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Abstract

Background Understanding the complex relationship between vegetation dynamics and land surface temperature
(LST) is crucial for comprehending ecosystem functioning, climate change impacts, and sustainable land manage-
ment. Hence, this study conducts a temporal analysis of leaf area index (LAl) and LST data derived from Sentinel-2

and Landsat Operational Land Imagery (OLI) in the Mille River Basin, a tropical region in Ethiopia. LAl data were gener-
ated using Sentinel-2 imagery processed with the Sentinel Application Platform (SNAP) toolbox, an open-access earth
observation analysis tool, while Landsat OLI collection 2 level 2 data were utilized for precise LST retrieval. The Mann-
Kendall test was used to detect trends in the time series data.

Results The trends in the mean LAl were statistically significant at P values of 0.05 and 0.10 for the annual and sea-
sonal trends, respectively. The mean LST trends were insignificant throughout the study period except for the summer
season, for which the P value was 0.07. The correlation between the LAl and LST was weak (R*=0.36) during the crop-
growing seasons (summer and spring) but moderate in winter (R*=0.46) and autumn (R?=0.41).

Conclusion The findings of this research clarify the complex relationships between variations in surface temperature
and vegetation growth patterns, providing insight into the environmental mechanisms driving the dynamics of local-

ized ecosystems. The study underscores the implications of these findings for informed decision-making in sustain-
able land management, biodiversity conservation, and climate change mitigation strategies.
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Background

Understanding the dynamics of vegetation and land
surface temperature (LST) has paramount implications
for ecological and climate change assessments and land
resource management studies. The leaf area index (LAI),
a critical biophysical variable measuring the total area of
leaves relative to the land surface, plays a critical role in
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comprehending land surface processes associated with
vegetation dynamics and climate modeling (Avdan and
Jovanovska 2016; Mwangi et al. 2018). This approach
provides essential insights into the impacts of various
environmental factors on vegetation (Wang et al. 2019).
Similarly, LST, another significant variable linked to vege-
tation dynamics, is directly influenced by vegetation con-
ditions (Guechi et al. 2021; Zhao-Liang et al. 2013).

A comprehensive global vegetation analysis spanning
31 years (1982-2013) across all continents revealed a
persistent browning trend on Earth since the 1990s (Pan
et al. 2018). Nonetheless, other studies have indicated a
contrasting greening trend, primarily driven by human
land-use practices. For example, Park et al. (2019) dem-
onstrated substantial contributions to the greening trend
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in China and India, with China accounting for 25% of
the global increase in leaf area and India exhibiting an
increase exceeding 35% since 2000. The ongoing brown-
ing trend in global vegetation since the 1990s emphasizes
the impact of climate on vegetation. However, the con-
current greening trend, exemplified by significant leaf
area increases in China and India, suggests that human
land-use practices significantly influence vegetation (Pan
et al. 2018).

The relationship between vegetation and LST has been
extensively studied and established as an inverse relation-
ship (Hussain et al. 2023; Jin and Zhang 2002; Mwangi
et al. 2018; Rasul et al. 2020). This inverse relationship
is driven by several physiological and physical mecha-
nisms. Several researchers have agreed on this inverse
relationship, attributing it to the cooling effect of vegeta-
tion on the land surface, where an increase in the number
of plants corresponds to a decrease in LST (Nega et al.
2019). This cooling effect arises from the transpiration of
water by plants, which regulates the temperature of the
surrounding environment (Schwaab et al. 2021). Addi-
tionally, this relationship is influenced by factors such as
solar radiation, atmospheric conditions, and soil mois-
ture (Liu et al. 2016). Furthermore, the vegetation canopy
itself absorbs more energy, which is utilized in photosyn-
thesis and other metabolic processes rather than being
converted into heat (Baldocchi et al. 2002; Kume 2017).
This absorption, coupled with the cooling effect of tran-
spiration, significantly moderates the local tempera-
ture. Generally, heightened solar radiation and reduced
atmospheric moisture levels tend to elevate LSTs (Cheruy
et al. 2017; Han et al. 2020; Jiang et al. 2023), whereas
increased vegetation and soil moisture assist in lowering
LSTs (Imran et al. 2021; Li et al. 2022; Liu et al. 2016).

Previous studies have utilized various satellite datasets,
such as MODIS, to investigate the connection between
the LAI and LST (Hussain et al. 2023; Miller et al. 2022;
Mwangi et al. 2018; Rasul et al. 2020; Reygadas et al.
2020; Schwaab et al. 2021; Tesemma et al. 2015). Despite
the growing importance of remote sensing data in envi-
ronmental monitoring and land management (Woodcock
et al. 1983; Skidmore 2002; Skidmore et al. 1997), there
is still a critical gap in the understanding of the tempo-
ral dynamics and interrelationship between LAI and
LST, as derived from Sentinel-2 and Landsat Operational
Land Imager (OLI) data. Sentinel-2 and Landsat OLI
offer higher spatial resolution compared to MODIS, with
Sentinel-2 providing 10-60 m and Landsat OLI 30-m
resolution, whereas MODIS offers a coarser resolution of
250-1000 m. While the broader resolution, daily revisit
time, and higher spectral capabilities make MODIS an
excellent data source for frequent and large-scale moni-
toring (Myneni 1997; Reygadas et al. 2020), Sentinel-2

Page 2 of 15

and Landsat OLI offer finer spatial detail that enhances
the accuracy and applicability of LAI and LST measure-
ments for more localized studies. However, the combined
analysis and temporal association of these metrics using
time-series data from these two prominent satellite plat-
forms have been relatively underexplored.

Ethiopia, located in the Horn of Africa, is renowned
for its diverse climatic zones and rich biodiversity (Fash-
ing et al. 2022), making it an ideal study area for exam-
ining the dynamics between LAI and LST. The country’s
topography ranges from lowland to highland plateaus,
contributing to varied climatic conditions that influ-
ence vegetation patterns (Birhanu et al. 2021). Despite
this ecological importance, there has been a notable lack
of research specifically addressing the relationship and
trends between LAI and LST in Ethiopia. Most studies
conducted in the country have concentrated on vegeta-
tion dynamics using vegetation indices (Muir et al. 2021;
Seneshaw Getahun 2015; Worku et al. 2023) or examined
the impact of land use and land cover (LULC) changes on
LST (Haylemariyam 2018; Moisa et al. 2022a, b; Yeneneh
et al. 2022). These studies have provided valuable insights
into the overall health and distribution of vegetation, as
well as how land cover changes affect surface tempera-
tures. However, the specific interactions between LAI
and LST are still not well understood.

This research aims to bridge these gaps by conducting
a meticulous time series analysis of LAI and LST data
derived from Sentinel-2 and Landsat OLI data in the Mille
River Basin, a tropical region in Ethiopia. By exploring the
intricate connections between changes in LAI and LST,
our research aims to offer a valuable understanding of
the fundamental ecological mechanisms at play and their
significance for promoting sustainable land management
techniques and strategies for mitigating the effects of cli-
mate change. Through this integrated approach, we aim
to contribute to the refinement of remote sensing meth-
odologies and the advancement of our understanding of
local-scale environmental dynamics.

The findings of this study highlight the significance of
employing high-resolution satellite imagery to examine
the connection between vegetation status and climate at
alocal scale, particularly in areas characterized by diverse
landscape features that can impact the association
between LAI and LST. It offers a comprehensive evalua-
tion of these relationships and emphasizes the potential
of high-resolution satellite imagery for understanding
the complex interactions between vegetation and cli-
mate. The results contribute to the existing knowledge
of this association and provide valuable insights into its
potential consequences for vegetation dynamics and cli-
mate modeling at the local scale. Thus, this research has
two main objectives: (a) assessing the time-series trends
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of the mean LAI and LST derived from Sentinel-2 and
Landsat OLI data and (b) evaluating the seasonal and
annual correlations between these two variables.

Materials and methods

Description of the study area

The study was conducted in the lower Millie watershed,
situated in Ambasel District within the South Wollo
Zone of the Amhara Regional State, Ethiopia (Fig. 1). The
area encompasses both tropical and subtropical agrocli-
matic regions. Millie watershed is positioned between
11.32° and 11.54° latitude and 39.52° and 39.68° longi-
tude. The study area encompasses approximately 19,509
hectares. The elevation within this region varies from
1,427 to 3,635 m above sea level, indicating the presence
of multiple agroclimatic zones. In addition, the region
exhibits an average temperature varying between 15 and
20 °C (Destaw 2017). The data obtained from the Kom-
belcha meteorological station suggest that the study area
experiences annual precipitation ranging from 800 to
1200 mm.

The primary rainy season typically spans from June to
August, while short rains characterize the period between
April and June. The region experiences its lowest mini-
mum temperatures from August to November, ranging
from 11 to 12 °C. Conversely, the highest maximum tem-
peratures occur during May and June, varying between
22 and 30 °C. The livelihood of the study area is largely
reliant on agriculture which is predominantly influenced
by rainfall. The predominant vegetation in the study area
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includes Eucalyptus trees and various perennial fruiting
plants (Desalegn et al. 2023). Agriculture serves as the
dominant occupation, engaging a significant portion of
the population.

Data processing

Sentinel-2 data and preprocessing

The estimation of LAI utilizing the Sentinel Applica-
tion Platform (SNAP) toolbox involved the use of Senti-
nel-2 satellite images. Specifically, the dataset comprises
more than 36 cloud-free Level 1C from 2016 to 2018
and Level 2A images from 2019 to 2022. The Level 2A
images, accessible free of charge from the Copernicus
SciHub website (https://scihub.copernicus.eu/), are both
geometrically and atmospherically corrected, providing
a bottom-of-atmosphere (BOA)-corrected reflectance
product (Wang et al. 2019). However, preprocessing is
required for Level 1C images before biophysical retrieval
(Sola et al. 2018).

Sentinel-2 Level 2A data is preferred over Level 1C
primarily because it provides surface reflectance values
corrected for atmospheric conditions, enhancing the
accuracy of the derived vegetation indices or biophysical
variables (Moravec et al. 2021). This correction minimizes
atmospheric effects, such as aerosols and water vapor,
which can distort the true surface reflectance. Addition-
ally, this data includes quality indicators that help in
identifying and excluding clouds and shadows, further
improving the reliability of our analysis. To convert the
Level 1C data to Level 2A data, the Sen2Cor atmospheric
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Fig. 1 Map of the Millie watershed, which displays a true color combination of the Sentinel-2 satellite images (bands 4, 3, and 2)
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correction algorithm was employed, a method demon-
strated in the work of Kganyago et al. (2020). This algo-
rithm effectively addresses atmospheric distortions in
Level-1C data, producing BOA reflectance images with
the option of terrain and cirrus correction (Clevers et al.
2017).

Standardizing the analysis, all the atmospherically
corrected images were resampled to a 20-m pixel size,
ensuring uniformity across all the available bands of the
Sentinel-2 images. Within the SNAP toolbox, three bio-
physical processors were available, namely, S2_20m,
S2_10m, and LANDSATS8 (Mourad et al. 2020). For this
particular study, the S2_20m processor was utilized to
estimate the LAI of the study area. To assess the LAI
trend from 2016 to 2022, a total of 36 Sentinel-2 images
were employed.

The images were acquired with no more than a 10-day
difference between Sentinel-2 and Landsat, ensuring
consistency throughout all acquisition periods. Table 1
provides an overview of the data sources used for LST
and LAI retrieval, including acquisition dates, resolution,
and specific bands or levels used for each dataset.

Landsat level 2 LST product and preprocessing

In our study, we used the Landsat Collection 2 Level 2
data, which provides a pre-calculated LST product. The
Landsat 8-9 Collection 2 Level 2 LST data were com-
puted using the single channel method from the Landsat
8-9 Collection 2 Level 1 Thermal Infrared Sensor (TIRS)
Band 10 using the Top of Atmosphere (TOA) Reflectance,
TOA Brightness Temperature (BT), Advanced Space
borne Thermal Emission and Reflection Radiometer
(ASTER), Global Emissivity Dataset (GED) data, ASTER
Normalized Difference Vegetation Index (NDVI) data,
and atmospheric profiles of geopotential height, specific
humidity, and air temperature extracted from reanaly-
sis data (Sayler 2022). In the Collection 2 Level 2 dataset
for Landsat 8/9, LST is derived using the single-channel
method with thermal Band 10, while Band 11, which is
also a thermal band, is excluded from the LST calcula-
tion. TOA Reflectance refers to the reflectance of solar

Table 1 Summary of data sources for LST and LAl retrievals
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radiation from the Earth’s surface as measured at the sat-
ellite sensor (Sharma et al. 2009). It represents the frac-
tion of incoming solar radiation that is reflected by the
Earth’s surface and atmosphere combined. TOA BT is the
temperature of a blackbody that emits the same amount
of radiation as measured by the satellite sensor at the top
of the atmosphere (Wang and Gastellu-Etchegorry 2020).
It is derived from the thermal infrared bands of the Land-
sat imagery. GED provides emissivity values for different
land cover types, which can be applied to the TOA BT to
derive the true LST (Mustafa et al. 2020).

The digital number (DN) values are then transformed
to LST using a multiplication factor (0.00341802) and
an additive number (149), as shown in Eq. 1 (Sayler
et al. 2023). The value 149 is an empirically derived
constant that adjusts the scaled DN values into the
correct temperature range for Band 10 (Sayler 2022).
The output unit for the LST is in Kelvin, which is con-
verted to Celsius by subtracting 273.15. Its accuracy is
validated with an R? of 0.997 by Crawford et al. (2023)
and an R? of 0.96 by Wachmann et al. (2024). To ensure
consistency with the LAI pixel size, the LST data were
resampled to a 20-m pixel size and reprojected to UTM
zone 37N.

LST = (DN x 0.00341802 + 149) —273.15 (1)

Cloud-free Landsat imagery was obtained from NASA’s
website, comprising Level 2 Landsat 8 and 9 OLI to esti-
mate the LST of the Millie watershed from 2016 to 2022.
We used over 40 collection 2 Level 2 Landsat images
spanning 7 consecutive years, with multiple images col-
lected for each season, particularly during the rainy sea-
sons (spring and summer). To address cloud cover, we
replaced cloudy pixels with data from clear-sky images.
This approach allowed us to create cloud-free images by
combining multiple observations over time. The Land-
sat satellite data have a spatial resolution of 30 m, and
the imagery can be downloaded free of charge from the
USGS Earth Explorer (https://earthexplorer.usgs.gov/).

Data source Date of acquisition Spatial resolution Level Description
Landsat 8/9 2016-2022 30 Level 2 LST retrieval
Sentinel-2 2016-2018 10, 20, 60 Level 1C Pre-processed
imagery, LAI
retrieval
Sentinel-2 2019-2022 10, 20, 60 Level 2A LAl retrieval
(atmospheri-

cally corrected)



https://earthexplorer.usgs.gov/

Ahmed et al. Environmental Systems Research (2024) 13:43

LAl retrieval

The biophysical variable retrieval algorithm of the
SNAP Toolbox for Sentinel-2, as described by Weiss
and Baret (2016), is built on the PROSAIL radiative
transfer model for canopy architecture and the artificial
neural network (ANN) algorithm. The PROSAIL model
is a widely used radiative transfer model that combines
the PROSPECT leaf optical properties model and the
SAIL canopy bidirectional reflectance model (Berger
et al. 2018; Jacquemoud et al. 2009). The PROSPECT
model simulates the optical properties of leaves based
on their biochemical composition, including pigments,
water content, and dry matter (Jacquemoud et al. 1996;
Jiang et al. 2018). The SAIL (Scattering by Arbitrar-
ily Inclined Leaves) model simulates the reflectance of
the entire canopy by considering factors such as leaf
area index (LAI), leaf angle distribution, and soil back-
ground (Han et al. 2023). Together, PROSAIL allows
for the accurate simulation of vegetation reflectance
across various wavelengths, making it a valuable tool
in remote sensing for estimating vegetation properties
and monitoring plant health.

Leveraging instant top-of-canopy reflectance data
from eight Sentinel-2 bands, along with viewing zenith,
solar zenith, and relative azimuth angles, the SNAP
biophysical processor parameterizes PROSAIL to
simulate bottom-of-atmosphere reflectance (Xie et al.
2019). Subsequently, the ANN algorithm, trained on
the simulated reflectance, is applied to the chosen Sen-
tinel-2 bands to retrieve the biophysical variable, as
explained by Weiss and Baret (2016). This algorithm
is categorized as "nonspecific," indicating its ability to
deliver reasonable biophysical variable performance for
various types of vegetation (Kamenova and Dimitrov
2021; Kganyago et al. 2020; Mourad et al. 2020; Xie
et al. 2019). For reference, Table 2 outlines the bands
required for LAI estimation using the SNAP toolbox.

Table 2 Sentinel-2 spectral and spatial characteristics of the 8
selected bands

Band number Central WL (nm) Width (nm) Spatial
resolution
(m)
Band 3 560 35 10
Band 4 665 30 10
Band 5 705 15 20
Band 6 740 15 20
Band 7 783 20 20
Band 8a 865 20 20
Band 11 1610 90 20
Band 12 2190 180 20
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The accuracy of the leaf area index (LAI) derived from
the SNAP toolbox was evaluated to ascertain its reliabil-
ity in practical applications. The study findings revealed
a strong correlation (R*=0.74) between the LAI values
obtained through the SNAP toolbox and those acquired
through direct field measurements. Figure 2 visually
depicts the validation results, illustrating the consist-
ency and coherence between the estimated and ground-
measured LAI values. A root mean square error (RMSE)
of 0.53 indicated an acceptable deviation between the
SNAP-derived and actual field-measured LAI values,
emphasizing the tool’s ability to provide reliable esti-
mates. Although suggesting a slight overestimation, the
calculated bias of 0.31 was within an acceptable range,
reinforcing the credibility of the SNAP toolbox-derived
LAI values. Overall, the strong correlation, low RMSE,
and minimal bias collectively underscored the reliability
and accuracy of the SNAP toolbox-derived LAI values,
affirming its practical utility in estimating and predicting
the leaf area index in the study area. These findings con-
tribute to the validation and endorsement of the effec-
tiveness of the SNAP toolbox in generating accurate LAI
data for further time-series analysis.

Trends and correlation analyses

In this study, local-scale changes in the LAI and LST and
their interconnections were assessed using trend and
regression analyses. MATLAB R2020a and R 4.0.3 soft-
ware were used for all the statistical analyses.

Trend analysis

The trend analysis for both annual and seasonal trends
relied on the SNAP-derived LAI and Landsat Level 2
LST products. Estimations of annual and seasonal trends
were conducted using Zhang’s method and the Yue Pilon
method found in the "zyp" package within R software
(Wang and Swail 2001; Yue et al. 2002). This approach is
advantageous because of its accurate confidence inter-
vals and robustness against outliers. Moreover, the widely

SNAP Toolbox

3b y=09711%x+03501
R =0.74

Predicted LAI

0 0.5 1 15 2 25
Observed LAI

Fig. 2 Validation of the SNAP toolbox and MVLR model-derived LAl

using ground-measured LAl data
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recognized Mann-Kendall test was used to detect trends
in time series data, as commonly observed in environ-
mental studies, hydrology, and climatology (Hamed
2008). The Mann—Kendall test allows for the assessment
of monotonic trends in data, where a significant test sta-
tistic leads to the rejection of the null hypothesis (Yue
and Wang 2004).

While the Mann—Kendall test is effective at handling
tied observations and outliers (Wang et al. 2020), it
has limitations, such as its inability to detect nonlin-
ear trends or abrupt changes in trend direction (Blain
2013). To mitigate these limitations, Sen’s slope estima-
tor and the Theil-Sen estimator were combined with the
Mann-Kendall test, providing a comprehensive analysis
of trend behavior. Additionally, given the requirement of
non-autocorrelated data, the data were tested in R Studio
using the plot method of autocorrelation using the ACF
function. Equation 2 was used in the Mann—Kendall test
for the analysis of the time series.

n—1 n . .
S = Zi:l Zj=k+lsign (x] — i) (2)

Let X1, X2, and Xn represent the variables denoting n
points of LAI and LST. The Mann—Kendall test (S) was
then applied to these variables.

The Mann—-Kendall test furnishes insights into the
trend direction, if any, within the time series. A negative
test result implies a decrease in both the LAI and LST,
while a positive value suggests an increase. Conversely,
a result of zero supports the null hypothesis of no trend.
A positive S value suggests that the later observations in
the series are expected to be greater than the earlier ones,
while a negative S value suggests the opposite. The vari-
ance in S is calculated using Eq. 3.

Var = % n(n—1@n+5) = f(ft —1)(2ft + 5)} (3)

In the Mann—Kendall test, the test statistic (Eq. 4)
accounts for the variation in "t" across the set of tied
ranks and the frequency "ft" at which the rank "t"
appears. The test statistic is calculated using the follow-
ing equation:

(S—l)/ se, S§>0
S+1/ se S<0

Here, se represents the square root of the variance.

Association analysis
The relationship between LAI and LST was assessed
using a linear regression model, with the strength of
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the association quantified by the R-squared (R?) value,
calculated using Eq. 5. The significance level was set at
a=0.01. To address potential discrepancies in data scales
between the Sentinel-2 and Landsat OLI datasets, we
implemented several preprocessing steps, including resa-
mpling to a uniform pixel size, reprojection to a common
coordinate system, and temporal alignment by selecting
images captured as close in time as possible.

> (yi —y)
> (i —y)?

R =1- (5)

Results

Seasonal and annual trends in the LAl and LST (2016-2022)
Seasonal trend of mean LAl

Figure 3 presents the mean LAI maps for each year of
the study period from 2016 to 2022, illustrating spatial
variations in vegetation density across the study area.
Throughout the study period (2016-2022), all the seasons
exhibited significant greening trends, with the exception
of the spring season, which had a Sen slope of —0.041.
The rate of change in the LAI demonstrated significant
variation, ranging from 0.02 to 0.08 for the season-to-
season trend and from 0.13 to 0.57 over the study period
(trendP).

Figure 4 shows the seasonal trends and the trendP
determined for each season from the Sentinel-2 images.
Particularly, the autumn season demonstrated the highest
trend (0.082) and trendP (0.576) with a Sen slope of 0.15.
In general, the average LAI for all the seasons exhibited
a notable greening trend over the study period. Table 3
highlights the seasons with a statistically significant trend
at a p value of 0.05 in bold font.

Annual trend of mean LAl from 2016 to 2022

The annual trend in the mean LAI for the study area is
depicted in Fig. 5. The analysis revealed a substantial
greening trend, represented by a Sen’s slope of 0.084 and
a P value of 0.05 for the study period. The year-to-year
trend in the mean LAI was 0.013, and the trend for the
entire period was 0.091. The highest mean annual LAl in
the study area was observed in 2021.

Seasonal trend of mean LST

The trends in LST for the four seasons are shown in
Fig. 6. Variations in the trend and trendp of the LST were
observed across seasons. However, the study did not
identify any statistically significant seasonal trend in the
mean LST during the study period (2016-2022), except
for the summer season, which exhibited a seasonal trend
in the LST with a P value of 0.07.
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a positive trend, except for spring, which had a Sen slope value of -0.041

During the spring season, a nearly zero trend for the trend period, it varied from -2.147 (autumn sea-
(trend =0.1) was observed, while increasing trends were  son) to 10.5 (summer season). Table 4 presents the sta-
noted in the summer seasons of 2021 and 2022. The tistical results of the mean LST trends for each season
season-to-season trend in the mean LST ranged from alongside the annual mean LST trend.

-0.031 (autumn season) to 1.5 (summer season), while
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Table 3 7 values, Sen's slopes, P values, trends, and trends of the
seasonal and annual trends of LAl from 2016 to 2022

Seasons Z value Sen’s Slope Pvalue Trend TrendP
Winter 1.503 0.055 0.13 0.066 0464
Spring 1.503 -0.041 013 0.020 0137
Summer 1.503 0.052 0.13 0.052 0.364
Autumn 1.878 0.047 0.05 0.082 0.576
Annual 1.878 0.013 0.05 0.013  0.091

Mean Annual LAI Trend

*  Mean LAL
LIS ———Trend Line

0.85 7 5
2016 2017 2018 2019 2020 2021 2022
Year

Fig. 5 Annual trend of mean LAl from 2016 to 2022: a positive trend
with a 0.084 Sen'’s slope and a 0.05 P value
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Annual trend of mean LST from 2016 to 2022

The annual trend in the mean LST for the study area
was assessed based on the mean annual LST values over
the study period. To ascertain the significance of the
observed changes, the Mann—Kendall trend test was con-
ducted, for which the P value was 0.1. Figure 7 displays
the average LST maps for each year of the study period
from 2016 to 2022, highlighting spatial variations in sur-
face temperature across the study area.

The study findings indicated the absence of a significant
annual trend in the mean LST. The year-to-year trend
in the LST was 0.466, while for the trend period, it was
3.260 (Fig. 8). The highest mean annual LST in the study
area was observed in 2021, which coincided with the year
in which the highest mean LAI was recorded during the
study period. Overall, the average annual LST did not
significantly change over the study period, with a P value
of 0.2.

Correlation

Annual relationship between LST and LAl

The assessment of the association between the LAI and
LST was conducted at both annual and seasonal scales.
To facilitate this analysis, all the LAI and LST seasonal
images for each year were stacked and averaged using cell
statistics (Fig. 9a, b). Similarly, for the seasonal analysis,

Sprin
44 pring
.
42
40 Y
38 .
o
36

2016 2017 2018 2019 2020 2021 2022

Autumn

31

30
2016 2017 2018 2019 2020 2021 2022

Year

Fig. 6 Seasonal trends of mean LST from 2016 to 2022; Sen'’s slope shows the trend direction of the LST during the study period. All the seasons
had insignificant positive and negative trends except for the summer season, which had a P value of 0.07
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Table 4 7 values, Sen's slopes, P values, trends, and trends of the
seasonal and annual trends of LST from 2016 to 2022

Seasons Zvalue Sen’sSlope Pvalue Trend Trendp
Winter 0.00 0.265 1 0.265 1.853
Spring 0.00 0.10 1 0.100 0.700
Summer 1.802 1.5 0.07 1.500 10.500
Autumn —-0.30 —-0.307 0.7 -0307  —2.147
Annual 1.201 0.466 0.2 0466 3.260

LAI and LST images for the same season across the seven
years were stacked and averaged accordingly.

A total of 201 points were used to evaluate the asso-
ciation between the LAI and LST at both scales. The
two variables exhibited a moderate correlation, with
R-squared (R?) values ranging from 0.35 to 0.49. This
indicates that the vegetation characteristics of the study
area respond to changes in LST. Particularly, the lowest
R? value of 0.35 was recorded in 2021, while the highest
value was observed in 2020 (R?=0.49).

Seasonal relationship between the LAl and LST

The study area exhibited significant spatial and tempo-
ral variations in the distributions of LAI and LST. Con-
sequently, the seasonal association between the LAI and
LST was evaluated to discern the influence of LST on
the LAI across the winter, spring, summer, and autumn
seasons. The results of the linear regression model fitting
between LAI and LST are depicted in Fig. 10.
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The highest correlation between the LAI and LST was
observed during the winter season (R*=0.46), while the
lowest R? value of 0.36 was recorded during the spring
season. Overall, the correlation between LST and LAI
across all seasons was moderate. During the crop-grow-
ing seasons, specifically summer and spring, the relation-
ship was relatively weaker. However, in the winter and
autumn seasons, when the crop leaves reached maturity,
the correlation between the LAI and LST was relatively
stronger (Table 5).

Discussion

This study examined the temporal variations in LAI and
LST by mapping the mean value of these two variables in
the Millie watershed from 2016 to 2022 using Sentinel-2
LAI and Landsat 8/9 LST products. We investigated the
temporal trends of mean LAI and LST in the study area

Mean Annual LST Trend
T T

38 T T

.
47k ———Trend Line| |
.

LST

31 L L L L L
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Fig. 8 Annual trend of mean LST from 2016 to 2022: an insignificant
positive trend with a 0.466 Sen’s slope
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(D6) 157

19 Kilometers

Fig. 7 Mean annual LST maps of the study area from 2016 to 2022
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Fig. 10 Seasonal association between LAl and LST from 2016 to 2022

at both seasonal and annual scales. Our analysis indicated
a generally significant increasing trend in the mean LAI
during the study period, whereas the LST value exhibited
an insignificant positive trend.

Seasonal and annual trends of LAl

Our findings revealed a significant greening trend in the
Millie watershed from 2016 to 2022, with positive Sen’s
slope values observed in the winter, summer, and autumn
seasons. These results are consistent with prior research
indicating a global increase in the LAI during growing

Table 5 R? adjusted R? and P value of annual and seasonal
correlation between LAl and LST

Seasons R? Adjusted R? PValue<
2016 04119 0.4088 2.20E-16
2017 04012 0.3981 2.20E-16
2018 04104 0.4074 2.20E-16
2019 04763 04736 2.20E-16
2020 0.4934 0.4908 2.20E-16
2021 0.3452 03418 2.20E-16
2022 0.4594 0.4566 2.20E-16
Winter 0.4602 0.4575 2.20E-16
Spring 0.3580 0.3548 2.20E-16
Summer 0.3552 0.3520 2.20E-16
Autumn 0.4065 0.4036 2.20E-16
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seasons (Rasul et al. 2020). This trend can be attributed to
a combination of factors, including natural reforestation,
improved land use management practices, and increased
agricultural activity in the study area. However, the nega-
tive Sen’s slope value observed during the spring season
is attributed to a declining trend in spring rainfall, which
results in reduced vegetation growth. This relationship is
supported by Abegaz and Abera (2020), who examined
temperature and rainfall trends in northeastern Ethiopia,
specifically South Wollo, and found a declining rainfall
trend in the spring.

The mean LAI value exhibited seasonal variation, rang-
ing from 0.020 to 0.082 (Figs. 4 and 5). Nevertheless, the
trendp (trend during the study period) was consistently
robust, ranging from 0.137 to 0.576. These findings sug-
gest that while short-term seasonal trends may exhibit
some variability, the overall trend of increasing LAI
throughout the study period remains substantial.

As reported by SuDCA and Soberland (2015) and Agri
Service Ethiopia (ASE) in 2011), agriculture is the pri-
mary land use in the study area. Consequently, examin-
ing seasonal trends is crucial due to the varying spatial
patterns of seasonal crops affected by factors like rainfall
and temperature. Our findings solidify the close connec-
tion between the trend of LAI and agricultural activities.
Seasons marked by abundant rainfall, accompanied by a
gradual expansion of cultivated lands, have resulted in
higher mean LAI trends.
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According to Abegaz and Abera (2020), who investi-
gated temperature and rainfall trends in northeastern
Ethiopia, the seasonal rainfall trend in this region, par-
ticularly in South Wollo, has shown a declining trend in
the spring season, relatively stable trends in summer and
autumn, and an increasing trend in the winter season. A
decreasing trend in spring season rainfall leads to less cul-
tivation, which negatively impacts the LAI. Consequently,
the declining trend of the mean LAI in the spring sea-
son is attributed to insufficient rainfall, which negatively
impacts agricultural activities (Agidew and Singh 2017).
The relative increase in the mean LAI during the winter
season is attributed to increased rainfall, which positively
influences rainfed agriculture (Chuanhua et al. 2023;
Rasul et al. 2020). Hence, an increasing or decreasing
trend in the LAI can be predicted based on rainfall avail-
ability, which directly impacts agricultural practices (Zhu
et al. 2016). These results affirm the positive influence of
rainfall amount on LAI (Longhui et al. 2017), as most of
the greening trends were observed during the growing
season.

Seasonal and annual trends of LST

Throughout the years 2016 to 2022, the average LST in the
study area did not significantly change seasonally or annu-
ally, except for a notable trend observed during summer
season with a 93% confidence level (Figs. 6 and 8). Abe-
gaz and Abera (2020), a study in southern Wollo, Ethiopia,
found that the delayed onset of the summer season, which
initially results in sparse rainfall, leads to an increase in
LST. Conversely, this delay causes increased rainfall at
the end of summer and into the autumn, which enhances
agricultural activity and contributes to a lower LST trend
during the autumn season. Reduced rainfall and soil
moisture positively impact LST through their effects on
crop cultivation (Jiang et al. 2023; Sun and Pinker 2004;
Weng et al. 2004). These findings support the notion
that changes in rainfall amounts, soil moisture, and crop
production inversely influence LSTs by modulating the
transmission of electromagnetic radiation to the Earth’s
surface. Therefore, the distinct LST trend observed in the
autumn season, compared to other seasons, is due to the
unique climatic and agricultural conditions of this period.
Our findings further support this conclusion, revealing
the highest LAI trend occurring in autumn.

Moisa et al. (2022a) and Moisa et al. (2022b) utilized
one-way trend analysis and reported increments of 5 C
and 5.6 C, respectively, in the mean LST within Ethio-
pian tropical regions. In contrast, when we applied the
one-way trend analysis in our study area, we observed an
increment of only 0.68 °C in LST. The higher LST incre-
ment in their studies can be attributed to a longer study
period, whereas the lower increment in our study is due
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to the shorter study period. Furthermore, in our study,
the reported 3 °C increase over 7 years is based on Sen’s
slope, a more appropriate trend analysis method for time-
series data. Sen’s slope uses the median of all observed
data, providing a robust estimate of the trend. This
method can result in a higher apparent rate of increase
because it accounts for all data points rather than just the
initial and final year mean LST values.

The studies conducted by Moisa et al. (2022a) and
(Moisa et al. 2022b) in similar climatic environments
within Ethiopia offer valuable insights that support our
findings. Their study area and the observed increments in
LST can be cross-referenced with our data, strengthening
the validity of our results. The robust estimation provided
by Sen’s slope in our study underscores the necessity of
using comprehensive analysis methods to capture the
nuanced impacts of climatic variations on LST. Addition-
ally, the observed LST trends in both studies align with
the broader understanding of how seasonal shifts and
agricultural activities influence surface temperatures,
reaffirming the intricate relationship between environ-
mental factors and LST dynamics in tropical regions.

Seasonal and annual association between LAl and LST

The relationship between mean LAI and LST was evalu-
ated yearly to understand how vegetation responds to
variations in surface temperature, as depicted in Fig. 9a,
b. Our analysis revealed a moderate inverse correlation
between the mean LAI and LST from 2016 to 2022, with
the R? ranging from 0.35 to 0.49. This finding contrasts
with the results of Rasul et al. (2020), who found no signif-
icant relationship between LAI and LST in Africa. How-
ever, it aligns with the findings of Guha and Govil (2020),
who reported a moderate correlation between NDVI and
LST in the tropical region of India. The moderate negative
correlation observed in this study suggested that photo-
synthetic vegetation in the study area is sensitive to LST.
Variations in vegetation type, land use practices, and local
climatic conditions contributed to the observed moderate
correlations (Guha and Govil 2020). Different vegetation
types have unique characteristics and responses to tem-
perature changes, influencing the overall LST in diverse
ways. Additionally, agricultural activities, deforestation,
and urbanization can alter the land surface properties
(Jaafar et al. 2020; Zhang et al. 2005), thereby impacting
the LST. Furthermore, local climatic conditions, including
temperature, precipitation, and humidity, further influ-
ence the relationship between these two variables (Yu
et al. 2020). Regions with higher rainfall and cooler tem-
peratures show stronger correlations between LAI and
LST due to the enhanced growth of vegetation, while arid
regions might display weaker correlations due to limited
vegetation cover.
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The seasonal correlation analysis between LAl and LST
in the Mille watershed presented a complex relationship,
with the strongest correlation occurring during the win-
ter season (R*=0.46) and the weakest during the spring
and summer (R?>=0.36). This pattern suggests that veg-
etation’s response to surface temperature is more pro-
nounced when crops are mature, as seen in the stronger
correlations during the winter and autumn seasons.
These seasons coincide with crop maturity, indicating
that mature vegetation has a greater influence on LST,
potentially due to increased canopy cover and evapotran-
spiration rates, which contribute to cooling the surface.

Conversely, the correlation was weaker during the crop-
growing seasons of summer and spring. While these
seasons are marked by an increased mean LA, the rela-
tionship between LAI and LST was less robust. This can
be attributed to the higher temperatures and moderate
rainfall from March to June, which drive intensive leaf
development. During this period, the growing vegeta-
tion contributes to a cooling effect on LST, but the rapid
changes in temperature and precipitation may also intro-
duce variability, reducing the overall correlation.

Moreover, the study underscores the importance of
considering various factors such as crop cultivation
cycles, precipitation availability, land use practices, and
mean maximum temperature in understanding the sea-
sonal dynamics of the LAI-LST relationship. The lower
R? values observed during the colder months, when crop
cultivation is less optimal, further emphasize how these
environmental and agricultural variables modulate the
interaction between vegetation and surface temperature.
This deeper understanding of seasonal variations is cru-
cial for accurately modelling and predicting the impacts
of climate and land use changes on vegetation dynamics
in tropical regions.

Conclusion

This study highlighted a significant greening trend over
the study period attributed to natural reforestation, land-
use changes, and agricultural activities. While the LST
showed relatively stable patterns, an increase during
delayed summer onset was noted. The moderate inverse
correlation between LAI and LST underscores vegeta-
tion sensitivity to temperature changes, emphasizing the
need for vigilant environmental monitoring and man-
agement. These findings stress the importance of under-
standing the complex interplay between environmental
factors, guiding the development of targeted strategies
for sustainable land management and conservation in the
region. While this study provides valuable insights into
the temporal trends and correlation between LAI and
LST in the Millie watershed, further research is needed
to better understand the complex relationships between
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environmental factors and vegetation productivity in
a broader context. To provide a more comprehensive
understanding of the relationship between LAI and LST
across different environments, future research should
incorporate longer study periods and encompass a vari-
ety of climatic zones.
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