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Abstract 

Background Understanding the complex relationship between vegetation dynamics and land surface temperature 
(LST) is crucial for comprehending ecosystem functioning, climate change impacts, and sustainable land manage-
ment. Hence, this study conducts a temporal analysis of leaf area index (LAI) and LST data derived from Sentinel-2 
and Landsat Operational Land Imagery (OLI) in the Mille River Basin, a tropical region in Ethiopia. LAI data were gener-
ated using Sentinel-2 imagery processed with the Sentinel Application Platform (SNAP) toolbox, an open-access earth 
observation analysis tool, while Landsat OLI collection 2 level 2 data were utilized for precise LST retrieval. The Mann–
Kendall test was used to detect trends in the time series data.

Results The trends in the mean LAI were statistically significant at P values of 0.05 and 0.10 for the annual and sea-
sonal trends, respectively. The mean LST trends were insignificant throughout the study period except for the summer 
season, for which the P value was 0.07. The correlation between the LAI and LST was weak  (R2 = 0.36) during the crop-
growing seasons (summer and spring) but moderate in winter  (R2 = 0.46) and autumn  (R2 = 0.41).

Conclusion The findings of this research clarify the complex relationships between variations in surface temperature 
and vegetation growth patterns, providing insight into the environmental mechanisms driving the dynamics of local-
ized ecosystems. The study underscores the implications of these findings for informed decision-making in sustain-
able land management, biodiversity conservation, and climate change mitigation strategies.
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Background
Understanding the dynamics of vegetation and land 
surface temperature (LST) has paramount implications 
for ecological and climate change assessments and land 
resource management studies. The leaf area index (LAI), 
a critical biophysical variable measuring the total area of 
leaves relative to the land surface, plays a critical role in 

comprehending land surface processes associated with 
vegetation dynamics and climate modeling (Avdan and 
Jovanovska 2016; Mwangi et  al. 2018). This approach 
provides essential insights into the impacts of various 
environmental factors on vegetation (Wang et al. 2019). 
Similarly, LST, another significant variable linked to vege-
tation dynamics, is directly influenced by vegetation con-
ditions (Guechi et al. 2021; Zhao-Liang et al. 2013).

A comprehensive global vegetation analysis spanning 
31  years (1982–2013) across all continents revealed a 
persistent browning trend on Earth since the 1990s (Pan 
et  al. 2018). Nonetheless, other studies have indicated a 
contrasting greening trend, primarily driven by human 
land-use practices. For example, Park et al. (2019) dem-
onstrated substantial contributions to the greening trend 

*Correspondence:
Ali Yasin Ahmed
alexoy5050@gmail.com
1 Department of Geography and Environmental Studies, Jigjiga University, 
P.O. Box 1020, Jigjiga, Ethiopia
2 Department of Geography and Environmental Studies, Wollo University, 
P.O. Box 1145, Dessie, Ethiopia

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40068-024-00371-6&domain=pdf
https://orcid.org/0000-0002-8620-2089


Page 2 of 15Ahmed et al. Environmental Systems Research           (2024) 13:43 

in China and India, with China accounting for 25% of 
the global increase in leaf area and India exhibiting an 
increase exceeding 35% since 2000. The ongoing brown-
ing trend in global vegetation since the 1990s emphasizes 
the impact of climate on vegetation. However, the con-
current greening trend, exemplified by significant leaf 
area increases in China and India, suggests that human 
land-use practices significantly influence vegetation (Pan 
et al. 2018).

The relationship between vegetation and LST has been 
extensively studied and established as an inverse relation-
ship (Hussain et  al. 2023; Jin and Zhang 2002; Mwangi 
et  al. 2018; Rasul et  al. 2020). This inverse relationship 
is driven by several physiological and physical mecha-
nisms. Several researchers have agreed on this inverse 
relationship, attributing it to the cooling effect of vegeta-
tion on the land surface, where an increase in the number 
of plants corresponds to a decrease in LST (Nega et  al. 
2019). This cooling effect arises from the transpiration of 
water by plants, which regulates the temperature of the 
surrounding environment (Schwaab et  al. 2021). Addi-
tionally, this relationship is influenced by factors such as 
solar radiation, atmospheric conditions, and soil mois-
ture (Liu et al. 2016). Furthermore, the vegetation canopy 
itself absorbs more energy, which is utilized in photosyn-
thesis and other metabolic processes rather than being 
converted into heat (Baldocchi et al. 2002; Kume 2017). 
This absorption, coupled with the cooling effect of tran-
spiration, significantly moderates the local tempera-
ture. Generally, heightened solar radiation and reduced 
atmospheric moisture levels tend to elevate LSTs (Cheruy 
et  al. 2017; Han et  al. 2020; Jiang et  al. 2023), whereas 
increased vegetation and soil moisture assist in lowering 
LSTs (Imran et al. 2021; Li et al. 2022; Liu et al. 2016).

Previous studies have utilized various satellite datasets, 
such as MODIS, to investigate the connection between 
the LAI and LST (Hussain et al. 2023; Miller et al. 2022; 
Mwangi et  al. 2018; Rasul et  al. 2020; Reygadas et  al. 
2020; Schwaab et al. 2021; Tesemma et al. 2015). Despite 
the growing importance of remote sensing data in envi-
ronmental monitoring and land management (Woodcock 
et  al. 1983; Skidmore 2002; Skidmore et  al. 1997), there 
is still a critical gap in the understanding of the tempo-
ral dynamics and interrelationship between LAI and 
LST, as derived from Sentinel-2 and Landsat Operational 
Land Imager (OLI) data. Sentinel-2 and Landsat OLI 
offer higher spatial resolution compared to MODIS, with 
Sentinel-2 providing 10–60  m and Landsat OLI 30-m 
resolution, whereas MODIS offers a coarser resolution of 
250–1000  m. While the broader resolution, daily revisit 
time, and higher spectral capabilities make MODIS an 
excellent data source for frequent and large-scale moni-
toring (Myneni 1997; Reygadas et  al. 2020), Sentinel-2 

and Landsat OLI offer finer spatial detail that enhances 
the accuracy and applicability of LAI and LST measure-
ments for more localized studies. However, the combined 
analysis and temporal association of these metrics using 
time-series data from these two prominent satellite plat-
forms have been relatively underexplored.

Ethiopia, located in the Horn of Africa, is renowned 
for its diverse climatic zones and rich biodiversity (Fash-
ing et al. 2022), making it an ideal study area for exam-
ining the dynamics between LAI and LST. The country’s 
topography ranges from lowland to highland plateaus, 
contributing to varied climatic conditions that influ-
ence vegetation patterns (Birhanu et  al. 2021). Despite 
this ecological importance, there has been a notable lack 
of research specifically addressing the relationship and 
trends between LAI and LST in Ethiopia. Most studies 
conducted in the country have concentrated on vegeta-
tion dynamics using vegetation indices (Muir et al. 2021; 
Seneshaw Getahun 2015; Worku et al. 2023) or examined 
the impact of land use and land cover (LULC) changes on 
LST (Haylemariyam 2018; Moisa et al. 2022a, b; Yeneneh 
et al. 2022). These studies have provided valuable insights 
into the overall health and distribution of vegetation, as 
well as how land cover changes affect surface tempera-
tures. However, the specific interactions between LAI 
and LST are still not well understood.

This research aims to bridge these gaps by conducting 
a meticulous time series analysis of LAI and LST data 
derived from Sentinel-2 and Landsat OLI data in the Mille 
River Basin, a tropical region in Ethiopia. By exploring the 
intricate connections between changes in LAI and LST, 
our research aims to offer a valuable understanding of 
the fundamental ecological mechanisms at play and their 
significance for promoting sustainable land management 
techniques and strategies for mitigating the effects of cli-
mate change. Through this integrated approach, we aim 
to contribute to the refinement of remote sensing meth-
odologies and the advancement of our understanding of 
local-scale environmental dynamics.

The findings of this study highlight the significance of 
employing high-resolution satellite imagery to examine 
the connection between vegetation status and climate at 
a local scale, particularly in areas characterized by diverse 
landscape features that can impact the association 
between LAI and LST. It offers a comprehensive evalua-
tion of these relationships and emphasizes the potential 
of high-resolution satellite imagery for understanding 
the complex interactions between vegetation and cli-
mate. The results contribute to the existing knowledge 
of this association and provide valuable insights into its 
potential consequences for vegetation dynamics and cli-
mate modeling at the local scale. Thus, this research has 
two main objectives: (a) assessing the time-series trends 
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of the mean LAI and LST derived from Sentinel-2 and 
Landsat OLI data and (b) evaluating the seasonal and 
annual correlations between these two variables.

Materials and methods
Description of the study area
The study was conducted in the lower Millie watershed, 
situated in Ambasel District within the South Wollo 
Zone of the Amhara Regional State, Ethiopia (Fig. 1). The 
area encompasses both tropical and subtropical agrocli-
matic regions. Millie watershed is positioned between 
11.320 and 11.540 latitude and 39.520 and 39.680 longi-
tude. The study area encompasses approximately 19,509 
hectares. The elevation within this region varies from 
1,427 to 3,635 m above sea level, indicating the presence 
of multiple agroclimatic zones. In addition, the region 
exhibits an average temperature varying between 15 and 
20  °C (Destaw 2017). The data obtained from the Kom-
belcha meteorological station suggest that the study area 
experiences annual precipitation ranging from 800 to 
1200 mm.

The primary rainy season typically spans from June to 
August, while short rains characterize the period between 
April and June. The region experiences its lowest mini-
mum temperatures from August to November, ranging 
from 11 to 12 °C. Conversely, the highest maximum tem-
peratures occur during May and June, varying between 
22 and 30  °C. The livelihood of the study area is largely 
reliant on agriculture which is predominantly influenced 
by rainfall. The predominant vegetation in the study area 

includes Eucalyptus trees and various perennial fruiting 
plants (Desalegn et  al. 2023). Agriculture serves as the 
dominant occupation, engaging a significant portion of 
the population.

Data processing
Sentinel‑2 data and preprocessing
The estimation of LAI utilizing the Sentinel Applica-
tion Platform (SNAP) toolbox involved the use of Senti-
nel-2 satellite images. Specifically, the dataset comprises 
more than 36 cloud-free Level 1C from 2016 to 2018 
and Level 2A images from 2019 to 2022. The Level 2A 
images, accessible free of charge from the Copernicus 
SciHub website (https:// scihub. coper nicus. eu/), are both 
geometrically and atmospherically corrected, providing 
a bottom-of-atmosphere (BOA)-corrected reflectance 
product (Wang et  al. 2019). However, preprocessing is 
required for Level 1C images before biophysical retrieval 
(Sola et al. 2018).

Sentinel-2 Level 2A data is preferred over Level 1C 
primarily because it provides surface reflectance values 
corrected for atmospheric conditions, enhancing the 
accuracy of the derived vegetation indices or biophysical 
variables (Moravec et al. 2021). This correction minimizes 
atmospheric effects, such as aerosols and water vapor, 
which can distort the true surface reflectance. Addition-
ally, this data includes quality indicators that help in 
identifying and excluding clouds and shadows, further 
improving the reliability of our analysis. To convert the 
Level 1C data to Level 2A data, the Sen2Cor atmospheric 

Fig. 1 Map of the Millie watershed, which displays a true color combination of the Sentinel-2 satellite images (bands 4, 3, and 2)

https://scihub.copernicus.eu/
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correction algorithm was employed, a method demon-
strated in the work of Kganyago et  al. (2020). This algo-
rithm effectively addresses atmospheric distortions in 
Level-1C data, producing BOA reflectance images with 
the option of terrain and cirrus correction (Clevers et al. 
2017).

Standardizing the analysis, all the atmospherically 
corrected images were resampled to a 20-m pixel size, 
ensuring uniformity across all the available bands of the 
Sentinel-2 images. Within the SNAP toolbox, three bio-
physical processors were available, namely, S2_20m, 
S2_10m, and LANDSAT8 (Mourad et al. 2020). For this 
particular study, the S2_20m processor was utilized to 
estimate the LAI of the study area. To assess the LAI 
trend from 2016 to 2022, a total of 36 Sentinel-2 images 
were employed.

The images were acquired with no more than a 10-day 
difference between Sentinel-2 and Landsat, ensuring 
consistency throughout all acquisition periods. Table  1 
provides an overview of the data sources used for LST 
and LAI retrieval, including acquisition dates, resolution, 
and specific bands or levels used for each dataset.

Landsat level 2 LST product and preprocessing
In our study, we used the Landsat Collection 2 Level 2 
data, which provides a pre-calculated LST product. The 
Landsat 8–9 Collection 2 Level 2 LST data were com-
puted using the single channel method from the Landsat 
8–9 Collection 2 Level 1 Thermal Infrared Sensor (TIRS) 
Band 10 using the Top of Atmosphere (TOA) Reflectance, 
TOA Brightness Temperature (BT), Advanced Space 
borne Thermal Emission and Reflection Radiometer 
(ASTER), Global Emissivity Dataset (GED) data, ASTER 
Normalized Difference Vegetation Index (NDVI) data, 
and atmospheric profiles of geopotential height, specific 
humidity, and air temperature extracted from reanaly-
sis data (Sayler 2022). In the Collection 2 Level 2 dataset 
for Landsat 8/9, LST is derived using the single-channel 
method with thermal Band 10, while Band 11, which is 
also a thermal band, is excluded from the LST calcula-
tion. TOA Reflectance refers to the reflectance of solar 

radiation from the Earth’s surface as measured at the sat-
ellite sensor (Sharma et al. 2009). It represents the frac-
tion of incoming solar radiation that is reflected by the 
Earth’s surface and atmosphere combined. TOA BT is the 
temperature of a blackbody that emits the same amount 
of radiation as measured by the satellite sensor at the top 
of the atmosphere (Wang and Gastellu-Etchegorry 2020). 
It is derived from the thermal infrared bands of the Land-
sat imagery. GED provides emissivity values for different 
land cover types, which can be applied to the TOA BT to 
derive the true LST (Mustafa et al. 2020).

The digital number (DN) values are then transformed 
to LST using a multiplication factor (0.00341802) and 
an additive number (149), as shown in Eq.  1 (Sayler 
et  al. 2023). The value 149 is an empirically derived 
constant that adjusts the scaled DN values into the 
correct temperature range for Band 10 (Sayler 2022). 
The output unit for the LST is in Kelvin, which is con-
verted to Celsius by subtracting 273.15. Its accuracy is 
validated with an  R2 of 0.997 by Crawford et al. (2023) 
and an  R2 of 0.96 by Wachmann et al. (2024). To ensure 
consistency with the LAI pixel size, the LST data were 
resampled to a 20-m pixel size and reprojected to UTM 
zone 37N.

Cloud-free Landsat imagery was obtained from NASA’s 
website, comprising Level 2 Landsat 8 and 9 OLI, to esti-
mate the LST of the Millie watershed from 2016 to 2022. 
We used over 40 collection 2 Level 2 Landsat images 
spanning 7 consecutive years, with multiple images col-
lected for each season, particularly during the rainy sea-
sons (spring and summer). To address cloud cover, we 
replaced cloudy pixels with data from clear-sky images. 
This approach allowed us to create cloud-free images by 
combining multiple observations over time. The Land-
sat satellite data have a spatial resolution of 30  m, and 
the imagery can be downloaded free of charge from the 
USGS Earth Explorer (https:// earth explo rer. usgs. gov/).

(1)LST = (DN ∗ 0.00341802 + 149) − 273.15

Table 1 Summary of data sources for LST and LAI retrievals

Data source Date of acquisition Spatial resolution Level Description

Landsat 8/9 2016–2022 30 Level 2 LST retrieval

Sentinel-2 2016–2018 10, 20, 60 Level 1C Pre-processed 
imagery, LAI 
retrieval

Sentinel-2 2019–2022 10, 20, 60 Level 2A LAI retrieval 
(atmospheri-
cally corrected)

https://earthexplorer.usgs.gov/


Page 5 of 15Ahmed et al. Environmental Systems Research           (2024) 13:43  

LAI retrieval
The biophysical variable retrieval algorithm of the 
SNAP Toolbox for Sentinel-2, as described by Weiss 
and Baret (2016), is built on the PROSAIL radiative 
transfer model for canopy architecture and the artificial 
neural network (ANN) algorithm. The PROSAIL model 
is a widely used radiative transfer model that combines 
the PROSPECT leaf optical properties model and the 
SAIL canopy bidirectional reflectance model (Berger 
et  al. 2018; Jacquemoud et  al. 2009). The PROSPECT 
model simulates the optical properties of leaves based 
on their biochemical composition, including pigments, 
water content, and dry matter (Jacquemoud et al. 1996; 
Jiang et  al. 2018). The SAIL (Scattering by Arbitrar-
ily Inclined Leaves) model simulates the reflectance of 
the entire canopy by considering factors such as leaf 
area index (LAI), leaf angle distribution, and soil back-
ground (Han et  al. 2023). Together, PROSAIL allows 
for the accurate simulation of vegetation reflectance 
across various wavelengths, making it a valuable tool 
in remote sensing for estimating vegetation properties 
and monitoring plant health.

Leveraging instant top-of-canopy reflectance data 
from eight Sentinel-2 bands, along with viewing zenith, 
solar zenith, and relative azimuth angles, the SNAP 
biophysical processor parameterizes PROSAIL to 
simulate bottom-of-atmosphere reflectance (Xie et  al. 
2019). Subsequently, the ANN algorithm, trained on 
the simulated reflectance, is applied to the chosen Sen-
tinel-2 bands to retrieve the biophysical variable, as 
explained by Weiss and Baret (2016). This algorithm 
is categorized as "nonspecific," indicating its ability to 
deliver reasonable biophysical variable performance for 
various types of vegetation (Kamenova and Dimitrov 
2021; Kganyago et  al. 2020; Mourad et  al. 2020; Xie 
et  al. 2019). For reference, Table  2 outlines the bands 
required for LAI estimation using the SNAP toolbox.

The accuracy of the leaf area index (LAI) derived from 
the SNAP toolbox was evaluated to ascertain its reliabil-
ity in practical applications. The study findings revealed 
a strong correlation  (R2 = 0.74) between the LAI values 
obtained through the SNAP toolbox and those acquired 
through direct field measurements. Figure  2 visually 
depicts the validation results, illustrating the consist-
ency and coherence between the estimated and ground-
measured LAI values. A root mean square error (RMSE) 
of 0.53 indicated an acceptable deviation between the 
SNAP-derived and actual field-measured LAI values, 
emphasizing the tool’s ability to provide reliable esti-
mates. Although suggesting a slight overestimation, the 
calculated bias of 0.31 was within an acceptable range, 
reinforcing the credibility of the SNAP toolbox-derived 
LAI values. Overall, the strong correlation, low RMSE, 
and minimal bias collectively underscored the reliability 
and accuracy of the SNAP toolbox-derived LAI values, 
affirming its practical utility in estimating and predicting 
the leaf area index in the study area. These findings con-
tribute to the validation and endorsement of the effec-
tiveness of the SNAP toolbox in generating accurate LAI 
data for further time-series analysis.

Trends and correlation analyses
In this study, local-scale changes in the LAI and LST and 
their interconnections were assessed using trend and 
regression analyses. MATLAB R2020a and R 4.0.3 soft-
ware were used for all the statistical analyses.

Trend analysis
The trend analysis for both annual and seasonal trends 
relied on the SNAP-derived LAI and Landsat Level 2 
LST products. Estimations of annual and seasonal trends 
were conducted using Zhang’s method and the Yue Pilon 
method found in the "zyp" package within R software 
(Wang and Swail 2001; Yue et al. 2002). This approach is 
advantageous because of its accurate confidence inter-
vals and robustness against outliers. Moreover, the widely 

Table 2 Sentinel-2 spectral and spatial characteristics of the 8 
selected bands

Band number Central WL (nm) Width (nm) Spatial 
resolution 
(m)

Band 3 560 35 10

Band 4 665 30 10

Band 5 705 15 20

Band 6 740 15 20

Band 7 783 20 20

Band 8a 865 20 20

Band 11 1610 90 20

Band 12 2190 180 20
Fig. 2 Validation of the SNAP toolbox and MVLR model-derived LAI 
using ground-measured LAI data
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recognized Mann‒Kendall test was used to detect trends 
in time series data, as commonly observed in environ-
mental studies, hydrology, and climatology (Hamed 
2008). The Mann‒Kendall test allows for the assessment 
of monotonic trends in data, where a significant test sta-
tistic leads to the rejection of the null hypothesis (Yue 
and Wang 2004).

While the Mann‒Kendall test is effective at handling 
tied observations and outliers (Wang et  al. 2020), it 
has limitations, such as its inability to detect nonlin-
ear trends or abrupt changes in trend direction (Blain 
2013). To mitigate these limitations, Sen’s slope estima-
tor and the Theil–Sen estimator were combined with the 
Mann–Kendall test, providing a comprehensive analysis 
of trend behavior. Additionally, given the requirement of 
non-autocorrelated data, the data were tested in R Studio 
using the plot method of autocorrelation using the ACF 
function. Equation 2 was used in the Mann‒Kendall test 
for the analysis of the time series.

Let X1, X2, and Xn represent the variables denoting n 
points of LAI and LST. The Mann‒Kendall test (S) was 
then applied to these variables.

The Mann‒Kendall test furnishes insights into the 
trend direction, if any, within the time series. A negative 
test result implies a decrease in both the LAI and LST, 
while a positive value suggests an increase. Conversely, 
a result of zero supports the null hypothesis of no trend. 
A positive S value suggests that the later observations in 
the series are expected to be greater than the earlier ones, 
while a negative S value suggests the opposite. The vari-
ance in S is calculated using Eq. 3.

In the Mann‒Kendall test, the test statistic (Eq.  4) 
accounts for the variation in "t" across the set of tied 
ranks and the frequency "ft" at which the rank "t" 
appears. The test statistic is calculated using the follow-
ing equation:

Here, se represents the square root of the variance.

Association analysis
The relationship between LAI and LST was assessed 
using a linear regression model, with the strength of 

(2)S =

∑n− 1

i= 1

∑n

j= k + 1
sign

(

xj − xi
)

(3)Var =
1
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[

n (n − 1)(2n + 5) −

∑

t
ft
(

ft − 1
)(

2ft + 5
)

]
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(S − 1)
�

se, S > 0

0 S = 0

S + 1
�

se S < 0

the association quantified by the R-squared  (R2) value, 
calculated using Eq.  5. The significance level was set at 
α = 0.01. To address potential discrepancies in data scales 
between the Sentinel-2 and Landsat OLI datasets, we 
implemented several preprocessing steps, including resa-
mpling to a uniform pixel size, reprojection to a common 
coordinate system, and temporal alignment by selecting 
images captured as close in time as possible.

Results
Seasonal and annual trends in the LAI and LST (2016–2022)
Seasonal trend of mean LAI
Figure  3 presents the mean LAI maps for each year of 
the study period from 2016 to 2022, illustrating spatial 
variations in vegetation density across the study area. 
Throughout the study period (2016–2022), all the seasons 
exhibited significant greening trends, with the exception 
of the spring season, which had a Sen slope of −0.041. 
The rate of change in the LAI demonstrated significant 
variation, ranging from 0.02 to 0.08 for the season-to-
season trend and from 0.13 to 0.57 over the study period 
(trendP).

Figure  4 shows the seasonal trends and the trendP 
determined for each season from the Sentinel-2 images. 
Particularly, the autumn season demonstrated the highest 
trend (0.082) and trendP (0.576) with a Sen slope of 0.15. 
In general, the average LAI for all the seasons exhibited 
a notable greening trend over the study period. Table  3 
highlights the seasons with a statistically significant trend 
at a p value of 0.05 in bold font.

Annual trend of mean LAI from 2016 to 2022
The annual trend in the mean LAI for the study area is 
depicted in Fig.  5. The analysis revealed a substantial 
greening trend, represented by a Sen’s slope of 0.084 and 
a P value of 0.05 for the study period. The year-to-year 
trend in the mean LAI was 0.013, and the trend for the 
entire period was 0.091. The highest mean annual LAI in 
the study area was observed in 2021.

Seasonal trend of mean LST
The trends in LST for the four seasons are shown in 
Fig. 6. Variations in the trend and trendp of the LST were 
observed across seasons. However, the study did not 
identify any statistically significant seasonal trend in the 
mean LST during the study period (2016–2022), except 
for the summer season, which exhibited a seasonal trend 
in the LST with a P value of 0.07.

(5)R2
= 1−

∑
(

yi − y′
)2

∑
(

yi − y′
)2
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During the spring season, a nearly zero trend 
(trend = 0.1) was observed, while increasing trends were 
noted in the summer seasons of 2021 and 2022. The 
season-to-season trend in the mean LST ranged from 
-0.031 (autumn season) to 1.5 (summer season), while 

for the trend period, it varied from -2.147 (autumn sea-
son) to 10.5 (summer season). Table 4 presents the sta-
tistical results of the mean LST trends for each season 
alongside the annual mean LST trend.

Fig. 3 Mean annual LAI maps of the study area from 2016 to 2022

Fig. 4 Seasonal Trends of LAI from 2016 to 2022. Sen’s slope indicates the direction of LAI trends during the study period. All seasons showed 
a positive trend, except for spring, which had a Sen slope value of -0.041
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Annual trend of mean LST from 2016 to 2022
The annual trend in the mean LST for the study area 
was assessed based on the mean annual LST values over 
the study period. To ascertain the significance of the 
observed changes, the Mann‒Kendall trend test was con-
ducted, for which the P value was 0.1. Figure 7 displays 
the average LST maps for each year of the study period 
from 2016 to 2022, highlighting spatial variations in sur-
face temperature across the study area.

The study findings indicated the absence of a significant 
annual trend in the mean LST. The year-to-year trend 
in the LST was 0.466, while for the trend period, it was 
3.260 (Fig. 8). The highest mean annual LST in the study 
area was observed in 2021, which coincided with the year 
in which the highest mean LAI was recorded during the 
study period. Overall, the average annual LST did not 
significantly change over the study period, with a P value 
of 0.2.

Correlation
Annual relationship between LST and LAI
The assessment of the association between the LAI and 
LST was conducted at both annual and seasonal scales. 
To facilitate this analysis, all the LAI and LST seasonal 
images for each year were stacked and averaged using cell 
statistics (Fig. 9a, b). Similarly, for the seasonal analysis, 

Table 3 Z values, Sen’s slopes, P values, trends, and trends of the 
seasonal and annual trends of LAI from 2016 to 2022

Seasons Z value Sen’s Slope P value Trend TrendP

Winter 1.503 0.055 0.13 0.066 0.464

Spring 1.503 -0.041 0.13 0.020 0.137

Summer 1.503 0.052 0.13 0.052 0.364

Autumn 1.878 0.047 0.05 0.082 0.576
Annual 1.878 0.013 0.05 0.013 0.091

Fig. 5 Annual trend of mean LAI from 2016 to 2022: a positive trend 
with a 0.084 Sen’s slope and a 0.05 P value

Fig. 6 Seasonal trends of mean LST from 2016 to 2022; Sen’s slope shows the trend direction of the LST during the study period. All the seasons 
had insignificant positive and negative trends except for the summer season, which had a P value of 0.07
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LAI and LST images for the same season across the seven 
years were stacked and averaged accordingly.

A total of 201 points were used to evaluate the asso-
ciation between the LAI and LST at both scales. The 
two variables exhibited a moderate correlation, with 
R-squared  (R2) values ranging from 0.35 to 0.49. This 
indicates that the vegetation characteristics of the study 
area respond to changes in LST. Particularly, the lowest 
 R2 value of 0.35 was recorded in 2021, while the highest 
value was observed in 2020  (R2 = 0.49).

Seasonal relationship between the LAI and LST
The study area exhibited significant spatial and tempo-
ral variations in the distributions of LAI and LST. Con-
sequently, the seasonal association between the LAI and 
LST was evaluated to discern the influence of LST on 
the LAI across the winter, spring, summer, and autumn 
seasons. The results of the linear regression model fitting 
between LAI and LST are depicted in Fig. 10.

The highest correlation between the LAI and LST was 
observed during the winter season  (R2 = 0.46), while the 
lowest  R2 value of 0.36 was recorded during the spring 
season. Overall, the correlation between LST and LAI 
across all seasons was moderate. During the crop-grow-
ing seasons, specifically summer and spring, the relation-
ship was relatively weaker. However, in the winter and 
autumn seasons, when the crop leaves reached maturity, 
the correlation between the LAI and LST was relatively 
stronger (Table 5).

Discussion
This study examined the temporal variations in LAI and 
LST by mapping the mean value of these two variables in 
the Millie watershed from 2016 to 2022 using Sentinel-2 
LAI and Landsat 8/9 LST products. We investigated the 
temporal trends of mean LAI and LST in the study area 

Table 4 Z values, Sen’s slopes, P values, trends, and trends of the 
seasonal and annual trends of LST from 2016 to 2022

Seasons Z value Sen’s Slope P value Trend Trendp

Winter 0.00 0.265 1 0.265 1.853

Spring 0.00 0.10 1 0.100 0.700

Summer 1.802 1.5 0.07 1.500 10.500

Autumn −0.30 −0.307 0.7 −0.307 −2.147

Annual 1.201 0.466 0.2 0.466 3.260

Fig. 7 Mean annual LST maps of the study area from 2016 to 2022

Fig. 8 Annual trend of mean LST from 2016 to 2022: an insignificant 
positive trend with a 0.466 Sen’s slope
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Fig. 9 a Annual association between LAI and LST from 2016 to 2019. b Annual association between LAI and LST from 2020 to 2022
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at both seasonal and annual scales. Our analysis indicated 
a generally significant increasing trend in the mean LAI 
during the study period, whereas the LST value exhibited 
an insignificant positive trend.

Seasonal and annual trends of LAI
Our findings revealed a significant greening trend in the 
Millie watershed from 2016 to 2022, with positive Sen’s 
slope values observed in the winter, summer, and autumn 
seasons. These results are consistent with prior research 
indicating a global increase in the LAI during growing 

seasons (Rasul et al. 2020). This trend can be attributed to 
a combination of factors, including natural reforestation, 
improved land use management practices, and increased 
agricultural activity in the study area. However, the nega-
tive Sen’s slope value observed during the spring season 
is attributed to a declining trend in spring rainfall, which 
results in reduced vegetation growth. This relationship is 
supported by Abegaz and Abera (2020), who examined 
temperature and rainfall trends in northeastern Ethiopia, 
specifically South Wollo, and found a declining rainfall 
trend in the spring.

The mean LAI value exhibited seasonal variation, rang-
ing from 0.020 to 0.082 (Figs. 4 and 5). Nevertheless, the 
trendp (trend during the study period) was consistently 
robust, ranging from 0.137 to 0.576. These findings sug-
gest that while short-term seasonal trends may exhibit 
some variability, the overall trend of increasing LAI 
throughout the study period remains substantial.

As reported by SuDCA and Soberland (2015) and Agri 
Service Ethiopia (ASE) in 2011), agriculture is the pri-
mary land use in the study area. Consequently, examin-
ing seasonal trends is crucial due to the varying spatial 
patterns of seasonal crops affected by factors like rainfall 
and temperature. Our findings solidify the close connec-
tion between the trend of LAI and agricultural activities. 
Seasons marked by abundant rainfall, accompanied by a 
gradual expansion of cultivated lands, have resulted in 
higher mean LAI trends.

Fig. 10 Seasonal association between LAI and LST from 2016 to 2022

Table 5 R2, adjusted  R2 and P value of annual and seasonal 
correlation between LAI and LST

Seasons R2 Adjusted  R2 P Value < 

2016 0.4119 0.4088 2.20E-16

2017 0.4012 0.3981 2.20E-16

2018 0.4104 0.4074 2.20E-16

2019 0.4763 0.4736 2.20E-16

2020 0.4934 0.4908 2.20E-16

2021 0.3452 0.3418 2.20E-16

2022 0.4594 0.4566 2.20E-16

Winter 0.4602 0.4575 2.20E-16

Spring 0.3580 0.3548 2.20E-16

Summer 0.3552 0.3520 2.20E-16

Autumn 0.4065 0.4036 2.20E-16
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According to Abegaz and Abera (2020), who investi-
gated temperature and rainfall trends in northeastern 
Ethiopia, the seasonal rainfall trend in this region, par-
ticularly in South Wollo, has shown a declining trend in 
the spring season, relatively stable trends in summer and 
autumn, and an increasing trend in the winter season. A 
decreasing trend in spring season rainfall leads to less cul-
tivation, which negatively impacts the LAI. Consequently, 
the declining trend of the mean LAI in the spring sea-
son is attributed to insufficient rainfall, which negatively 
impacts agricultural activities (Agidew and Singh 2017). 
The relative increase in the mean LAI during the winter 
season is attributed to increased rainfall, which positively 
influences rainfed agriculture (Chuanhua et  al. 2023; 
Rasul et  al. 2020). Hence, an increasing or decreasing 
trend in the LAI can be predicted based on rainfall avail-
ability, which directly impacts agricultural practices (Zhu 
et al. 2016). These results affirm the positive influence of 
rainfall amount on LAI (Longhui et al. 2017), as most of 
the greening trends were observed during the growing 
season.

Seasonal and annual trends of LST
Throughout the years 2016 to 2022, the average LST in the 
study area did not significantly change seasonally or annu-
ally, except for a notable trend observed during summer 
season with a 93% confidence level (Figs. 6 and 8). Abe-
gaz and Abera (2020), a study in southern Wollo, Ethiopia, 
found that the delayed onset of the summer season, which 
initially results in sparse rainfall, leads to an increase in 
LST. Conversely, this delay causes increased rainfall at 
the end of summer and into the autumn, which enhances 
agricultural activity and contributes to a lower LST trend 
during the autumn season. Reduced rainfall and soil 
moisture positively impact LST through their effects on 
crop cultivation (Jiang et  al. 2023; Sun and Pinker 2004; 
Weng et  al. 2004). These findings support the notion 
that changes in rainfall amounts, soil moisture, and crop 
production inversely influence LSTs by modulating the 
transmission of electromagnetic radiation to the Earth’s 
surface. Therefore, the distinct LST trend observed in the 
autumn season, compared to other seasons, is due to the 
unique climatic and agricultural conditions of this period. 
Our findings further support this conclusion, revealing 
the highest LAI trend occurring in autumn.

Moisa et  al. (2022a) and Moisa et  al. (2022b) utilized 
one-way trend analysis and reported increments of 5 ℃ 
and 5.6 ℃, respectively, in the mean LST within Ethio-
pian tropical regions. In contrast, when we applied the 
one-way trend analysis in our study area, we observed an 
increment of only 0.68 ℃ in LST. The higher LST incre-
ment in their studies can be attributed to a longer study 
period, whereas the lower increment in our study is due 

to the shorter study period. Furthermore, in our study, 
the reported 3 ℃ increase over 7 years is based on Sen’s 
slope, a more appropriate trend analysis method for time-
series data. Sen’s slope uses the median of all observed 
data, providing a robust estimate of the trend. This 
method can result in a higher apparent rate of increase 
because it accounts for all data points rather than just the 
initial and final year mean LST values.

The studies conducted by Moisa et  al. (2022a) and 
(Moisa et  al. 2022b) in similar climatic environments 
within Ethiopia offer valuable insights that support our 
findings. Their study area and the observed increments in 
LST can be cross-referenced with our data, strengthening 
the validity of our results. The robust estimation provided 
by Sen’s slope in our study underscores the necessity of 
using comprehensive analysis methods to capture the 
nuanced impacts of climatic variations on LST. Addition-
ally, the observed LST trends in both studies align with 
the broader understanding of how seasonal shifts and 
agricultural activities influence surface temperatures, 
reaffirming the intricate relationship between environ-
mental factors and LST dynamics in tropical regions.

Seasonal and annual association between LAI and LST
The relationship between mean LAI and LST was evalu-
ated yearly to understand how vegetation responds to 
variations in surface temperature, as depicted in Fig. 9a, 
b. Our analysis revealed a moderate inverse correlation 
between the mean LAI and LST from 2016 to 2022, with 
the  R2 ranging from 0.35 to 0.49. This finding contrasts 
with the results of Rasul et al. (2020), who found no signif-
icant relationship between LAI and LST in Africa. How-
ever, it aligns with the findings of Guha and Govil (2020), 
who reported a moderate correlation between NDVI and 
LST in the tropical region of India. The moderate negative 
correlation observed in this study suggested that photo-
synthetic vegetation in the study area is sensitive to LST. 
Variations in vegetation type, land use practices, and local 
climatic conditions contributed to the observed moderate 
correlations (Guha and Govil 2020). Different vegetation 
types have unique characteristics and responses to tem-
perature changes, influencing the overall LST in diverse 
ways. Additionally, agricultural activities, deforestation, 
and urbanization can alter the land surface properties 
(Jaafar et al. 2020; Zhang et al. 2005), thereby impacting 
the LST. Furthermore, local climatic conditions, including 
temperature, precipitation, and humidity, further influ-
ence the relationship between these two variables (Yu 
et al. 2020). Regions with higher rainfall and cooler tem-
peratures show stronger correlations between LAI and 
LST due to the enhanced growth of vegetation, while arid 
regions might display weaker correlations due to limited 
vegetation cover.
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The seasonal correlation analysis between LAI and LST 
in the Mille watershed presented a complex relationship, 
with the strongest correlation occurring during the win-
ter season  (R2 = 0.46) and the weakest during the spring 
and summer  (R2 = 0.36). This pattern suggests that veg-
etation’s response to surface temperature is more pro-
nounced when crops are mature, as seen in the stronger 
correlations during the winter and autumn seasons. 
These seasons coincide with crop maturity, indicating 
that mature vegetation has a greater influence on LST, 
potentially due to increased canopy cover and evapotran-
spiration rates, which contribute to cooling the surface.

Conversely, the correlation was weaker during the crop-
growing seasons of summer and spring. While these 
seasons are marked by an increased mean LAI, the rela-
tionship between LAI and LST was less robust. This can 
be attributed to the higher temperatures and moderate 
rainfall from March to June, which drive intensive leaf 
development. During this period, the growing vegeta-
tion contributes to a cooling effect on LST, but the rapid 
changes in temperature and precipitation may also intro-
duce variability, reducing the overall correlation.

Moreover, the study underscores the importance of 
considering various factors such as crop cultivation 
cycles, precipitation availability, land use practices, and 
mean maximum temperature in understanding the sea-
sonal dynamics of the LAI-LST relationship. The lower 
 R2 values observed during the colder months, when crop 
cultivation is less optimal, further emphasize how these 
environmental and agricultural variables modulate the 
interaction between vegetation and surface temperature. 
This deeper understanding of seasonal variations is cru-
cial for accurately modelling and predicting the impacts 
of climate and land use changes on vegetation dynamics 
in tropical regions.

Conclusion
This study highlighted a significant greening trend over 
the study period attributed to natural reforestation, land-
use changes, and agricultural activities. While the LST 
showed relatively stable patterns, an increase during 
delayed summer onset was noted. The moderate inverse 
correlation between LAI and LST underscores vegeta-
tion sensitivity to temperature changes, emphasizing the 
need for vigilant environmental monitoring and man-
agement. These findings stress the importance of under-
standing the complex interplay between environmental 
factors, guiding the development of targeted strategies 
for sustainable land management and conservation in the 
region. While this study provides valuable insights into 
the temporal trends and correlation between LAI and 
LST in the Millie watershed, further research is needed 
to better understand the complex relationships between 

environmental factors and vegetation productivity in 
a broader context. To provide a more comprehensive 
understanding of the relationship between LAI and LST 
across different environments, future research should 
incorporate longer study periods and encompass a vari-
ety of climatic zones.
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