decision making to combat heavy metals pollution, it is essential to have accurate
quantitative information about heavy metals and their pollution hot-spots. The main purpose of this study was to
determine spatial distribution of several elements (As, Sb, Cr, Cd, Ni, Co, Cu, Zn, Pb, Fe and V) on surface soils of
Hamadan Province (Iran). It also sought to create a holistic view to determine the position, level, and anomaly of
classified elements through principal components analysis (PCA), false color composition (FCC), inverse overlay
method, and weighted linear combination. Finally, it tried to identify possible sources of pollution in the hotspots.
Interpolation of heavy metal concentrations was performed using geostatistical methods and correlation analysis for
locations. The most appropriate interpolation method was selected based on mean absolute error (MAE) and mean
bias error (MBE) indices.

Results: According to Pearson’s correlation analysis, the elements were categorized in four groups (Fe, V, and Co;
Cu, Ni, and Cr; Pb, Zn, and As; Sb and Cd). For Fe, Zn, As, and Pb, the best method was disjunctive kriging. For Co,
Sb, Ni, and Cr, ordinary kriging was the most appropriate. Radial basic functions was also the best method for Cd
and Cu.

Conclusions: Overlaying of zoning maps of the elements and land use and geological layer maps showed that the
distribution pattern of the studied elements did not fully conform to the existing land use pattern. Although the
most influential factor on the concentration of elements in the studied soils was bedrocks, extensive use of chemical
fertilizers should not be ignored. Moreover, urban pollution can also contribute to Pb contamination of soil.

Keywords: Kriging; Correlation analysis; Principal components analysis; False color composition; Inverse overlay
method; Weighted linear combination
Background
Soil is a major natural resource whose properties and qual-
ity can be adversely affected by the over-concentration of
agricultural and industrial activities. On the other hand,
preserving soil quality and preventing its deterioration are
fundamental to sustainable development. In recent de-
cades, problems associated with increasing levels of heavy
metals and their persistence in the environment have
attracted the attention of researchers (Bowen 1979; Lindsay
1979; Lame and Leenaers 1997). Although low concentra-
tions of these metals are naturally found in soils and
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stones, human activities have elevated their release and
propagation in the environment.
Determining the areas that are polluted either naturally

or as a result of human activities is a means of evaluating
the health of an ecosystem (Romic et al. 2007). Mining, in-
dustries, road transfer, waste burning, and agricultural use
of fertilizers and chemicals are human activities that can
lead to heavy metal contamination of the soil. On the
other hand, natural factors contributing to heavy metal
contamination of the soil include volcanoes, degassing of
the Earth’s crust, fires in forests, and chemical compos-
ition of parent materials (Lado et al. 2008).
A variety of sciences such as classical statistics, geostatis-

tics, remote sensing, geographical information systems
(GIS), soil science, and hydrology are employed to precisely
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assess the heavy metal content of soils. In fact, soil pollu-
tion can currently be well determined using GIS and geos-
tatistical methods. While classical statistical methods have
been widely applied in previous studies on soil contamin-
ation, such methods are expensive and time-consuming
and do not calculate estimation errors. Besides, preparing
sufficient samples from the areas under-study is impos-
sible. Hence, geostatistical methods have replaced classical
statistics as they can accurately identify time and spatial
changes of pollutants and calculate estimation error (Blom
1985; Bonham-carter et al. 1987).
The present research aimed to determine areas with

heavy metal (Cu, Co, Ni, Cd, Cr, Sb, V, Fe, Pb, As, and
Zn) contamination, to locate pollution hot-spots, and to
recognize possible sources of contamination in surface
soils of Hamadan Province (Iran) through principal com-
ponent analysis (PCA) and false color composites (FCC).

Methods
Study area
Hamadan Province occupies an area of 19493 km2 (from
33 degrees, 59 minutes to 35 degrees, 48 minutes north
latitude and from 47 degrees, 34 minutes to 49 degrees,
36 minutes east longitude) (Figure 1). The agricultural
and livestock development of this province (49.3% of its
Figure 1 Location map of Hamadan Province (Iran) and the sampling
lands are used for agricultural purposes) has turned
Hamadan into an economic hub (Figure 2). The domin-
ant geological structures of the area include alluvial ter-
races from the Quaternary period, orbitoline limestone,
shale and marl from the late Cretaceous period, meta-
morphic sandstone from the Jurassic period, and andesitic
lava and reef limestone from late Paleogene and early
Neogene periods (geological map 1:1000000; Geological
Survey of Iran). The area contains shallow to moderately-
deep soils with small to medium-sized gravels and some
amounts of calcareous material (2007).

Sampling
In order to perform systematic random sampling, the
area was first divided to 5*5 km2 networks. Afterward,
based on the characteristics of the area and various types
of land use and activities, networks of 2.5 × 2.5 and 10 ×
10 km2 were developed in areas with intensive and low-
intensity land use, respectively. The points where the
networks met were selected as sampling points. Finally,
286 soil samples were collected from the area, i.e. after
determining sampling points, a 20 × 20 cm2 macro-plate
was drawn at each point. Then, three 3 × 3 cm2 micro-
plates were drawn inside it in the shape of a downward
V. Five soil samples were taken from the four corners
points.



Figure 2 Regional geological map of the study area.
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and the center of each micro-plate. The samples were all
obtained at depths of 0–20 cm. The collected soils were
eventually mixed and a final 2–3 kg sample was prepared.
Information about land use at the sampling point, type

of agriculture (irrigated/rainfed), appearance of the land,
kind of product, geographical characteristics, and the
nearest village was recorded in a sampling form. Sam-
ples were taken from pristine areas as well as mountain-
ous areas, deserts, salt marshes, lands under irrigated or
rainfed agriculture, vineyards, gardens, and areas near
villages (Figure 3).

Chemical analysis of soil
The prepared samples were sent to the laboratory and
their Pb, Zn, As, Cr, Co, Ni, V, Fe, and Cu concentrations
were measured via inductively coupled plasma-atomic
emission spectrometry (ICP-AES). Cd content of the
samples was assessed using a graphite furnace and atomic
absorption spectroscopy in the chemical laboratory of the
Iranian Center for Advanced Mineral Processing Research.

Descriptive statistics
Kolmogorov-Smirnov test was applied to investigate the
normal distribution of data at a confidence level of 95%.
Moreover, the data was normalized with logarithmic
transformation. In order to evaluate the effects of land use
on the concentrations of heavy metals in soil, the map was
first divided into three main categories of agricultural,
urban-industrial, and non-agricultural use. Pearson’s cor-
relation coefficients were then calculate to identify the
correlations between heavy metal concentrations and dif-
ferent land uses. A box plot and PCA were used to deter-
mine the outliers and classify the relations between the
measured variables, respectively.



• Soil sampling method in depth of 20 cm
• locations for sampling points record with GPS 

device.

Figure 3 Sampling method.
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Land use mapping
Considering the importance of land use map in analyz-
ing heavy metal pollution, the map was prepared using
Indian Remote Sensing (IRS-P6) Advanced Wide Field
Sensor (AWiFS) images.

Data mapping
The current research employed kriging for data mapping.

False color composition (FCC)
Geographical information studies may utilize FCC to de-
termine hot-spots of heavy metal pollution. This method
can simultaneously compress data and interpret layers of
information. Creating color composite images involved
spatial correlation analysis of the heavy metals. After stand-
ardizing the zoning map of all elements’ concentrations
(0–255), the three elements in each group were colored as
red, green, and blue. The FCC map was then developed
accordingly.

Principal component analysis (PCA)
PCA is a statistical method to classify the relations be-
tween the measured variables, i.e. it linearly compresses
a set of main data to an essentially smaller set of new,
uncorrelated variables which represent nearly all informa-
tion in the main data set. Meanwhile, understanding and
working with a small set of uncorrelated variables is much
easier than working with a large set of correlated variables
(Eastman 2006). In the present study, PCA was carried
out in SPSS for Windows 15.0 (SPSS Inc., Chicago, IL,
USA). In addition, spatial correlation analysis was applied
for each variable to select the most appropriate method
of interpolation. Finally, the zoning map of the factors
obtained from PCA was produced in ArcGIS 9.3 (Esri,
CA, USA).

Inverse overlaying of elements
Since the images from the previous stage could not pro-
vide information about more than three elements in
recognition of pollution hot-spots, the anomalies of ele-
ments (distribution of a combination of elements in each
area) were determined using the zoning map of elements
obtained from FCC, map overlay, and identification of
heavy metal hot-spots. Overlaying of inverse layers facili-
tates analysis by creating an overall view on multiple ele-
ments (Suyash Kumar et al. 2007). It is, in fact, a different
representation of elements for clearer observation of pol-
lution hot-spots. In order to apply this method, the maps
from FCC were first stretched between zero and 255.
Afterward, pairs of layers (one as the top and one as the
bottom map) were selected according to the correlations
between their elements. In top and bottom layers, red to
blue and blue to red (reverse) represented maximum to
minimum amounts, respectively. Top layers were then
demonstrated at a contrast of 100 and transparency of 60.
Finally, similar to FCC, the anomaly of elements was inter-
preted based on the composition of the obtained colors.

Results
Filtration and normalization of primary data
Table 1 summarizes the density of heavy metals (mean As:
15.7993, Cd: 0.1535, Fe: 3.9472, Co: 18.9598, Cr: 96.8182,
Cu: 36.4545, Ni: 69.0350, Pb: 31.8916: Sb: 2.9084, V:
109.4161, Zn: 80.0035). The box plot in Figure 4 was used
to correct the outlier data about the concentration of
heavy metals. The numbers of outlier and corrected data
are given in Table 2. The results of Kolmogorov-Smirnov
test showed the data for As, Sb, Cr, Co, and Pb not to be
normal (Table 3). However, normal distribution of vari-
ables is essential in geostatistical studies. Moreover, too
much stretching and crumpling can damage the structure
of variogram and the results of kriging. Therefore, after
ensuring the absence of negative data, logarithmic trans-
formation was applied to normalize the concentrations of
the mentioned elements (Figure 5). Pearson’s correlation
analysis was then performed again on the normalized data
(Table 4).
Analysis of variance on the mean concentrations of

heavy metals in soil did not prove any significant differ-
ence between the three different kinds of land use (agri-
cultural, urban-industrial, and non-agricultural uses).

PCA
The appropriateness of data for PCA is assessed based on
Kaiser-Mayer-Olkin (KMO) index, i.e. the test is recom-
mended only if KMO> 0.70. Since KMO index was calcu-
lated as 0.84 in the current research, PCA was applied on



Table 1 Trace element data for the soil from Hamadan Province, Iran

Metal N Missing Minimum Maximum Mean Std. deviation Europe mean

As 286 9 4.70 85.00 15.7993 8.94631 11.6

Cd 286 10 .10 0.88 0.1535 0.08408 0.284

Fe 286 9 1.80 6.00 3.9472 0.67775 2.17

Co 286 9 8.10 34.00 18.9598 3.89043 8.91

Cr 286 9 30.00 180.00 96.8182 26.37480 94.8

Cu 286 9 4.00 75.00 36.4545 10.09202 17.3

Ni 286 9 26.00 140.00 69.0350 20.43214 37.3

Pb 286 9 13.00 1800.00 31.8916 105.13443 32.6

Sb 286 9 0.50 28.00 2.9084 2.69343 1.04

V 286 9 50.00 190.00 109.4161 22.38291 68.1

Zn 286 9 35.00 200.00 80.0035 18.74679 60.9

Valid N (list wise) 286
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the primary data and 11 factors were found necessary for
explaining 100% of variance. However, as a mere four out
of the 11 factors could explain 71.36% of variance, the low
importance of the other seven factors was deduced.
Factor loading was used to determine the relationships

between the variables and each factor (Table 5). The first
factor explained 39.25% of variance and its factor load
was roughly the same for Fe, Zn, Co, Cr, Ni, and V. High
correlation between these elements can indicate their
common origin. The second factor explained 13.12% of
Figure 4 Box plot for outlier determination.
the total variance of element distribution and suggested
similarity between Cd and Cu (factor load: 0.85 for Cu
and 0.65 for Cd). The third factor could only explain
9.55% of variance. According to the table of eigenvalues,
Pb had a factor load of about 0.75 and was the only
element in this factor. The fourth factor explained no
more than 9.44% of variance and included As and Sb with
factor loads of 0.49 and 0.89, respectively. The remaining
factors did not have a significant role in increasing the
total variance.



Table 2 The number of modified and element outlier data for studied heavy metals

Element Cr Ni V Zn Cd As Co Cu Sb F Fe Pb

The number of outliers 5 3 10 5 6 12 6 3 16 9 5 11

The number of modified data 2 1 2 3 3 4 2 3 5 1 2 6
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Spatial distribution of components in PCA
In order to prepare the zoning maps of factors obtained
from the PCA, spatial correlation analysis was conducted
for each factor in SPSS (SPSS Inc., Chicago, IL, USA) and
the most suitable method of interpolation was selected.
Table 6 shows fitted models and the most appropriate
methods of interpolation. Geostatistical analyses (Table 7)
revealed the exponential model to be the best fitted model
for the factors (Figure 6).

Geostatistical analysis
Kriging and radial basis function (RBF) were employed
to investigate the spatial variations of heavy metals. All
such analyses were performed in ArcGIS 9.3 (Esri, CA,
USA). The precision of the methods was compared using
the jack-knife technique and root mean square error
(RMSE), mean bias error (MBE), and mean absolute error
(MAE) which are all valid indices (Table 7). Based on the
results, the most appropriate methods were disjunctive
kriging for Fe, Zn, As, and Pb, ordinary kriging for Cr, Ni,
Sb, and Co, and RBF for Cd and Cu (Figure 7).

FCC
According to Pearson’s correlation analysis (Table 4), the
elements were divided into four groups: Fe, V, and Co;
Cu, Ni, and Cr; Pb and Zn; and Sb and Cd. Single-
component images were standardized (0–255) to prepare
the FCC map. Two-three elements were then combined
based on the above-mentioned classifications and using
the FCC method (Figure 8a and b). As the prepared im-
ages did not yield information about more than three ele-
ments in recognizing the hot-spots, after standardization
of single-component images, the elements were catego-
rized into two groups based on their correlation level.
Table 3 One-sample Kolmogorov-Smirnov test results about t
in Hamadan Province, Iran

As Cd Fe Co

N 286 286 286 286

Normal parameters (a,b) Mean 15.49 .1457 3.9479 18.9458

Std. Deviation 7.34 .0720 .67360 3.84308

Most extreme differences Absolute .15 .242 .070 .098

Positive .15 .242 .049 .098

Negative -.10 -.220 -.070 -.064

Kolmogorov- Smirnov Z 2.561 4.088 1.176 1.661

Asymp. Sig. (2-tailed) .000 .054 .126 .008
Consequently, Fe, V, Co, Cu, Ni, and Cr were allocated to
the first category and Pb, Zn, As, Sb, and Cd were placed
in the second. The two groups were then combined using
weighted linear combination (Figure 8c). This process
simplified the analysis of hot-spot positions. In other
words, to identify the anomalies of the elements (com-
bined distribution of elements in each area), weighted
linear combination and overlaying were applied on single-
component images and the heavy metal hot-spots were
recognized. Red and blue areas in Figure 8c have high and
low anomalies, respectively.

Discussion
Correlation analysis
The results of spatial correlation analysis (Table 4)
showed that the mean estimation error and RMSE for all
variables were close to the ideal values (zero and one, re-
spectively). This suggests high precision of our estima-
tions. There was also a great spatial correlation between
the concentrations of elements (especially As, Fe, Co,
Ni, and Cr) in the samples. In other words, the concen-
trations of elements in closer samples were more similar
to each other probably due to the effects of natural fac-
tors such as parent material, topography, and soil type.
However, human factors (e.g. fertilizing) might have
been responsible for weak spatial structure of Zn, V, and
Pb.
MAE and MBE indices were calculated to assess the

precision and deviation of interpolation models, respect-
ively (Table 7). As these indices measure the difference
between the measured and the estimated values, values
closer to zero indicate higher spatial precision of the
model and lower deviation, respectively (Hassani-pak
1998; Mohammadi 2006).
he concentration (in mg/kg) of the studied heavy metals

Cr Cu Ni Pb Sb V Zn

286 286 286 286 286 286 286

96.6783 36.1612 69.0000 25.8392 2.702 109.241 79.5839

25.9820 9.75556 20.3185 7.22292 1.30851 21.8781 16.9531

.096 .037 .078 .176 .180 .116 .052

.096 .037 .078 .176 .180 .116 .052

-.050 -.029 -.038 -.116 -.106 -.087 -.039

1.623 .624 1.324 2.978 3.052 1.954 .875

.010 .831 .060 .000 .000 .064 .428
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Figure 5 Normalized data histogram using logarithm method (As, Pb, Cr, Sb and Co).
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Zoning maps
According to the distribution map of As (Figure 7), the
element had the highest concentrations (20–50 mg/kg)
in the northwest, two spots in the southwest and some
spots in the center of the province. The geological struc-
ture of these areas comprised metamorphic rocks, shale,
marl, and limestone.
The distribution maps showed the highest concentra-

tions of Fe, Ni, Cr, and Co to be 4.0-5.9, 90–130, 140–
160, and 20–30 mg/kg, respectively. These hot-spots
were detected in the form of some red spots in the west,
southwest, and northwest of the province. Furthermore,
the bedrock was shale, igneous and alluvial rocks, and
sandstone for Fe and Ni, limestone and igneous rocks
for Cr, and shale-marl, sandstone, limestone, and meta-
morphic rocks for Co.
The highest concentration of Cd in the studied soils

varied between 0.30 and 0.35 mg/kg (Figure 7) and was
demonstrated as some spots throughout the province. It
was found on geological structure of shale-marl, lime-
stone, and alluvial rocks.
The distribution map of Zn suggested the maximum

level of the element (100–130 mg/kg) to exist in the west,
southeast, northeast, and partly in the center of the prov-
ince on limestone, metamorphic rocks, and shale bedrocks.
The greatest concentration of Sb ranged from 5.0 to

9.8 mg/kg (Figure 7) and was seen in the form of two
spots on igneous stones and shale bedrocks.



Table 4 Pearson’s correlation coefficients between the heavy metals

LnCo LnSb LnPb LnCr LnAs Zn V Ni Cu Cd Fe

LnCo 1

LnSb .616(**) 1

LnPb .108 .093 1

LnCr .159(**) .085 .396(**) 1

LnAs .018 -.069 .098 .043 1

Zn .704(**) .491(**) .093 .168(**) .031 1

V .860(**) .553(**) .160(**) .224(**) .023 .709(**) 1

Ni .020 -.014 .146(*) .472(**) .058 -.003 .072 1

Cu .082 -.042 .171(**) .294(**) .196(**) .100 .109 .521(**) 1

Cd .005 .008 .072 .196(**) -.098 .055 .064 .263(**) .218(**) 1

Fe .899(**) .608(**) .116(*) .129(*) .006 .729(**) .851(**) .007 .062 .014 1

*Correlation is significant at the 0.05 level (two-tailed).
**Correlation is significant at the 0.01 level (two-tailed).
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Overlaying of the distribution maps of As, Fe, Cd, Zn,
Cr, Ni, and Sb, land use maps, and geological strata of
the studied area revealed that the distribution pattern of
the elements did not conform to the land use pattern
of the area. On the other hand, since the concentration
of each element is naturally high in its bedrock (Table 8)
(De vos et al. 2005), the most important factor affecting
the concentration of the mentioned elements in soil must
have been the geological structure (bedrock).
As Figure 7 illustrates, areas with Pb concentration

higher than 30 mg/kg were located in the southeast, cen-
ter, and west of the province on igneous, metamorphic
sandstone, shale, and limestone. Irrigated agriculture,
pasture, and mining land use in these areas results in
overuse of fertilizers and chemical herbicides in them.
Moreover, sandstone and shale naturally have high con-
centrations of Pb (Table 8) (De vos et al. 2005).
Table 5 Load factors of the studied variables in Hamadan
Province, Iran

Heavy metal Component

1 2 3 4

As 0.897

Cd 0.848

Fe 0.901

Co 0.943

Cr 0.898

Cu 0.647

Ni 0.833

Pb 0.749

Sb 0.496 0.491

V 0.882

Zn 0.705
Maximum Cu and V content of soil was 50–63 and
120–160 mg/kg, respectively (Figure 7). These values
were detected in the west, southwest, and southeast of
the province as well as some spots in the center. The
bedrocks were shale and limestone for Cu and shale,
igneous rocks, sandstone, and limestone for V. The con-
centration of these two elements is generally high in
shale (Table 8). Meanwhile, overlaying of their distribu-
tion maps and the area’s land use map showed excessive
use of fertilizers and chemical herbicides in the agricul-
tural activities performed in these lands. Hence, although
the high concentration of Cu and V can be mainly justified
by natural factors such as shale, lime, and alluvium bed-
rock, the accumulation of these elements in agricultural
lands with unwarranted use of chemical fertilizers (the
mean annual use of urea, potash, and phosphate fertilizers
is about 500–700, 200–230, and 300–558 kg per hectare,
respectively) can be expected.
Comparisons between our findings and the mean

values in Europe and the world (Table 9) led to the con-
clusion that excluding Cd (which had a concentration
lower than that in Europe and the world) and Pb (whose
level was lower than the mean level in Europe), all ele-
ments had higher values in the studied area compared
to Europe and the world.
Facchinelli et al. (2001) concluded that while Cu, Ni,

Cr, and Co concentrations are controlled by bedrock,
and Pb and Zn content of soil is influenced by human
factors. Similarly, Leo et al. (2007) found Cu, Ni, Zn and
Cr levels and Zn and Cd levels to depend on bedrock
and human factors, respectively. Mico et al. (2006) re-
ported that the amounts Cu, Fe, Ni, Zn, Cr, and Co are
affected by bedrocks, but Cd content changes based on
human factors such as the use of phosphate fertilizers.
Lado et al. (2008) assessed heavy metals in the soils of
Europe and concluded that Cu, Pb, Cd, and Zn have



Table 6 Models fitted for factors obtained from principal component analysis and selecting the best interpolation
method

Factors Interpolation method Model Nugget Partial sill Sill Mean range Mean Root mean square

Factor 1 Ordinary kriging Exponential 0 1.009 1.009 21035.1 0.027 0.853

Factor 2 Radial basis functions - - - - - 0.015 1.003

Factor 3 Radial basis functions - - - - - 0.001 0.874

Factor 4 Radial basis functions - - - - - 0.002 0.785
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high correlations with agriculture and limestone, whereas
Cr and Ni levels are related to bedrocks. Inácio et al.
(2008) evaluated the soils of Portugal to prepare a geo-
chemical atlas. They suggested revealed that while the
concentrations of As and Cr are controlled by parent ma-
terial, the amount of V depends on mining activities (pre-
cipitation of ores). Likewise, Jiachun et al. (2004) indicated
As content to be controlled by bedrock but to also be rela-
tively dependent on human resources. They found the
concentration of Cd to be affected by not only natural fac-
tors but also human activities.

Factor analysis
As it can be seen in the zoning map of factor 1, corre-
lation coefficients of variables in each sample ranged
from −0.93 to +2.76. High positive correlations existed
between the seven elements in the southeast, southwest,
and west where igneous and shale bedrocks were present.
In contrast, high negative correlations were seen between
the seven elements in the east and northwest on shale
bedrocks.
Zoning map of factor 2 shows the correlations between

the variables of each sample to vary between −1.24
and +4.40. High positive correlations between Cu and Cd
were detected as four blue spots in the north and center
of the province on alluvium bedrock. High negative cor-
relations were demonstrated as orange spots throughout
the province on shale, igneous, metamorphic, and lime-
stone bedrock.
According to the zoning map of factor 3, correlations

of variables in each sample took values between −1.31
and +4.20. High positive correlations were observed
between Pb and F on shale and lime bedrocks in the
southeast of the province. On the other hand, high nega-
tive correlations between the two elements were clear in
the west and south (on alluvium bedrock) where agricul-
ture is the most common land use. Other areas had
values between these figures.
For factor 4, correlations between variables ranged

from −0.84 to +4.14. High positive correlations between
Sb and As were observed on shale, lime, igneous, and
metamorphic bedrocks in the southeast, northwest, and
partly center of the province. High negative correlations
occurred on alluvium bedrock in the east of the prov-
ince where the land is dominantly used for agricultural
purposes. Values in other areas lay between these two
figures.
Correlations between these metals can indicate their

common source, i.e. bedrock. Factor analysis maps can
generally yield useful results about the source of heavy
metals. In fact, negative and positive correlations mainly
suggest the effects of human activities and geological
sources, respectively.
In a study on heavy metal (Zn, Cd, As, Pb, Ni, Cu, and

Hg) pollution and landscape patterns, Pin Lin et al.
(2002) categorized the metals using factor analysis and
then prepared the zoning maps of four factors. They con-
cluded that the first (Ni, Cd, and Cr) and second factors
(Pb, Zn, and Cu) were transferred to soil as a direct result
of human activities. Similarly, studies in Italy (Facchinelli
et al. 2001), northern Spain (Gallego et al. 2002), and other
parts of Spain (Rodriguez Martin et al. 2006) classified Cr,
Co, and Ni in the same factor and found them to be con-
trolled by parent material of soil.
Moller (2005) reported that Cu in urban areas is pro-

duced following human activities. Mico et al. (2006) and
Franco-Uria et al. (2009) suggested Cd, Cu, Pb, and Zn
concentrations to change mainly through human activ-
ities. Rodriguez Martin et al. (2006) mentioned transporta-
tion and traffic as the main factors contributing to high
levels of Zn and Pb in the soils of Spain. Mico et al. (2006)
claimed that Pb is transferred to agricultural soils of Spain
via atmospheric deposition and use of chemical fertilizers.
On the contrary, Fe, Cr, and Co levels are basically con-
trolled by parent material (Franco-Uria et al. 2009).

FCC analysis
FCC colors the three elements in each group as red, green,
and blue. For instance, in a composition of As, Zn, and
Pb, blue, red, and green will represent high concentrations
of As, Zn and Pb, respectively. High levels of all elements
will result in white areas. Black, on the other hand, shows
minimum concentrations of all three elements. Therefore,
as Figure 8 suggests, these three element had maximum
levels in the southeast, northwest, west, and southwest
of the province. Cd, Fe, and Vas well as Cr, Ni, and Cu
(Figure 8a) had the highest concentrations in the west,
southwest, and southeast of the province. In Figure 8b,
the green and red areas correspond high levels of Sb
and Cd, respectively.



Table 7 Results of spatial correlation analysis and the fitted models

Element No. sample Interpolation
method

Model Nugget (C0)
(mg/kg)

Partial sill (C)
(mg/kg)

Sill (C0+C)
(mg/kg)

Major
range(km)

Mean RMS Root- mean
standardized

Trend MAE
(mg/kg)

MBE
(mg/kg)

Anisotropy

Isotropy

As 286 Disjunctive kriging Exponential 0.4 0.8 1.2 106 0.076 7.085 1.16 no 5.13 0.076 344.5

Zn 286 Disjunctive kriging Exponential 0.36 0.54 0.9 29.39 −0.059 14.6 1.046 no 11.48 0.059 *

Cu 286 Radial basis function - - - - - .068 9.3 - - 7.42 0.045 - -

V 286 Disjunctive kriging Exponential 0.31 0.6 0.91 16.919 −0.92 19.22 1.003 no 14.85 .094 *

Ni 286 Ordinary kriging Spherical 177.29 437.7 614.99 178 .034 15.98 1.068 no 12.54 .34 *

Co 286 Ordinary kriging Exponential 7.89 10.67 18.56 178.01 0.0005 3.21 1.025 no 2.53 0.005 *

Pb 286 Disjunctive kriging Exponential 0.39 0.49 0.88 13.49 0.018 6.68 1.09 no 4.06 0.018 *

Cd 286 Radial basis function - - - - - 0.002 0.097 - - 0.67 0.002 - -

Fe 286 Disjunctive kriging Exponential 0.52 0.7 1.22 123.97 0.0005 0.58 1.05 no 0.46 0.00005 *

Cr 286 Ordinary kriging Exponential 241 669 910 178 0.006 20 1.11 no 16.25 0.006 *

Sb 286 Ordinary kriging Exponential 0.086 0.111 0.197 178 0.042 0.35 1.14 - 0.74 0.0048 325.5
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Figure 6 The first factor zoning maps (Zn, V, Ni, Cr, Co, Sb and Fe); The second factor (Cu and Cd) zoning maps; The third factor (Pb)
zoning map; and the fourth factor (As and Sb).
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In the maps produced by combining single-component
images through weighted linear combination (Figure 8c),
red areas (e.g. area number 1) illustrate high amounts of
all five elements (As, Zn, Pb, Cd, and Sb). These areas
were located on shale, alluvium, and igneous bedrocks
and indicate the hot-spots of the mentioned elements.
Areas 2 and 3 (in purple) have a layer with maximum
content and a layer with minimum content. In other
words, area 2 contained high concentrations of As, Pb,
and Zn but low levels of Cd and Sb which is consistent
with its shale, igneous, and alluvium bedrocks. However,
the opposite was true in area 3. Blue areas suggested low
values in both layers. In Figure 8c, the elements are at their
maximum values in the west, southwest, and southeast.
Based on our findings, FCC could clearly depict areas with
high and relatively low concentrations of heavy metals.



Figure 7 Single-component image of the study area (index values in PPw).
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Conclusions
The current research aimed at locating the hot-spots of
pollution with heavy metals. Its most significant findings
are summarized below:
Comparison of the mean levels of heavy metals in

Hamadan Province and other parts of Iran, suggested
higher concentrations of As, Zn and V in the studied area
than in Isfahan. The mean level of Zn was higher than that
in Mashhad but lower than the value in Sepahanshahr.
The mean concentrations of Cd and Pb were lower than
the levels in Isfahan and Sepahanshahr, respectively.
Comparisons between the obtained levels and the

mean values in Europe and the world (Table 8) revealed
that except for Cd and Pb, the concentrations of all other
elements were higher in Hamadan Province than in
Europe and the world. Overlaying of land use maps and
those obtained from sampling revealed that higher con-
centrations of some elements in their bedrocks compared



Figure 8 Three-component (a), Two-component (b) and Multi-component (c) color composition of the study area.
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to standard levels existed in the agricultural lands where
high amounts of chemical fertilizers are used.
Overlaying of zoning maps of the elements and land

use and geological layer maps showed that the distribution
pattern of the studied elements did not fully conform to
the existing land use pattern. On the other hand, as the
Table 8 The mean concentrations of elements in different
bedrocks

Cu Fe Zn Cr Pb Ni V Sb Cd Co

Ultramafic 40 9.6 50 1600 1 - 0.09

Sandstone - 0.5 35 10 20 <1

Shale 50 4.7 50-90 90 23 90 90-260 1.5 0.8

Limestone - 0.98 50 11 - <5 0.15
level of each element is naturally high in its bedrock, it
seems that the main factor affecting the concentrations of
heavy metals in the studied soils must have been the
geological structure (bedrock). However, excessive use of
chemical fertilizers and industrial pollution (in case of Pb)
should not be ignored.
According to factor analysis, the studied heavy metals

lay in four factors. This strong correlation can be caused
by a common source of transfer to soil through agricul-
tural activities, atmosphere, or parent material of soil.
Moreover, while the measured elements had maximum
levels in shale, igneous stone, limestone, and sandstone
bedrocks, their concentration was minimum in alluvium.
The zoning maps of pollution probability showed

99.65% of the area to have Cd values under the threshold.



Table 9 Comparison of the concentrations of elements in
the studied area with the values from the region, Europe,
and the world (Facchinelli et al., 2001; Franco-Uria et al.,
2009)

Europe mean Area mean World median Area median

As 11.6 15.79 5 12.5

Cu 17.3 36.2 25 35.5

Fe 2.17 2.94 4 4

Cd 0.284 0.15 0.3 0.11

Zn 60.9 80.03 70 76

Cr 94.8 96.81 80 94

Co 8.91 18.95 10 19

Pb 32.6 25.66 17 24

Ni 37.3 69.03 50 68

V 68.1 109.41 90 110

Sb 1.04 2.9 0.5 2.5
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Meanwhile, 100% of the area had Co and Sb concentra-
tions higher than the threshold. Levels of As, Zn, Cu, V,
Ni, Pb, Fe, and Cr were higher than the determined
threshold in 80%, 90%, 98%, 99.7%, 70%, 98.8%, 85%, and
90% of the studied area. It can thus be concluded that the
area had a more appropriate situation regarding Cd com-
pared to other heavy metals. Greater management and fil-
tering programs are essential to control the transfer of Co,
Sb, As, Zn, V, Ni, Pb, Fe, and Cr.
Our findings indicated FCC to be an appropriate and

fast method for analyzing heavy metal pollution hot-
spots. Weighted linear combination could also locate the
hotspots by clear depiction of areas with high and rela-
tively low levels of heavy metals.
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