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Abstract
A precise and up-to-date Land Use and Land Cover (LULC) valuation serves as the fundamental basis for efficient 
land management. Google Earth Engine (GEE), with its numerous machine learning algorithms, is now the 
most advanced open-source global platform for rapid and accurate LULC classification. Thus, this study explores 
the dynamics of the LULC changes between 1993 and 2023 using Landsat imagery and the machine learning 
algorithms in the Google Earth Engine (GEE) platform. Focus group discussion and key informant interviews were 
also used to get further data regarding LULC dynamics. Support Vector Machine (SVM), Random Forest (RF), and 
Classification and Regression Trees (CART) were demonstrated for LULC classification. Six LULC types (agricultural 
land, grazingland, shrubland, built-up area, forest and bareland) were identified and mapped for 1993, 2003, 2013, 
and 2023. The overall accuracy and kappa coefficient demonstrated that the RF using images comprising auxiliary 
variables (spectral indices and topographic data) performed better than SVM and CART. Despite being the most 
common type of LULC, agricultural land shows a trend of shrinking during the study period. The built-up area and 
bareland exhibits a trend of progressive expansion. The amount of forest and shrubland has decreased over the last 
20 years, whereas grazinglands have exhibited expanding trends. Population growth, agricultural land expansion, 
fuelwood collection, charcoal production, built-up areas expansion, illegal settlement and intervention are among 
causes of LULC shifts. This study provides reliable information about the patterns of LULC in the Robit watershed, 
which can be used to develop frameworks for watershed management and sustainability.
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Introduction
Land is an important natural resource that provides for 
most human supplies and sustains most human activity. 
Despite this, the increasing human population (Obei-
dat et al. 2019) has brought this natural resource under 
constant threat by intensifying changes in land cover 
and use (LULC) over time. LULC change refers to modi-
fications and shifts in the earth’s surface cover primarily 
caused by human activities (Johnson and Zuleta 2013). 
Anthropogenic LULC changes are more pronounced in 
tropical areas because of the rapid rates of deforestation, 
increased agricultural production, industrial develop-
ment, migration, urbanization, and population density 
growth (Yeshaneh et al. 2013; Kleemann et al., 2017; 
Pereira and Tsikata, 2021). The sub-Saharan Africa (SSA) 
region in particular is predicted to be particularly vulner-
able to the effects of LULC shifts as this region experi-
ences a varied pattern of LULC dynamics and notable 
conversions of forest into agriculture (Obeidat et al. 
2019). Ethiopia is also undergoing asymmetrical LULC 
changes due to its rapidly growing population, which 
allows cultivated land dominancy and a rapid increase 
settlement (Tolessa et al., 2016; Nigussie et al. 2017; Tes-
fay et al. 2022; Gitima et al. 2022; Negash et al. 2023). 
However, in a few regions of the country, new plantations 
and the expansion of urban areas onto agricultural land 
have been shown to be the cause of a growing trend in 
vegetation and a decreasing trend in farmland (Nigussie 
et al. 2017; Tesfay et al. 2022; Negash et al. 2023). Vary-
ing outcomes might be related to various socioeconomic 
and biophysical factors (Birhane et al., 2019; Gitima et al. 
2022).

LULC shifts have a critical role in altering the micro-
climate, biodiversity, ecosystem services, hydrological 
and ecological cycles, and biotic processes of the Earth 
that negatively impact socioeconomic and sustainable 
livelihood elements (Abd et al., 2020; Winkler et al. 2021; 
Negash et al. 2023). In Ethiopia, it appears that LULC 
changes have increased the amount of degraded land, 
soil erosion, sedimentation, and nutrient loads into water 
bodies (Kidane et al. 2019). Monitoring and mitigation of 
adverse effects resulting from LULC changes has gained 
global attention from researchers and policymakers (Yuh 
et al. 2023). To effectively monitor these changes and 
develop policies that will protect the environment (Zhao 
et al. 2024) and promote sustainable development, accu-
rate and current mapping of LULC is therefore necessary. 
This mapping aids in understanding how changes in land 
use impact ecosystems, society, and human welfare as 
well as in projecting future trends (Osman et al. 2023).

Maximum likelihood classification using remote sens-
ing is the most often used method for estimating LULC 
changes across various spatiotemporal scales (Obeidat et 
al. 2019; Gitima et al. 2022; Tesfay et al. 2022). However, 

the amount of time required to process satellite images 
to generate accurate LULC maps remains a major bar-
rier for researchers studying LULC changes, particularly 
when using coarse-resolution images (Landsat from the 
NASA and USGS) (Gomez et al., 2016). Thus, perform-
ing LULC classification quickly and accurately is one of 
the key research areas for remotely sensed images (Batu-
nacun et al., 2018). The Google Earth Engine (GEE) 
cloud-based computing platform can resolve the most 
significant problems related to land cover mapping (Phan 
et al. 2020).

GEE is an open source platform that has a large stor-
age capacity, substantial processing power, and self-pro-
graming classification algorithms. These features make it 
appropriate for thorough and automated LULC classifi-
cation within study areas (Zhao and Du 2016). Because 
GEE is not confined to labor-intensive techniques like 
conversion, mosaics, resampling, projection, and reg-
istration (Chowdhuri et al. 2022; Ahmed and Harish-
naika 2023), it can evaluate multi-source satellite images 
quickly and effectively. Machine learning classifiers like 
RF, SVM, and CART are being used more often on the 
GEE platform for LULC classification due to their better 
accuracy and performance (Kelsey et al. 2018; Tassi and 
Vizzar 2020; Negash et al. 2023). However, there is not 
much research on comparative performance assessment 
to inform classifier selection across machine learning 
types, particularly in Ethiopia (Negash et al. 2023). More-
over, no research has examined the effects of using vari-
ous input features (spectral bands, spectral indices and 
topographic variables) on classification precision. This 
study aims to fill this research gap by comparing three 
classification algorithms (RF, CART, and SVM) to pro-
duce accurate LULC maps and quantify changes in LULC 
over the previous 30 years. It also looks at how selecting 
different input features (spectral and auxiliary variables) 
affect accuracy. In this study the most innovative meth-
odologies, including machine learning and the addition 
of auxiliary variables to satellite images on GEE platform 
are used to precisely and swiftly examine LULC changes.

Materials and methods
Description of the study area
The study was conducted at the Robit watershed in north-
eastern Ethiopia. The study region is situated between 
3193 and 1187 m above sea level and is a portion of the 
upper Awash River basin (Fig. 1). The region experiences 
1416 millimeters of annual rainfall on average, with mean 
minimum and maximum temperatures of 16 and 31  °C, 
respectively (Tesfay et al. 2022). Eutric cambisols, eutric 
regosols, and chromc cambisols are the three main types 
of soil. The Weyna Dega, Dega, and Lower Kolla climates 
are characteristic of this watershed. The study water-
shed’s lowest sections have pleasant slopes, whereas the 
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middle and upper areas feature steep slopes and undulat-
ing landscapes. The watershed has a great potential for 
agriculture, particularly in the lower regions. This water-
shed has a variety of land cover types, including forests, 
shrublands, grazinglands, and agricultural land. Signifi-
cant flooding occurs in the lower areas of the watershed 
during the rainy season, affecting Shewarobit Town, 
whereas the upper, steeply sloping Robit watershed is 
severely fragmented (Dejen and Soni, 2021).

Data types and sources
Multi-temporal LULC transformations were discerned 
using digital data processed from satellite images in the 
GEE platform. Additional bands for elevation and slope 
were extracted using the SRTM DEM available through 
the GEE platform. The classifications of LULC classes by 
satellite imagery were supplemented with human sensing 
(complaints of ecological change), Google Earth images, 
and ground control points (GCP) for verification of each 
LULC change analysis. Elders’ and expert impressions of 
previous LULC types and their causes of both the past 
and current forms of LULC shifts in their particular 
locales within the watershed were employed as human 

sensing. The data on human sensing were gathered by 
semi-structured interviews and focus group discussions 
(FGDs).

Satellite image data
Satellite images were obtained from the publicly acces-
sible GEE data catalog for 1993, 2003, 2013, and 2023 by 
Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+), and Landsat 8 Opera-
tional Land Imager (OLI) sensors (Fig.  2). Collection 2 
level 2 surface reflectance Landsat images were used; 
since the images were geometrically, radiometrically, 
and atmospherically corrected by the image provider 
(US Geological Survey). Satellite image footprints for 
the respective years were accessed and clipped to the 
study watershed. The selection of Landsat images was 
based on factors such as accessibility, proportion of cloud 
cover, and association with years of notable events in the 
research region. Among the remarkable events exclo-
sures were implemented in the study area approximately 
in 1990 to restore some of the highly deteriorated areas, 
which might have an effect on LULC (Tesfay et al. 2022). 
Since Shewarobit Town evolved into Shewarobit Town 

Fig. 1 Location map of the study area
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Administration in 2013, deforestation has worsened. 
Furthermore, the 2023 Landsat image was used to depict 
the existing state of the LULC. Images were collected at 
intervals of approximately 10 years to clearly show the 
spatiotemporal changes in the LULC pattern. Every year, 
no more than 5% of the cloud cover images were chosen 
using GEE during the months of January, February, and 
March. Contaminated pixels caused by cloud cover were 
eliminated from all images using the cloud mask method 
provided on the GEE. A composite image for the selected 
years was subsequently generated using the median 
value, since the median composition methods produced 
more accurate results in the previous study (Phan et al. 
2020).

Auxiliary data
In addition to spectral bands, the following auxiliary 
datasets were computed to improve the accuracy of 
land cover classification. Numerous indices, such as the 
Normalized Difference Vegetation Index (NDVI), Bare 
Soil Index (BSI), Modified Normalized Difference Water 
Index (MNDWI), and Normalized Difference Built-up 
Index (NDBI), were computed using Landsat imagery in 
the GEE platform (Fig. 2). Different research works have 
indicated that the integration of topographic characteris-
tics is crucial in identifying and classifying LULC classes, 

since these variables are associated with the distribu-
tion of land cover types (Phan et al. 2020; Nasiri et al. 
2022). As a result, the topography-based variables (slope 
and elevation) were employed as auxiliary variables to 
incorporate the topography features of the LULC classes 
throughout the classification process. These generated 
datasets were then added as new predictor variables to 
the land cover classifications for each year (Table 1).

Training and validation data
Training and evaluation datasets for LULC mapping 
were collected from field visits using handheld GPS and 
internet-based satellite image services. Prior to field-
work, unsupervised image classification was performed 
to determine the main LULC classes in the research area. 
Upon conducting field observations in the study area, six 
land use land cover types were identified, including agri-
cultural land, bareland, built-up areas, forest, shrubland, 
and grazingland (Table 2). Ground truth data were then 
gathered from accessible research areas. Training points 
that were uniformly distributed around the study region 
were also gathered using high-resolution satellite images 
from Google Earth. This approach ensured a diverse and 
representative sample, thereby enhancing the accuracy 
and reliability of the LULC classifier. It has been dem-
onstrated that this method of gathering training points 

Fig. 2 Flowchart of the LULC classification in google earth engine
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is precise and dependable, and has been widely used 
and reported in academic publications to obtain LULC 
classes (Nasiri et al. 2022; Kafle et al., 2023; Osman et 
al. 2023). A total of 1497data samples based on random 
sampling were used as training and evaluation datasets. 
Of the datasets collected, 75% were used for training, and 
the remaining 25% were used for validation (Fig. 2).

Field survey data
A field survey was conducted to collect GCPs for the 
identified LULC classes as well as other data regarding 
LULC classes in the past and changes that have occurred 
in the research area. The drivers that lead to changes 
in LULC in the study area have also been understood 
through the use of these qualitative data. GCPs were 
collected using a Garmin 60 handheld GPS. Fifty-two 
respondents were deliberately selected from the high, 
middle, and lower regions of the watershed to compile 
historical data on the previous LULC (i.e., 1993, 2003, 
and 2013) and identify LULC change factors. Elders, 
carefully selected farmers, and other key informants 
(such as watershed managers and experts in the field of 
natural resources) who possessed adequate knowledge of 
the historical context of the study area were among the 
research participants. The purposeful selection of infor-
mants was based on their substantial experience, distinct 
perspectives, and profound understanding of the sub-
ject matter being studied. The required data were gath-
ered using focus group discussion and semi-structured 

interview. This data was integrated with the GCPs found 
using GPS and Google Earth images to create historical 
LULC maps of the research area.

Image classification and accuracy assessment
The ultimate aim of this work was to increase the accu-
racy of land cover mapping by employing a novel 
method. Supervised LULC classification using machine 
learning classifier in GEE platform was performed. To 
begin with, watershed boundary and training points for 
each year were imported into the GEE platform. Prior 
to classification, the hyper-parameter tuning for RF was 
assessed to determine the number of trees (ntree) that 
provide the best accuracy, and an ntree of 10 was used 
in this study (Fig. 2). The three LULC classifiers that have 
been recently used by scholars (Ahmed and Harishnai-
kato, 2023; Negash et al. 2023; Yuh et al. 2023) were then 
evaluated using similar training data to identify which 
one produces the best results for Robit watershed. These 
classifiers are the Classification Regression Trees (CART) 
technique, Random Forest (RF), and Support Vector 
Machine (SVM). Lastly, the accuracy of the classifiers 
for the combination of different variables was evaluated 
using testing data.

Data from interviews and ground truth data collected 
at various sample points were used to assess the accu-
racy of the LULC map. A confusion matrix was used 
to examine and compare the performance of the LULC 
maps generated by the three algorithm techniques with 

Table 1 Spectral bands, indices, and topograhic metrics used for the LULC classification
Data set (Scenarios) Variables Classifica-

tion Algo-
rithms

Spectral bands Blue, Red, Green, Near-Infrared, SWIR 1, SWIR 2 RF
CART
SVM

Bands + Spectral indices Blue, Red, Green, Near-Infrared, SWIR 1, SWIR 2 + NDVI BSI, NDWI, NDBI RF
CART
SVM

Bands + Spectral indices + Topographic variables Blue, Red, Green, Near-Infrared, SWIR 1, SWIR 2 + NDVI, BSI, NDWI, 
NDBI + Elevation + Slope

RF
CART
SVM

Table 2 LULC categories and their description in the study area
Land use/ land cover General description
Forest Areas primarily covered with trees that form closed canopies. It includes patches of 

natural forest and plantations situated in homesteads, farm boundaries, and churches.
Shrubland Areas dominantly covered by shrub trees (mainly by acacia trees) and sometimes 

mixed with scattered trees, herbaceous, and grasses.
Grazingland Areas dominantly covered grasses with only a few widely scattered shrubs and trees, 

along with exposed areas typically used for grazing.
Agricultural land Areas covered with annual and perennial crops, and irrigated areas
Built-up Area Urban areas and other man-made structures, i.e., roads
Bareland Areas with no vegetation cover consisting of exposed soil mainly river bed
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auxiliary variables. Overall accuracy, which indicates 
the proportion of correctly classified test data, is the 
most frequently used metric for assessing the effective-
ness and accuracy of all classifiers. Therefore, the overall 
accuracy and Kappa coefficient were calculated (Eqs. 1 & 
2) to evaluate the differences in the performance of RF, 
CART, and SVM in the GEE platform. To assess accuracy 
across classes, producer and consumer accuracy was also 
obtained from the confusion matrix using Eqs.  3 and 4 
(Nasiri et al. 2022).

 
OA =

Number of Correctly Classif ied Samples

Number of Total Samples
 (1)

 
Kappa =

Overall Accuracy − Estimated Chance Agreement

1 − Estimated Chance Agreement
 (2)

 
CA =

Number of Correctly Classif ied Samples in each Class

Number of Samples Classif ied to that Class
 (3)

 
PA =

Number of Correctly Classif ied Samples in each Class

Number of Samples from Re ference Data in each Class
 (4)

LULC change detection
The transition matrix analysis is calculated using the 
final LULC map, from an accurately classified image. We 
used ArcGIS Pro to analyze the nature of LULC transi-
tions in the Robit watershed and the transformation of 
each LULC class. LULC transition maps were produced 
by using the theme LULC maps of RF from 1993 to 2023. 
By subtracting the two raster images for the two years, 
the change in LULC use was calculated and illustrated. 
This makes it possible to identify the areas where changes 
in land cover have occurred and their extent and direc-
tion. The transition matrix provides an analytical picture 
of how land cover has changed over time. It also shows 
the proportion of each land cover class that has changed, 
remained constant, or completely emerged over a cer-
tain period. The percentage and rate of LULC change has 
been performed by various authors to detect change ten-
dency (Berihun et al. 2019; Yohannes et al. 2020). The fol-
lowing equations were used:

 

Percentage of LULC change (%) =
(Area final year − Area initial year)

Area initial year
x 100

Area denotes the extent of each LULC class; hence, posi-
tive values indicate an increase, whereas negative values 
imply a decrease.

 

Rate of LULC change (ha/year) =
Area final year − Area initial year

Y

Where, Y represents the time interval between the initial 
and final years.

Variable importance
Variable importance refers to the significance of factors 
in differentiating the LULC class types. These variable 
aids in improving classification accuracy by minimizing 
processing workload and redundancy in the data. The 
importance of variables in this study was determined 
using the RF and CART algorithms to estimate the con-
tribution of variables (such as spectral bands, indices, 
elevation, and slope) to the accuracy of the model that 
was created. Topographic characteristics are frequently 
linked to the spatial distribution of LULC classes (Gitima 
et al. 2022). Accordingly, we consider slope and eleva-
tion as terrain features while designing and assessing the 
LULC models,

Results and discussion
Variables’ importance
Variable importance valuation was measured to iden-
tify the variables that made the greatest contribution 
to the identification of LULC classes using the explain 
technique in the GEE platform. Thus, the importance of 
characteristic factors was measured for the CART and 
RF algorithms (Fig.  3). The green band, blue band, and 
elevation had significance ratings of 49.57, 10.4, and 
7.64, respectively, making them the three variables in the 
CART classifier with the highest effects. The three most 
important variables in the RF classifier were elevation 
(10.16), slope (9.70), and red band (8.55). According to 
Phan et al. (2020) and Nasiri et al. (2022), elevation was 
found to have significant importance in increasing the 
accuracy of their classification results in the RF classifier. 
Since topographic variables determine vegetation, cli-
mate, and land cover types in relation to socioeconomic 
causes, they are therefore more crucial for the identifica-
tion and classification of LULC in the study area (Birhane 
et al., 2019).

In both classifiers, bsi, ndbi, and mndwi were the three 
variables with the lowest level of significance. Phan et al. 
2020 also reported that spectral indices were ranked very 
low in the RF classifier. Because they had no substantial 
impact on the LULC prediction process, fewer signifi-
cant components were excluded from consideration in 
order to enhance predictive performance. The remain-
ing distinguishing characteristics for the LULC grouping 
had significance values that were somewhat close to one 
another.

Performance of the classifier with and without auxiliary 
variables
As explained in the methods section, additional variables 
have been investigated in addition to the spectral bands 
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of Landsat imagery to determine whether they could 
impact the accuracy of the land cover maps. The findings 
showed that there was substantial variation between the 
kappa coefficient and the overall accuracy of RF, CART, 
and SVM (Table  3). When confined to spectral feature 
bands, RF achieved the highest average overall accuracy 
and Kappa coefficient (OA = 93.89%, K = 0.92), whereas 
CART placed second (OA = 90.13%, K = 0.88). SVM was 
the least performing classifier, with OA = 57.06% and 
K = 0.48. Most previous researchers also reported that 
RF performed better in LULC classification than other 
machine learning classifiers. In their research, Ahmed 
and Harishnaikato (2023) examined the classification of 
Sentinel-2 and Landsat-8 pictures using RF, CART, and 
SVM. Their findings indicated that RF generated better 
results and accuracy. Likewise, Yuh et al. (2023) demon-
strated that, compared to other classifiers (kNN, SVM, 
ANN), RF performed the best. The reason for this could 
be that the two more powerful algorithms “bagging and 

random” which are referred to as the “powerhouse” of the 
approach, have helped the RF algorithms (Ahmed and 
Harishnaikato 2023). The random forest is composed of 
many decision trees. Choosing the sample and feature 
subsets to include in the approaches is part of the random 
operation, which helps to improve generalization ability, 
increase classification accuracy, and guarantee that each 
decision tree is independent (Parmar et al. 2019).

Similarly, RF was the best-performing model with 
OA = 95.6 and K = 0.94, followed by CART (OA = 92.14, 
K = 0.91), when the auxiliary variables (four spectral indi-
ces plus two topographic variables) were included in the 
classifiers. On the other hand, SVM did not perform the 
best, with OA = 69.51 and K = 0.58. The outcome showed 
that when the auxiliary variables were added to the input 
data for the three classifiers, the OAs and K increased 
(Table  3) as they enhanced the identification of classes. 
For example, OA increased in RF and CART by 2.09% 
and 2.48%, respectively. The impact of auxiliary factors 
(10 spectral indices + 3 topographic indices) on classifica-
tion accuracy was also assessed by Phan et al. (2020), who 
found that the OAs increased, by roughly 4.1–7.7% in RF.

Classifier accuracy assessment at the class level
Producer and consumer accuracies for each of the three 
classifiers were used to assess class level accuracy (Fig. 4). 
The RF classifier achieves producer accuracy ranging 
from 82% for bareland to 95% for shrubland. This means 
that in the produced LULC map, RF classifies approxi-
mately 82% of bareland pixels on the ground as bareland 
and 95% of the ground’s shrubland pixels as shrubland. 
Consumer accuracy was varied from 82 to 97% for forest 
and grazingland, respectively. Consumer accuracy repre-
sents the possibility that a pixel classified into a particular 
class truly represents that class on the ground. Therefore, 
this value indicates that 82% of the grazingland and 97% 

Table 3 Overall accuracy and kappa coefficient for SVM, CART, 
and RF before and after the inclusion of additional variables
Year Classifier Input

Only spectral 
bands

Spectral bands + Auxiliary 
Variables

OA (%) K OA (%) K
1993 RF 93.34 0.918 94.61 0.935

CART 88.753 0.864 90.92 0.88
SVM 50.67 0.428 67.34 0.537

2003 RF 92.32 0.913 93.44 0.927
CART 89 0.882 91.44 0.90
SVM 54.98 0.487 65.31 0.545

2013 RF 94.77 0.927 96.53 0.94
CART 90.836 0.887 92.86 0.918
SVM 55.6 43.6 69.37 0.595

2023 RF 95.11 0.938 97 0.95
CART 91.914 0.9 93.33 0.923
SVM 67 0.573 76 0.67

Fig. 3 Variable importance of RF and CART
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of the forestland on the identified map are found on the 
ground.

In the CART classifier, the producer’s accuracy var-
ies between 86% and 94% for shrubland and grazing-
land, respectively. The consumer accuracy was 82% for 
grazingland and 93% for shrubland. SVM obtained low 
consumer accuracy (53%) and producer accuracy (50%) 
for grazingland and bareland, respectively. Overall, the 
results indicate that CART and RF were able to classify 
the LULC in the study area with a degree of accuracy that 
was acceptable when compared with the proposed indi-
vidual accuracies of more than 70%, the overall accuracy 
of at least 85%, and the kappa coefficient of 75% (Rozen-
stein and Karnieli 2011; Phan et al., 2020). Although 
both are within an acceptable range, RF performed bet-
ter than CART. Conversely, SVM performed the least for 
LULC classification in this study because it fails to meet 
the proposed individual accuracy, overall accuracy, and 
kappa coefficient. Therefore, the SVM classifier is not 
suitable for LULC classification in the study area.

Classifier-based variation in LULC types’ spatiotemporal 
distribution
The use of different LULC classifiers in this study resulted 
in varying degrees of LULC classification accuracy, from 
slight to considerable. Along with the accuracy indicated 
in the confusion matrix, examining the land cover maps 
revealed that agricultural land is the predominant LULC 
type in the research area according to the classification 
results of RF, CART, and SVM (Fig. 5).

Although there is broad agreement among classifi-
ers regarding agricultural dominance, there was a dis-
tinct difference between the areas of each class in the 

RF, CART, and SVM classification results. The RF-gen-
erated maps indicate a consistent distribution of LULC 
types; however, CART and SVM exhibit inconsistent 
land cover types for the corresponding years. SVM, for 
example, generated maps with a greater built-up area in 
2003 than 2023. Classifying most agricultural land and 
barren land as built-up area resulted in the 2003 SVM 
classifier having a greater built-up area. This outcome 
completely contradicts the fact that the study area’s built-
up area has been steadily increasing, as verified by the 
interpretation of satellite imagery and field survey data. 
These discrepancies could, of course, result in significant 
uncertainty for any subsequent application of the map as 
input (such as estimating soil erosion). This further sup-
ports the suggestion that comparing and choosing the 
best-performing classifier for the study area is essential 
for accurately classifying land cover. Previous studies 
have also observed differences in accuracy between clas-
sifiers while creating LULC maps (Ahmed and Harish-
naika 2023; Negash et al. 2023; Yuh et al. 2023). Yuh et 
al. (2023) observed that the RF model performed the best 
and generated highly accurate LULC maps among the 
models that were compared. The classified map’s visual 
inspection and the accuracy assessment’s result’s demon-
strated that the RF classifier outperformed all other clas-
sifiers in this study. Therefore, RF was selected for this 
study to determine long-term LULC trends for the Robit 
watershed between 1993 and 2023.

Land use and land cover of the Robit watershed
A precise LULC Map at the watershed level is essential 
for effective and sustainable land management. Because 
watershed is a comprehensive natural and man-made 

Fig. 4 Producer and consumer accuracy of each class for RF, CART, and SVM
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circulation unit, watersheds are effective and suitable for 
the necessary research to assess this resource, as well as 
for the planning and implementation of different devel-
opment projects, such as conservation of soil and water 
and command area development. Therefore, a compre-
hensive understanding of LULC dynamics at the water-
shed level is beneficial for reconstructing previous LULC 
changes and developing sustainable land resource man-
agement plans that protect important landscape func-
tions. Note that the Robit watershed was the site of the 
LULC investigation for this study. The overall accuracy 
of the RF classification of LULC images in 1993, 2003, 
2013, and 2023 was 93.61%, 93.44%, 96.53%, and 97%, 
respectively. The total Kappa statistics were found to 
be 93.5, 92.7, 94, and 95 for the LULC images created 
in 1993, 2003, 2013, and 2023, respectively. The overall 
accuracies and Kappa statistics demonstrate that the RF 
classifier performs better than the SVM and CART algo-
rithms. Therefore, RF classifier was used to create the 
LULC maps, which show the distribution and trends of 
LULC in the Robit watershed over a 30- year period. The 
six classes of land use represented by the LULC maps are 

agricultural land, built-up areas, barelands, grazinglands, 
forests, and shrublands (Fig. 6).

In 1993, the majority of the watershed consisted of 
agricultural land (51.3%) and shrubland (24.5%), with the 
remaining regions being made up of grazingland (13.9%), 
forest (5.3%), bareland (3.1%), and built-up areas (1.9%). 
Agricultural land, shrubland, grazingland and forest 
accounted for 50%, 20.5%, 18.5%, and 3.8% of the total 
watershed area in 2003. Of the remaining watershed area 
comprised bareland and built-up area constituted 4.1% 
and 3.1%, respectively. In 2013, agricultural land, graz-
ingland, and shrubland accounted for 48.8%, 21.1%, and 
19.2% of all land use, respectively. Forest (4.3%), bareland 
(3.1%), and built-up areas (3.8%), comprised the remain-
ing percentages of the watershed in the same year. Fur-
thermore, in 2023, the most prominent land use types 
were agricultural land, shrubland, and grazingland and 
built-up area, comprising 46.6%, 19.8%, 18.8%, and 5.7% 
of all land use types, respectively. In the same year, the 
remaining portion of the watershed comprised both for-
est (5.5%) and Bareland (4.7%).

The results of the LULC maps demonstrate that LULC 
has undergone significant shifts at various rates during 

Fig. 5 Comparison of RF, CART, and SVM for the LULC classification
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the previous three decades. Similar trends of expansion 
and shrinkage were observed in the built-up area and 
agricultural land, respectively. Forest and shrubland 
has declined over the past 20 years, but it has been ris-
ing during the last 10 years. However, over the past 20 
years, grazinglands have shown growing tendencies, and 
over the previous 10 years, they have shown decreasing 
trends. These findings are consistent with other recent 
research that has been carried out in Ethiopia; these 
studies also found that the different land use types had 
noticeably different LULC change directions during the 
study period (Yohannes et al. 2020; Gitima et al. 2022; 

Tesfay et al. 2022; Negash et al. 2023). This indicates that 
LULC changes are dynamic and nonlinear, meaning that 
there was no consistent pattern to the conversion of one 
land use to another. A combination of natural and human 
causes may be responsible for this disparity (Tolessa et al. 
2017).

Expansion of built-up areas and the predominance of 
agriculture land
Agricultural land was the predominant LULC type with 
an average coverage of 49.2% in the Robit watershed 
(Fig. 6; Table 4). There was irrigated agriculture along the 

Table 4 Distributions and trends of LULC classes during 1993–2023
LULC 1993 2003 2013 2023

Area (ha) % Area (ha) % Area (ha) % Area (ha) %
Agricultural land 15,973 51.3 15,569 50 15,195 48.8 14,518 46.6
Grazingland 4328 13.9 5760 18.5 6570 21.1 5854 18.8
Shrubland 7629 24.5 6383 20.5 5978 19.2 6165 19.8
Forest 1650 5.3 1183 3.8 1339 4.3 1713 5.5
Built-up area 592 1.9 965 3.1 1183 3.8 1775 5.7
Bareland 965 3.1 1277 4.1 965 3.1 1463 4.7
Total 31,137 100 31,137 100 31,137 100 31,137 100

Fig. 6 Spatiotemporal distributions of LULC classes during 1993–2023
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Robit River in addition to rain-fed agriculture. Despite 
being the dominant class, agricultural land exhibited a 
consistent slight decline over the study period. Between 
1993 and 2003, 2003–2013 and 2013–2023 periods, it 
was decreased by 2.59, 2.4 and 4.46%, respectively. A 
total of 15,973 hectares, or 51.3%, of the watershed area 
was agricultural land in 1993. However, by 2023, this 
class had substantially declined to 46.6% (14518hectares). 
The results of this study align with recent LULC analysis 
studies conducted in Ethiopia (Tesfay et al. 2022; Negash 
et al. 2023), which found that agricultural land had been 
the predominant land cover for decades and was begin-
ning to shrink. The majority of the watershed area being 
used for agriculture may be the result of population 
growth, which raises the demand for more land for farm-
ing. However, the observed reduction in agricultural land 
may be explained by the growth of built-up areas, which 
encroach on farmland. Since it produces food, fiber, and 
other resources, agricultural land is necessary for human 
survival. Moreover, it provides important ecological ben-
efits like biodiversity, soil fertility, and carbon sequestra-
tion (Patel et al. 2024). This decrease might result in food 
shortages, job losses for farmers and rural communities, 
and major environmental consequences like soil erosion 
and climate change. This shows that the environment and 
human well-being are significantly impacted when agri-
cultural land is lost.

Built-up areas were the land use types in the study area 
that progressively expanded over the study period. The 
percentage of land covered by built-up areas increased 
from 1.9% (592 hectares) in 1993 to 5.7% (1775 hectares) 
in 2023 (Table  4). During 1993–2003, 2003–2013 and 
2013–2023, built-up area increased by 63, 22.6 and 50%, 
respectively. This expansion of built-up area was mainly 
at the expanse of agricultural land, as transition matrix 
indicates. The increase in built-up area represents the 
fraction of land that increased throughout the research 
period, even though a substantial portion of it was not 
covered by constructions. There is a small, denser town 
in the lower part of the watershed, and some newly built-
up such as roads and small villages are growing, as con-
firmed during the field visit. The information obtained 
through interviews also verified that Shewarobit’s town 
three kebeles in 1993 had grown to nine kebeles by 
2023. The town of Debrisina that was at the upper parts 
of the watershed also slightly increased. The results of 
this study are consistent with those of earlier investiga-
tions by Haregeweyn et al. (2015) in the Gilgel Tekeze 
catchment of Northern Ethiopia, Gashaw et al. (2017) in 
the Andassa watershed of the Blue Nile Basin, Betru et 
al. (2019) in western Ethiopia, Yohannes et al. (2020) in 
Beressa watershed and Negash et al. (2023) in the Akaki 
catchment of Addis Ababa, where significant increases in 
built-up areas were observed.

Urbanization is a global trend that has a substantial 
impact on LULC changes (Patel et al. 2024). Urbaniza-
tion and the growing demand for arable land might exert 
pressure on forest and woodland use types (Obeidat et al. 
2019). In the past few decades, there has been conflict in 
Ethiopia between the protection of basic arable land and 
urbanization (Mohamed and Worku 2019). As the field 
survey and interview revealed, built-up areas including 
roads and settlements were expanded at the expense of 
vegetation and agricultural land.

Vegetation dynamics
Shrubland was the second most common LULC at an 
average of 21%, followed by grazingland (18%) and for-
est (4.7%). Fluctuations in the dynamics of shrubland, 
grazingland, and forest cover were documented over 
the study period. Shrubland declined by 21.6% (1617.6 
hectares) between 1993 and 2013, whereas the forest 
cover declined by 28.3% (439.6 hectares) between 1993 
and 2003. There were reductions in shrubs and forests 
in other LULC change analysis case studies conducted 
in different parts of Ethiopia. For example, Gashaw et al. 
(2017) noted a significant decline in the Andassa water-
shed’s shrub and forest cover within the Blue Nile Basin. 
Gitima et al. (2022) at the Zoa watershed in Southwest 
Ethiopia also documented a decrease in shrubland from 
41.87 to 12.6% throughout the study period. Addition-
ally, there was a decrease in the amount of forest cover in 
Gubalafito district, Northeastern Ethiopia’s between 1986 
and 2016 (Abebe et al. 2022). Moreover, the area confined 
to grazingland increased by 51.8% (2197.3  ha) between 
1993 and 2013, but during the subsequent 10 years, it 
decreased by 10.9%. Grazinglands have increased at the 
expense of shrublands because of the influx of livestock, 
which is a crucial component of the farming system.

On the other hand, shrubland expanded by 3% (187 
hectares) in 2023, whereas forest cover increased by 
44.8% (530 hectares) between 2003 and 2023. The recent 
increase in shrubland and forests may be attributed 
to the initiative taken by watershed managers and the 
Office of Agricultural Development. Regulations con-
cerning land use and management have been in effect 
in the research region since 2017. Experts evaluated the 
land’s potential by considering several factors, including 
the slope and characteristics of the soil. Following train-
ing, farmers begin using their land according to the land 
capability assessment, which leads to the proper use of 
land. Vegetation increase may also result from the exclu-
sion of human and domestic animal involvement (area 
exclosures). According to information gathered from 
interviews and field observations, area exclosures were 
put into place in both high elevations mountain regions 
where forests predominated and lower and intermedi-
ate watershed regions where shrubs predominated. The 
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spread of plantations primarily composed of Eucalyptus 
species, at higher elevations may also contribute to the 
increase in vegetation. This is because Eucalyptus planta-
tions are more economically significant because of their 
fast-growing nature and increased market demand. Simi-
lar to this study, Negash et al. (2023) stated that in the 
Akaki catchment of Ethiopia, the forest area increased 
from 4.65% (67.68 km2) in 1990 to 10.09% (146.85 km2) 
in 2020. Furthermore, according to Abebe et al. (2022), 
bush land expanded from 14.8 to 21% in Gubalafito dis-
trict during the study period.

The Normalized Difference Vegetation Index (NDVI) 
value varies from − 0.033 to 0.5 between 1993 and 2023 
(Fig.  7). According to the NDVI study, in 1993, values 
between 0.27 and 0.36 prevailed, whereas in 2023, val-
ues between 0.015 and 0.14 dominated. This suggests 
that 2023 saw a decrease in vegetation, especially shru-
bland, whereas 2023 saw a slight increase in forest cover, 
as indicated by the NDVI value rising from 0.36 to 0.5. In 
addition, in 2023, the NDVI value in the bottom part of 
the watershed was from 0.18 to 0.27, indicating a rise in 
grazingland.

Bareland expansion
Bareland, which primarily represents the river bed, had 
the lowest level of domination in the research region, 
with an average of 3.56%. The LULC change analysis 
showed that in 1993, the watershed’s percentage of bare-
land was the lowest (3.1%). However, its coverage gradu-
ally increased by 51.6% between 1993 and 2023 (Table 4). 
River bed cover expands primarily at lower elevations 
within the watershed. A LULC change analysis con-
ducted in the Gilgel Tekeze watershed in north Ethiopia 
also revealed a slight increase in the percentage of river-
bed cover and bare land, of 0.2% and 0.4%, respectively 
(Haregeweyn et al. 2015).

Land use land cover change detection
There was gain and loss among the different LULC types 
from 1993 to 2023 (Fig. 8), according to the LULC change 
detection analysis conducted using ARC GIS PRO. Agri-
cultural land and shrubland areas showed a net negative 
change, while built-up area, grazingland and bareland 
underwent the largest net positive change, as illustrated 
in Fig. 8.

Fig. 7 NDVI map between 1993 and 2023
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Approximately 53% of LULC remains the same, 
whereas 47% of class types change between 1993 and 
2023. The transition between grazing and agricul-
tural land has been one of the most noticeable changes. 
Approximately 8.89% of the agricultural land has been 
transformed into grazingland, and 5.49% of the pasture 
has been returned to agricultural use (Table  5). During 
the interviews with the chosen respondents, such conver-
sion of land between grazing and agricultural use was also 
confirmed. They said that after agricultural land’s pro-
ductivity declined, it was fallowed and used for grazing 
for a few years. When their arable land was lost owing to 
a decline in productivity, additional grazing land was also 
turned into agricultural land. Osman et al. (2023) sug-
gested that the seasonality of grass may have an impact 
on the intensity of active losses and gains in grazing land. 
The results of Gashaw et al. (2017), who found a notable 
conversion of grassland and cultivated land between each 
other, are likewise in line with this finding. For instance, 
they claimed that between 2000 and 2015, 2484 hect-
ares of grassland were changed back to cultivated land 
and 1969 hectares of cultivated land were returned to 
grassland areas. Additionally, in this study, 5.49% of the 
shrubland was converted to agricultural land. The study 
carried out by Gitima et al. in 2022 at the Zoa watershed 
in Southwest Ethiopia also reported on the expansion of 
agricultural land at the expense of shrubland.

The study area’s 4% increase in built-up area over agri-
cultural land between 1993 and 2023 was another promi-
nent change that was noticed. Respondents claimed that 
more productive agricultural land was cleared for town 
growth, especially that dominated by perennial crops like 
oranges and mangoes.

Drivers of LULC changes in the study area
According to data gathered from key informants 
(KII)  interviews and focused group discussion (FGD), 
several factors that cause LULC dynamics were identi-
fied in the Robit watershed. Population growth, expan-
sion of built-up areas, illegal settlement, agricultural land 
expansion, fuelwood collection, charcoal production, 
land redistribution, and intervention (land use and man-
agement rules and area exclosure) were among the fac-
tors causing LULC shifts. The majority of respondents 
(96%) believed that the expansion of agricultural land 
was the foremost driver of LULC dynamics. This is sup-
ported by the LULC analysis, which showed that agricul-
tural land covers approximately 49.2% of the watershed 
area. Besides, the summary of the FDGs revealed that 
the domination of agricultural land is due to a decline 
in land productivity and population growth that pushes 
people to need more land. In recent years, there has been 
a notable increase in population in the two districts that 
encompass the Robit watershed. According to the Central 

Table 5 Results of analysis of the LULC change matrix from 1993 to 2023
LULC types Agricultural land Grazingland Shrubland Forest Built-up area Bareland
Agricultural land 31.8 8.89 4.03 1.73 4 0.91
Grazingland 5.49 5 1.62 0.85 0.71 0.28
Shrubland 5.49 4.13 12.75 0.73 0.21 0.32
Forest 1.24 0.53 1.29 2.02 0.15 0.08
Built-up area 0.33 0.09 0.02 0.08 0.52 0.21
Bareland 0.87 0.15 0.078 0.03 0.16 1.77

Fig. 8 Gain and loss of LULC types between 1993 and 2023
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Statistical Agency of Ethiopia (CSA) national census 
report, the total population of Kewet woreda was 107,644 
in 1994. However, in 2007, the woreda’s population 
increased to 118,333, indicating a 9.97% increase from 
the 1994 census. Likewise, the population is expected 
to reach 147,093 in 2017. Tarmaber woreda had 84,481 
residents in 2007; by 2017, that number was expected to 
rise to 103,618 (CSA 2013). The watershed, especially its 
lower regions, has the ability to produce cash crops like 
tobacco, mungbean, and onions; as a result, the farmland 
has mostly expanded into grazing and shrubland. Many 
studies have also reported that agricultural growth that 
trigger by population growth is a key factor in changes in 
LULC (Berihun et al. 2019; Degife et al. 2019; Abebe et al. 
2022; Gitima et al. 2022).

Nearly 94.2% of the respondents stated that illegal set-
tlement and growing built-up areas were important driv-
ers of LULC dynamics. This is corroborated by the LULC 
analysis, which shows that the built-up area increased 
from 1.9 to 5.7% between 1993 and 2023. During the field 
visit, it was determined that huge agricultural regions 
covered in perennial plants, such as orange and mango, 
were being turned into settlements. According to experts, 
unlawful settlement is one of the key elements influenc-
ing the application of land use and management regu-
lations, which promise strategies for lowering adverse 
LULC dynamics. Similarly, prior studies have reported 
that illegal settlement and expansion of built- up area at 
the expanse of agricultural land was the driving factor 
causing LULC changes (Tolessaa et al., 2017).

According to 88.5% of respondents, the logging of 
wood for fuel and charcoal production was a significant 
factor impacting the LULC change in the watershed. Aca-
cia species are preferred for producing charcoal because 
they are more common in the lower part of the water-
shed. Additionally, the FGD confirmed that the wood is 
primarily collected by the watershed’s rural residents for 
fuel and charcoal. For financial benefit, they also sold 
wood and charcoal to the town’s residents. The majority 
of inhabitants in the upper watershed also rely on the sale 
of firewood for locally crafted furniture, and construction 
needs, making trees their main source of revenue. Owing 
to this demand, woodlots with eucalyptus trees and plan-
tations, even on agricultural land, were mostly found in 
the upper regions of the watershed. Tadese et al. (2021) 
noted that the removal of trees and timber for residen-
tial and commercial usage is another significant issue that 
contributes to LULC changes. Moreover, approximately 
71% of the interviewees specified that area exclosure 
was considered the driver of LULC change. FGD also 
asserted that area exclosure courage’s that increasing of 
vegetation.

Conclusions
The management of LULC can be directly affected by 
the accuracy of classification algorithms, making it a 
critical component of remote sensing analysis. Therefore, 
choosing the best performing classification algorithm is 
a critical step, and the accuracy of this process is vital 
for effective LULC change analysis. In this study, the 
accuracy of the three algorithms (CART, RF and SVM) 
for LULC classification in the study area is compared in 
Google Earth Engine Platform. Additional input datasets, 
including, spectral indices, and topographic characteris-
tics, were incorporated in to satellite images to increase 
accuracy. The results demonstrated that RF could obtain 
excellent accuracy with OA = 95.6 and K = 0.94 when 
topographic variables and spectral indices were added to 
the images. The result of this study clearly showed that 
choosing a single classification technique is insufficient 
to produce a land cover map that is both highly accu-
rate and realistic. Therefore, it is crucial to compare and 
choose the superior one for a specific study area.

Spatiotemporal analysis of land cover and land use 
types changes from 1993 to 2023 was conducted using 
RF at the Robit watershed in northeastern Ethiopia. The 
result showed that there were significant spatiotempo-
ral differences in LULC changes in the Robit watershed 
during the past 30 years. Agricultural land was the most 
prominent kind of LULC, with a dropping tendency, 
while built-up areas consistently showed an increas-
ing pattern. After 20 years of declining trend, the veg-
etation area (forest and shrubland) has recently shown 
an increasing tendency. Bareland shows an increasing 
trend, whereas grazingland shows a growing trend with 
a current diminishing tendency. The largest changes in 
land use were observed to be occurring from shrubland 
to agricultural land and from agricultural land to built-
up areas. The observed changes in LULC in the study 
region are mostly associated with population growth, the 
growth of agricultural land, the collection of fuelwood, 
the production of charcoal, the expansion of built-up 
areas, illegal settlement, and intervention. This study pro-
vides information about LULC patterns in Robit water-
shed that could be useful for creating management plans 
and regulations for evaluating and monitoring the natural 
resources in the watershed. Thereby, this information is 
essential for protecting one of Ethiopia’s most significant 
landscapes.
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