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Abstract 

Random forests (RF) have been widely used to predict spatial variables. Several studies have shown that spatial cross-
validation (CV) methods consistently cause RF to yield larger prediction errors compared to standard CV methods. 
This study examined the impact of species characteristics and data features on the performance of the standard 
RF and spatial CV approaches for predicting species abundance distribution. It compared the standard 5-fold CV, 
design-based validation, and three different spatial CV methods, such as spatial buffering, environmental blocking, 
and spatial blocking. Validation samples were randomly selected for design-based validation without replacement. 
We evaluated their predictive performance (accuracy and discrimination metrics) using artificial species abundance 
data generated by a linear function of a constant term ( β0 ) and a random error term following a zero-mean Gaussian 
process with a covariance matrix determined by an exponential correlation function. The model was tuned over mul-
tiple simulations to consider different mean levels of species abundance, spatial autocorrelation variation, and species 
detection probability. Here we found that the standard RF had poor predictive performance when spatial autocor-
relation was high and the species probability of detection was low. Design-based validation and standard K-fold CV 
were found to be the most effective strategies for evaluating RF performance compared to spatial CV methods, even 
in the presence of high spatial autocorrelation and imperfect detection for random samples. For weakly or moder-
ately clustered samples, they yielded good modelling efficiency but overestimated RF’s predictive power, while they 
overestimated modelling efficiency, predictive power, and accuracy for strongly clustered samples with high spatial 
autocorrelation. Globally, the checkerboard pattern in the allocation of blocks to folds in blocked spatial CV was found 
to be the most effective CV approach for clustered samples, whatever the degree of clustering, spatial autocorrela-
tion, or species abundance class. The checkerboard pattern in spatial CV was found to be the best method for ran-
dom or systematic samples with spatial autocorrelation, but less effective than non-spatial CV approaches. Failing 
to take data features into account when validating models can lead to unrealistic predictions of species abundance 
and related parameters and, therefore, incorrect interpretations of patterns and conclusions. Further research should 
explore the benefits of using blocked spatial K-fold CV with checkerboard assignment of blocks to folds for clustered 
samples with high spatial autocorrelation.
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Introduction
Measuring abundance and distribution is a primary goal 
of ecologists, conservationists and managers (Royle and 
Dorazio 2009). Understanding population dynamics, 
community structure and the effects of management 
depends on the knowledge of species abundance and dis-
tribution, as well as related parameters, which can shed 
light on less obvious aspects of a community (McGill 
et  al. 2007; Kellner and Swihart 2014; Baldridge et  al. 
2016; Su 2018). Abundance trends can serve as an early 
indicator of population collapse (Clements et  al. 2017; 
Ceballos et  al. 2020; Hastings et  al. 2020). Therefore, to 
better inform spatial conservation planning, one needs to 
improve species monitoring and abundance prediction 
(Pauly and Froese 2010; Mi et al. 2017).

Recent developments in big data analysis have led to 
the development of several high-computational statistical 
methods with the potential for ecological data mining, 
enabling the use of machine learning (ML) techniques, 
to make reliable predictions from noisy and incomplete 
datasets (Cutler et al. 2007). One of the most popular ML 
techniques is the Random Forest (RF) (Breiman 2001; 
Saha et al. 2023). RF is already widely used in ecological 
research and outperforms most commonly used methods 
(Lawler et al. 2006; Prasad et al. 2006; Cutler et al. 2007; 
Martín et al. 2021). Unlike many conventional statistical 
analysis techniques, RF makes no distributional assump-
tions and can handle complex and nonlinear relation-
ships between abundance and its environmental factors. 
It is also able to handle scenarios where the number of 
predictors significantly exceeds the number of observa-
tions (Kuhn and Johnson 2013; Scornet 2016; Zurell et al. 
2016; Zhang et al. 2020).

Temporal and spatial processes often cause autocor-
relation in ecological data, leading to model errors and 
overfitting (Legendre and Fortin 1989; Miller et al. 2007; 
Roberts et  al. 2017). The independence problem is the-
oretically solved by models that take into account the 
dependence structure, and this should allow model fit 
assessment and model selection using conventional para-
metric techniques. In practice, however, due to specifica-
tion errors, structural overfitting, and other problems, 
parametric model evaluations may not perform as well 
as they should (Dormann et al. 2007; Miller et al. 2007). 
Reliable non-parametric approaches are required for ML 
models performance assessment, which represents a crit-
ical stage in the modelling process (Roberts et al. 2017).

In ecology, this typically involves the measurement of 
how well predictions match field observations (Franklin 
2010; Peterson et  al. 2012; Guisan et  al. 2017). Ideally, 
prediction errors and model validation should be com-
puted using independent data. However, in most cases, 
such independent data are not available (Araújo et  al. 

2005; Franklin 2010; Radosavljevic and Anderson 2014). 
Therefore, cross-validation (CV) is used to estimate the 
predicted error on a single dataset (Hastie et al. 2009).

Many studies show that the dependence structure can 
compromise the independence of the validation data-
set, leading to overly optimistic estimates of predic-
tion error (Wenger and Olden 2012; Bahn and McGill 
2013; Roberts et al. 2017; Meyer et al. 2019; Ploton et al. 
2020). Spatial dependence in modelling is a complex 
issue due to factors such as model misspecification, 
omission of important covariates and processes such 
as localised dispersal or social behaviour (Fletcher and 
Fortin 2018). It is important in ecological modelling 
and conservation because predictive models often rely 
on random and independent observations, violating the 
relationship between distance and similarity in geogra-
phy and ecological theory (Tobler 1979; Legendre and 
Fortin 1989; Miller et  al. 2007). Incorporating spatial 
dependence into models may enhance understanding 
of effects of different explanatory variables, resulting in 
better statistical inference and subsequent ecological 
interpretation of patterns observed (Miller et  al. 2007; 
Fletcher and Fortin 2018).

In recent years, there has been a debate about the best 
way to separate training and validation datasets (Bahn 
and McGill 2013; Radosavljevic and Anderson 2014; 
Wenger and Olden 2012). Stone (1974), argued that ran-
dom data partitioning does not generate independent 
validation datasets when dependence structures are pre-
sent in the data because calibration points are not statis-
tically independent from validation points. Consequently, 
many CV techniques have been developed and are now 
used in ecological studies to obtain supposedly unbiased 
error and parameter estimates (Shao 1993; Kohavi 1995; 
Rykiel 1996).

To correct for the bias in error estimates produced by 
these approaches, adjustments based on spatially sepa-
rated training and testing datasets have been proposed 
to assess whether the model performs as well at closer as 
at more distant sites (Telford and Birks 2009; Amesbury 
et al. 2013). Their main focus is to increase the independ-
ence of CV by appropriately partitioning the data into 
blocks and accounting for the dependence structure to 
prevent overfitting (Dormann et  al. 2007; Trachsel and 
Telford 2016). However, only a small number of stud-
ies have clearly shown that the estimates obtained from 
blocked CV are quite close to the ’true’ error that would 
be expected for a data set that is truly independent (Rob-
erts et al. 2017).

Numerous studies have shown that spatial CV 
approaches consistently produce higher prediction 
errors compared to the standard random CV (Araújo 
et  al. 2005; Veloz 2009; Arlot and Celisse 2010; Lieske 
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and Bender 2011; Roberts and Hamann 2012; Wenger 
and Olden 2012; Bahn and McGill 2013; Radosavlje-
vic and Anderson 2014; Wadoux et al. 2021). Although 
spatial block CV addresses spatial autocorrelation, a 
new validation problem may arise if block structures 
follow environmental gradients, which could prevent 
the use of large regions of predictor space (Snee 1977). 
As a result, to predict the hold-out data, the model 
must extrapolate beyond the ranges or into novel com-
binations of predictor values from those contained in 
the training folds (Zurell et al. 2012).

Wadoux et  al. (2021) provided evidence that esti-
mates based on both non-spatial and spatial CV can 
be biased, and spatial CV does not improve the predic-
tive performance. They stated that recent research on 
spatial CV approaches in ecology has led to a misun-
derstanding of statistical validation in a spatial context. 
When validating via design-based inference, valida-
tion sites may be physically close to calibration sites, 
so they recommended sticking to rigorous statistical 
validation procedures using probability sampling and 
design-based inference. The design-based approach 
assumes that validation samples used to estimates per-
formance metrics are based on classical sampling the-
ory (Cochran 1977; Gruijter et  al. 2006; Gregoire and 
Valentine 2007). Whether or not two randomly selected 
locations are drawn from a spatially structured popula-
tion, prediction errors arise independently at each loca-
tion (Gregoire and Valentine 2007; Brus 2021). Recent 
studies acknowledge that situations where samples are 
highly clustered, can still pose challenges for evaluating 
models using non-spatial CV methods (de Bruin et  al. 
2022).

However, many studies that have recently investigated 
the performance of spatial CV methods used random 
assignment of blocks to folds in modelling above-ground 
forest biomass (Brenning 2005; Lyons et al. 2018; Valavi 
et al. 2019; de Bruin et al. 2022; Wang et al. 2023). This 
research investigates how different methods of assign-
ing blocks to folds may affect blocked spatial CV meth-
ods. Blocks to folds are one of the essential processes in 
species modelling, as species data are rarely evenly dis-
tributed across the landscape (Valavi et  al. 2019). Con-
sidering species and data features (abundance class, 
imperfect detection, sampling method, sample size and 
spatial autocorrelation), this article provides practical 
guidance on using spatial CV to evaluate the predictive 
effectiveness, power and accuracy of the RF in ecologi-
cal research. The standard 5-fold CV, the design-based 
validation, and three different blocking strategies: spatial 
blocking, spatial buffering, and environmental blocking 
were all tested to achieve this goal. Random, systematic, 

and checkerboard pattern blocks-to-folds allocation 
strategies were tested.

Methods
Data simulation
We used artificial species data to assess the performance 
of the standard RF and spatial CV approaches in pre-
dicting species abundance in a geographical area. The 
advantage of generating artificial data is that we have full 
knowledge and control over the factors under investiga-
tion, whereas we are often unfamiliar with the empirical 
distributions of the data when comparing models with 
real data (Hirzel et al. 2001; Austin et al. 2006; Meynard 
and Quinn 2007). We generated datasets as proposed by 
Guélat and Kéry (2018) to assess the impact of block-
ing strategies on the effectiveness of the random forest 
algorithm in predicting species abundance in ecology, 
taking into account imperfect detection and spatial auto-
correlation. We generated 250 datasets within an 80*80 
cell landscape of 6400 cells for each case. The dependent 
variable was the result of two random processes, while 
the independent variable was generated using a normal 
distribution. The following models were used to generate 
the datasets:

At each location, i, the first random process returns 
the true latent abundance Ni , � is the expected abun-
dance values. β0 represents a constant term contribut-
ing to abundance, β is the growth rate coefficient of the 
exponential function, xi is a continuous covariate, ρi is 
a spatially autocorrelated random effect generated by 
an exponential correlation function and γ represents 
the spatial autocorrelation’s variation strength. We used 
β = 0.8 for all generated species abundance, β0 = −0.6 
and γ = 0.5 for rare species with low spatial autocorre-
lation; β0 = −1.5 and γ = 1.5 for rare species with high 
spatial autocorrelation; β0 = 1.8 and γ = 0.5 for common 
species with low spatial autocorrelation; β0 = 0.8 and 
γ = 1.5 for common species with high spatial autocorre-
lation (Guélat and Kéry 2018).

The strength of pairwise correlation in the landscape 
is defined by the covariance matrix of the multivariate 
normal (MVN) distribution and the distance dij between 

(1)Ni ∼ Poisson(�i),

(2)log(�i) = β0 + βxi + γρi,

(3)ρi ∼ MVN

(

0, σ 2e−θdij
)

,

(4)Cit ∼ Binomial(Ni, p).
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sites i and j. In addition, σ 2 denotes the spatial variance 
and θ is the scale parameter that determines the distance-
dependent decay of spatial autocorrelation in expected 
species abundance. In other words, the distance-based 
strength of pairwise correlations in the landscape is 
determined by the covariance matrix of the multivari-
ate normal distribution. The second random process 
produces the observed data, the counts Cit at site i dur-
ing visit t, and is linked to the outcome of the first (i.e. 
conditional on Ni ). This second process is a description 
of the error in the measurement of abundance and is gov-
erned by the probability of detection p per visit. We used 
p = 0.3 and p = 0.8 respectively for low and high species 
probability of detection.

We have generated a total of 28 different categories of 
species (cases). These have been grouped into three sce-
narios. Table 1 shows the 28 different types of abundance 
data that were generated.

Data analysis
We used the standard RF to test the influence of three 
sampling methods on the predictive performance of five 
spatial CV and the standard 5-fold CV strategies in mod-
elling species abundance distribution accounting for spe-
cies features (abundance class and detection probability) 
and data features (sample size and spatial autocorrelation 
variation strength).

Random forest
RF is a data-driven statistical technique, primarily used 
for classification or regression, which improves predic-
tion accuracy by combining a large number of decision 
trees (Breiman 2001; Prasad et al. 2006; Biau and Scornet 
2016). RF focuses on iterative training of the algorithm 
rather than formulating a statistical model, which simpli-
fies its mathematical formulation (Hengl et al. 2018). Its 
algorithm uses two powerful techniques: random sub-
space selection at each split and bagging of unpruned 
decision tree learners (Breiman et  al. 1984; Breiman 
1996; Amit and Geman 1997; Ho 1998; Dietterich 2004). 
The RF decision rule uses averaging for regression or a 

majority vote to classify the results produced from sepa-
rate trees (Biau 2012).

In regression, RF predictions ( θ̂ ) are obtained by 
averaging results from a given number ( B ) of individ-
ual decision trees ( t∗b ) based on generated bootstrap 
samples, such as (Breiman et  al. 1984; Breiman 2001; 
Prasad et al. 2006; Biau and Scornet 2016; Hengl et al. 
2018):

We used the fast implementation of the RF (ranger) func-
tion (Wright and Ziegler 2017) in R version 4.2.2 (R Core 
Team 2022) using default parameters for regression to 
predict observed abundance data (dependent variable) 
from a randomly generated standard normal distribution 
(independent variable). The focus of this work, however, 
is on the evaluation of blocking strategies in spatial CV 
approaches.

Explored samples
Sampling design is one of the most important factors 
determining the limits of results and interpretation 
of analyses in ecological research (Greig-Smith 1983; 
Kenkel et al. 1989; Goedickemeier et al. 1997). For spa-
tially structured scenarios, we compared three com-
mon sampling techniques (Simple random sampling, 
systematic sampling, and two-stage cluster sampling) 
to better understand their influence on spatial CV 
methods.

•	 Simple random sampling

	 The basic form of probability sampling is simple ran-
dom sampling (SRS). In this sampling method, the 
probability of selecting any sample of a specific size 
remains unchanged for all possible samples. There-
fore, each observation unit or individual in the popu-
lation has the same probability, p, of being included 

(5)θ̂B(x) =
1

B

B
∑

b=1

t∗b (x),

Table 1  Generated species abundance characteristics

Scenario Spatial 
autocorrelation

Variation strength of 
autocorrelation

Probability of detection Abundance class Sample size (n) Number 
of cases

1 No γ = 0 p = 1 Rare, Common Small (n=200), Large 
(n=1000)

4

2 Yes γ = 0.5 ,
γ = 1.5

p = 1 Rare, Common Small, Large 8

3 Yes γ = 0.5,
γ = 1.5

High ( p = 0.8),
Low ( p = 0.3)

Rare, Common Small, Large 16
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in the sample, such as (p = 1/N ) , where N is the 
population size (West 2016). Despite its simplicity, it 
can be an effective sampling method under the right 
circumstances and serve as a theoretical basis for 
more complex sampling techniques (Yang and Laven 
2021).

	 However, the SRS can be costly and sometimes is 
not practical because it demands that all items be 
identified and named before the sampling. Addi-
tionally, a basic SRS design may provide samples 
that are dispersed over a wide geographic area since 
it gives each potential sample of n units an equal 
chance of being chosen. However, implementing 
such a sample’s geographic distribution would be 
exceedingly expensive. In addition, subdomains 
are probably represented in the sample in propor-
tion to the frequency they are found in the popu-
lation. While this would be advantageous for some 
surveys, it would be problematic for those whose 
interest is centred on subgroups that comprise a 
small fraction of the population (Levy and Leme-
show 2013).

•	 Systematic sampling Systematic sampling is a 
probability sampling where every nth case following 
a random start is chosen. Let N be the population 
size and n the sample size required. In the case of 
systematic sampling, the sampling interval, repre-
sented by k, is defined first: k = N

n  , where k is the 
number of elements in the population to be skipped 
before moving on to the next. Then, randomly 
choose a starting number (r) between 1 and k. From 
r, select every kth element until the required sam-
ple size is obtained. The sample is then given by: 
Sample = r, r + k , r + 2k , . . . , r + (n− 1)k , where 
r is the random starting element and k is the sam-
pling interval. Systematic sampling is commonly 
used in practice because it is simple to implement 
and can be taught to people with minimal experi-
ence in survey methodology. However, in reality, 
systematic sampling is perhaps the most extensively 
used method, alone or in conjunction with another 
method.

•	 Two-stage cluster sampling
	 With this sampling technique, individuals from a lim-

ited population are grouped into clusters, which are 
bigger sampling units. A cluster sampling technique 
sampled a population of N clusters to create a set of 
(n) clusters. Typically, these clusters are referred to as 
primary sampling units, while the individuals inside 
each cluster are referred to as secondary sample units 
(Yang and Laven 2021). All secondary sampling units 
may be measured or observed within the original 

sampling units (one-stage cluster sampling), or the 
secondary sampling units may be sampled using SRS 
(two-stage cluster sampling). The chosen individuals 
then form a sample of the finite population within 
the chosen clusters (Cochran 1977).

	 The two-stage cluster sampling can be described as 
follows:

–	 A sample of primary sampling units (clusters) is 
selected.

–	 Select n clusters from the population, denoted 
C1,C2, ...,Cn.

–	 Within each cluster selected, sample individuals:
–	 For each selected cluster Ci , let mi be the number of 

individuals in the cluster Ci.
–	 Select a random sample of mi individuals from the 

cluster Ci , denoted as x11, x12, . . . , x1mi.

	  The overall sample from the population consists of 
the individuals selected in the second stage, namely 
x11, x12, . . . , x1m1

, x21, x22, . . . , x2m2
, . . . , xn1, xn2,

. . . , xnmn
.

	 The two most fundamental reasons for the wide-
spread use of cluster sampling in large-scale sample 
research are feasibility and economics (Levy and 
Lemeshow 2013). This study used a specific case 
where K-means spatial clustering was performed 
using grid coordinates. First, from a grid of 6400 
units, 25 clusters were formed. We then randomly 
selected 20 clusters for weakly clustered samples, 
10 clusters for moderately clustered samples and 
5 clusters for strongly clustered samples. We col-
lected 10 and 50 units for small and large sample 
sizes, respectively, in each cluster. Figure  1 shows 
the sampled sites within each of the sampling 
designs.

Model validation
We used a design-based validation approach, the stand-
ard 5-fold CV and three spatial CV approaches to assess 
the RF predictive performance. Figure  2 is a schematic 
representation of the different CV strategies under con-
sideration in this study using a random sample.

Design‑based probability sampling   This study used 
simple random sampling, where each unit in a population 
has an equal probability of being selected in a sample of a 
given size (number of units). When sampling is probabil-
ity-based, a design-based estimation can be used to esti-
mate population validation parameters (Stehman 1999; 
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Stehman and Foody 2009; Brus et al. 2011). The expected 
performance and the design-based performance for each 
dataset were obtained by randomly selecting training 
(75%) and test (25%) samples using the entire population 
(6400 grids) and sampled grids (sites), respectively. First, 
the training set is used for model fitting, and the fitted 
model is used for prediction in the holdout set (James 
et al. 2013).

Cross‑validation methods   Cross-validation involves 
estimating the test’s error rate by excluding a subset of 
training observations from the calibration process and 
applying the test to the excluded observations. Four 
approaches were used to cross-validate the model’s per-
formance.

•	 Standard K-fold cross-validation: In K-fold cross-
validation, the data set is randomly divided into 
K-folds or groups of approximately equal size, 
where each group is used as the test set and the 
remaining groups (K − 1) are used as the training 

set (Brownlee 2019), (Wadoux et  al. 2021). This 
study used the five-fold CV. It has been empiri-
cally shown that K = 5 or 10 provides estimates of 
the test error rate that do not suffer from excessive 
bias or variance (James et  al. 2013). The standard 
K-fold cross-validation does not account for spatial 
autocorrelation.

•	 Spatial K-fold cross-validation: The spatial K-fold 
CV differs from the random K-fold CV in the way in 
which the observations are divided into geographi-
cally structured sets (blocks). To ensure independ-
ence between CV folds, the aim is to group observa-
tions into spatially homogeneous clusters with sizes 
larger than the range of autocorrelation in the data 
(Valavi et al. 2019; Ploton et al. 2020; Wadoux et al. 
2021). We assumed that each block size was 1.25 * the 
range of the variogram generated over the whole data 
set in the case of spatial autocorrelation, and consid-
ered the block size equal to the variogram range in 
the absence of spatial autocorrelation. Because spe-
cies data are rarely evenly distributed across land-

Fig. 1  Location of sample sites: Black dots represent sample sites; Coordinates x and y are measured in degrees, representing longitude and latitude
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scapes, one of the most important processes in mod-
elling species is assigning blocks to folds (Valavi et al. 
2019). We tested three techniques for the assignment 
of blocks to folds:

–	 Random: blocks are randomly assigned to folds,
–	 Systematic: blocks are numbered and sequentially 

assigned to folds,
–	 In a checkerboard pattern: Although the checker-

board design involves only two folds, it effectively 
ensures that there are no adjacent blocks in any 
one fold.

	  In all spatial blocking scenarios, all data in the 
test folds are excluded from the training data sets. 
We used square blocks because these are the most 

common block form (Brenning 2005; Lyons et al. 
2018; Valavi et al. 2019; Wang et al. 2023).

•	 Buffered leave-one-out cross-validation: The buff-
ering technique creates spatially distinct training and 
testing folds, considering a circular buffering of a pre-
determined radius around each observation point 
(Rest et  al. 2014). During model calibration, observa-
tions that are close to a validation point by the defined 
radius, depending on the distance, are not taken into 
account (Ploton et al. 2020). The typical assumption is 
that this radius is larger than the range of a variogram 
that is performed on the whole data set or that is cal-
culated on the residuals after the model calibration 
and the predictions (Ploton et al. 2020; Wadoux et al. 
2021). In this study, r is equal to the size of the block 
as defined in the spatial K-fold cross-validation. In this 
method, only one observation is used for the validation 

Fig. 2  Schematic representation of design based validation and the different CV methods. RandomKF Random K-folds, BLOOCV Buffered 
leave-one-out, Spat_KFcheck Checkboard spatial K-folds, Spat_KFran Random spatial K-folds, Spat_KFsyst Systematic spatial K-folds and EnviBlock 
Environmental blocking
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set in each model run. The remaining n− 1 observa-
tions form the training set. This method is inspired by 
the ’leave-one-out’ scheme of cross-validation. In this 
case, each point that is left out corresponds to a fold or 
a block (Valavi et al. 2019).

•	 Environmental Blocking: Based on the input vari-
ables, we used a K-means clustering technique to 
determine the number of clusters in environmen-
tal space, defining clusters of similar environmental 
conditions (Hartigan and Wong 1979). Within each 
cluster, one-fold was identified (Valavi et al. 2019).

With, S1 : random sample used to train the model, 
S2 : random sample used to test the model, n: sample 
size, A1: sample 1 observation and exclude neighbours 
within a radius r; B1, C1 and D1: Split the observation 
into K spatial blocks of length greater than the range of 
the variogram. The block length is equal to the radius 
in BLOOCV. B, C and D represent checkerboard, ran-
dom and systematic patterns in the assignment of blocks 
to folds. E1: Clustering of observations into K groups 
(K-means clustering in this study). Since the 5-fold CV 
requires at least 5 clusters, datasets with less than 5 clus-
ters were not considered in this study. F1: Splitting of 
observations into K random folds ( K = 5 ). A2, B2, C2, 
D2, E2 and F2 show how observations and/or blocks can 
be allocated in the training and test datasets. For blocked 
K-folds CV, K − 1 folds are assigned to the training set 
and one fold is assigned to the test set. For BLOOCV, the 
selected observation is assigned to the test dataset and 
the remaining observations are assigned to the training 
dataset, except observations within the exclusion radius. 
Training and test observations are represented by black 
and red dots. Crossed black dots are observations within 
BLOOCV’s exclusion buffer.

Predictive performance assessment
Performance metrics were averaged (mean) over 250 
simulated data sets for each case to limit the influence 
of randomness associated with the different CV meth-
ods. Measures of accuracy and discrimination were used 
to assess the impact of the sampling strategy and the CV 
method on RF predictive performance. The CV approach 
that yields performance measures closest to the design-
based method used on the whole population is the best. 
Results for all CV’s across the 250 replicates are summa-
rised in box plots.

•	 Accuracy: The bias and root mean square error 
(RMSE) were calculated as follows: 

where Oi and Pi refer to observed and predicted spe-
cies abundance at sampled locations i , respectively, 
and n is the number of sampled locations (number of 
observations).

•	 Discrimination: The mean squared Spearman rank 
correlation coefficient R2 = ρ2

s  between the pre-
dicted and observed abundance of species at the 
sampled sites and the modelling efficiency coefficient 
(MEC) of Nash and Sutcliffe (1970) were used.

	 The n raw observed Oi and predicted Pi are converted 
to ranks R(Oi) , R(Pi) and ( ρs ) is defined as their Pear-
son correlation coefficient. 

where cov(R(O),R(P)) represents the covariance 
between the rank variables of O and P , σR(O) and 
σR(P) are standard deviations of the rank variable of 
O and P.

	 The MEC is calculated as: 

where Oi and Pi refer to observed and predicted spe-
cies abundance at sampled location i , n is the num-
ber of sampled locations and Ō represents the mean 
observed species abundance across all sampled 
locations.

Since the different performance measures were either not 
normally distributed according to the Shapiro and Wilk 
(1965) test for normality, or had heterogeneous vari-
ance according to the Fligner and Killeen (1976) test for 
homogeneity of variances, or both, the Kruskal and Wal-
lis (1952) test was used to determine the significant dif-
ference in predictive performance between the different 
cross-validation techniques. To compare their predictive 
performance, Dunn (1964) post-hoc test for the Kruskal-
Wallis test was used. The Benjamini and Hochberg (1995) 
method was applied to adjust P-values. The cross-valida-
tion strategy that produced performance statistics from 
a sample as close as possible to train the model on 80% 
of population observations and testing on the remaining 
20% was considered the most effective.

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Oi − Pi)2,

(7)Bias =
1

n

n
∑

i=1

(Oi − Pi),

(8)ρs =
cov(R(O),R(P))

σR(O)σR(P)
,

(9)MEC = 1−

∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi − Ō)2

,
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Results
Description of the generated species abundance 
distributions
Characteristics of simulated species abundance dis-
tribution parameters (descriptive statistics, variogram 
parameters and dispersion (overdispersion vs. equid-
ispersion) and their variation between datasets are 
presented in Table 2. The simulated abundance distri-
butions are skewed to the right for all species, as the 

medians are lower than the means. All of the gener-
ated species distributions are over-dispersed, except 
in the case where the species is rare, the probability of 
detection is low, and the spatial autocorrelation is low 
or absent. Datasets having outliers for the variogram’s 
range parameter were not included in the analysis 
since the minimal number of blocks needed to assess 
the model’s performance using the spatial fivefold CV 
approach was not fulfilled.

Fig. 3  Forest accuracy in modelling species abundance data under optimal conditions (perfect detection and no spatial autocorrelation), using 
various cross-validation approaches. Expected: Design-based validation using all the population; DesignBased Design-based validation using 
sampled sites, RandomKF Standard random K-fold CV, BLOOCV Buffered leave-one-out CV, Spat_KFran Random spatial K-folds CV, Spat_KFsyst 
Systematic Spatial K-folds CV, Spat_KFcheck Checkerboard spatial K-folds CV, EnviBlock Environmental blocking. The red dashed line shows 
the expected average performance measures; There is no statistically significant difference between the means for CV methods sharing the same 
letter
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RF performance using different CV strategies for species 
abundance data with perfect detection and no‑spatial 
structure
Under ideal conditions, i.e. perfect detection and no 
spatial autocorrelation, Fig.  3 and Supplementary Fig-
ure  1 show that environmental blocking is the least 
accurate CV approach. This is true regardless of sample 
size or species abundance class. This is followed by spa-
tial CV using a checkerboard pattern to assign blocks 
to folds for common species. This latter approach 

requires more observations to achieve the same level of 
accuracy as other CV approaches (spatial or no spatial). 
For relatively small sample sizes (n = 200) , CV methods 
do not produce prediction estimates that are equivalent 
to those of the population from which the sample was 
taken, especially for common species. As rare species 
are less variable, they theoretically yield lower predic-
tive errors and variability than common species.

Using discrimination metrics to evaluate the predic-
tive performance of the RF, Fig.  4 and Supplementary 

Fig. 4  The predictive power of the standard random forest for modelling species abundance data with perfect detection and no spatial 
autocorrelation, using different cross-validation methods. Expected: Design-based validation using all the population; DesignBased Design-based 
validation using sampled sites, RandomKF Standard random K-fold CV, BLOOCV Buffered leave-one-out CV, Spat_KFran Random spatial K-folds CV, 
Spat_KFsyst Systematic Spatial K-folds CV, Spat_KFcheck Checkerboard spatial K-folds CV, EnviBlock Environmental blocking. The red dashed line 
shows the expected average performance measures; There is no statistically significant difference between the means for CV methods sharing 
the same letter



Page 12 of 24Mushagalusa et al. Environmental Systems Research           (2024) 13:23 

Figure  2 show that, under ideal conditions, the environ-
mental blocking method is the CV method with the least 
predictive power and modelling efficiency. This means 
the relationship between observed and predicted abun-
dance is very weak when using this method. For common 
species, when the sample size is small, standard random 
CV and checkerboard spatial K-folds CV are the meth-
ods that produce R2 values that are similar to the popula-
tion R2 but not significantly different from those obtained 
using random, systematic spatial K-folds CV or buffered 
leave-one-out CV. No CV method achieves the expected 
R2 for rare species with a relatively small sample popu-
lation. When sample sizes are sufficiently large for both 
common and rare species (see Fig. 4), the standard ran-
dom K-folds CV method has the same predictive power 
as all other spatial CV methods except environmental 
blocking.

RF is effective (see Supplementary Figure 2) in model-
ling species abundance in absence of spatial dependence. 
It accurately reproduces observed data ( MEC > 0.7 ) for 
common species. However, CV environmental blocking 
underestimates the modelling efficiency of RF. For rare 
species, Random Forest (RF) models perform moderately 
well (with MEC values between 0.5 and 0.7) using all CV 
methods except buffer-leave-one-out CV and environ-
mental blocking, which tend to underestimate RF model 
efficiency when spatial structure in abundance data is 
absent. The standard random K-fold CV is the most effi-
cient technique for all abundance groups and sample 
sizes.

Impact of sampling strategies on RF predictive 
performance using different CV strategies for spatially 
structured species abundance
This subsection summarise findings on the effect of 
the sampling strategy on RF predictive performance in 
spatially structured abundance data using various CV 
approaches. In the following sections, only large sample 
results are presented to avoid figures overloading. Find-
ings show that the interpretation of RF and CV strate-
gies performance depend on various parameters. These 
parameters include the chosen performance metrics, the 
sampling method used to collect data, and data charac-
teristics. Compared to the expected predictive perfor-
mance, results indicate that the best CV method may 
not always be the one that yields the highest values for 
discrimination performance metrics ( R2 and MEC) or the 
lowest accuracy metrics (RMSE and bias). This is because 
the above mentioned parameters may affect RF predic-
tions, resulting in underfitting or overfitting for certain 
datasets.

RF predictive accuracy
For low spatially autocorrelated abundance data, the 
results indicate that the choice of CV method does not 
have a significant effect on the RF’s RMSE regardless 
of the species abundance class except for the two-stage 
clustered sampled abundance data when the species is 
common. In this case, design-based CV decreases the 
predictive accuracy while the buffered leave-one-out CV 
yields the lowest RMSE but is not significantly different 
from other methods. However, if the spatial autocorre-
lation in abundance data is high and the sampling is the 
two-stage clustering, the RF predictive accuracy is signif-
icantly overestimated using the environmental blocking 
(see Supplementary Figure 3) for both rare and common 
species. Log (RMSE) was used due to the high variabil-
ity of RMSE values for abundance data with high spatial 
autocorrelation.

Bias
Figure  5 reveals that the choice of CV method signifi-
cantly impacts RF predictive bias. Environmental block-
ing underestimates RF bias for all sampling methods, 
regardless of spatial autocorrelation variation strength, 
while buffered leave-one-out CV overestimates RF pre-
dictive bias for low spatially autocorrelated abundance 
data.

Predictive power
For low spatially autocorrelated abundance data, the 
analysis suggests that when the sampling is random or 
systematic, the choice of CV method has a significant 
impact on the R2 between observed and RF predicted 
abundances and some methods especially Buffered leave-
one-out CV and Environmental blocking have more sub-
stantial effects than others. If the sampling is systematic 
and the species is rare, the buffered leave-one-out CV 
yields RF predictive power, which is not significantly dif-
ferent from the best CV methods. Environmental block-
ing underestimates R2 for both rare and common species 
for all sampling methods tested in this study. If the sam-
pling is the two-stage clustering, the highest RF’s R2 are 
obtained using design-based validation and standard 
K-fold CV methods but they are not significantly differ-
ent to random spatial K-fold CV and systematic spatial 
K-fold CV methods if the species is common. However, 
the most reliable R2 is obtained using Buffered leave-one-
out CV and spatial K-fold CV with a checkerboard pat-
tern in the assignment of blocks to folds which are not 
statistically different to the expected population R2 if the 
species is common. For rare species, the most reliable R2 
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is obtained using spatial K-fold CV with a checkerboard 
pattern in the assignment of blocks to folds.

For high spatially autocorrelated abundance data, 
the analysis suggests that when the sampling is sys-
tematic or random the spatial K-fold CV with a check-
erboard pattern in the assignment of blocks to folds 
yields expected population R2 but it is not significantly 

different to other CV methods, except environmen-
tal blocking and buffered leave-one-out CV which 
underestimates the RF predictive power for both rare 
and common species. For high spatially autocorre-
lated abundance data, only the spatial K-fold CV with 
a checkerboard pattern in the assignment of blocks to 
folds allows the RF to yield a predictive power which 
is not significantly different to the expected population 

Fig. 5  RF predictive Bias using different sampling and cross-validation methods. Expected: Design-based validation using all the population; 
DesignBased Design-based validation using sampled sites, RandomKF Standard random K-fold CV, BLOOCV Buffered leave-one-out CV, Spat_KFran 
Random spatial K-folds CV, Spat_KFsyst Systematic Spatial K-folds CV, Spat_KFcheck Checkerboard spatial K-folds CV, EnviBlock Environmental 
blocking. The red dashed line shows the expected average performance measures; There is no statistically significant difference between the means 
for CV methods sharing the same letter
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predictive power if the species is common and the sam-
pling is the two-stage clustering. If the species is rare 
(see Fig.  6), it is not significantly different from ran-
dom spatial K-fold CV and systematic spatial K-fold CV 
methods.

Modelling efficiency coefficient
For low spatially autocorrelated abundance data, what-
ever the sampling method, CV methods have a significant 

effect on the RF MEC. For both common and rare spe-
cies, environmental blocking followed by buffered leave-
one-out CV, random spatial K-fold CV and systematic 
spatial K-fold CV appear to have the most substantial 
effects on reducing RF MEC. Standard K-fold CV, spatial 
K-fold CV with a checkerboard pattern in the assignment 
of blocks to folds and design-based validation yield MECs 
similar or closest to expected RF MEC using all the popu-
lation datasets.

Fig. 6  Impact of sampling strategies on RF predictive power with different CV strategies. Expected: Design-based validation using all 
the population; DesignBased Design-based validation using sampled sites, RandomKF Standard random K-fold CV, BLOOCV Buffered leave-one-out 
CV, Spat_KFran Random spatial K-folds CV, Spat_KFsyst Systematic Spatial K-folds CV, Spat_KFcheck Checkerboard spatial K-folds CV, EnviBlock 
Environmental blocking. The red dashed line shows the expected average performance measures; There is no statistically significant difference 
between the means for CV methods sharing the same letter
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For high spatially autocorrelated abundance data, 
Supplementary Figure  4a reveal that for all sampling 
methods and CV methods, RF yields negative values 
for the MEC which indicates that the RF’s predictions 
are poor and may be considered unacceptable. How-
ever, the analysis suggests that for randomly and sys-
tematically sampled abundance data, the best RF MEC 
are obtained using standard K-fold CV, environmental 
blocking, or design-based validation. If sampling is the 

two-sample clustering (see Supplementary Figure  4), 
RF’s best MEC is obtained using environmental block-
ing followed by design-based validation and standard 
K-fold CV.

Effect of clustering level on spatial cross‑validation 
performance
For low spatially autocorrelated abundance data, Fig. 7a, 
b show that for all degrees of clustering, the blocked 

Fig. 7  Effect of the clustering and spatial autocorrelation on the RF modelling efficiency using different CV methods. Expected: Design-based 
validation using all the population; DesignBased Design-based validation using sampled sites, RandomKF Standard random K-fold CV, BLOOCV 
Buffered leave-one-out CV, Spat_KFran Random spatial K-folds CV, Spat_KFsyst Systematic Spatial K-folds CV, Spat_KFcheck Checkerboard spatial 
K-folds CV, EnviBlock Environmental blocking. The red dashed line shows the expected average performance measures; There is no statistically 
significant difference between the means for CV methods sharing the same letter



Page 16 of 24Mushagalusa et al. Environmental Systems Research           (2024) 13:23 

spatial CV with a checkerboard pattern in the assign-
ment of blocks to folds yields from clustered samples the 
closest or similar MEC to the expected population MEC 
while the design-based validation and the standard K-fold 
CV significantly overestimate the MEC of the RF for 
both common and rare species. If the species is rare, the 
design-based validation and the standard K-fold CV are 
not significantly different from the expected MEC values. 
All other spatial CV approaches underestimate the MEC 
of RF. For high spatially autocorrelated abundance data, 
results suggest that for weakly and moderately clustered 
samples, design-based validation and environmental 

blocking CV yield the closest MEC to expected values 
for both common and rare species. However, for strongly 
clustered samples, if the species is common, environmen-
tal blocking CV and blocked spatial CV with a checker-
board pattern in the assignment of blocks to folds yield 
MEC similar to expected values, while only environmen-
tal blocking CV yields a similar MEC to expected values 
for rare species. Design-based validation significantly 
overestimates the MEC of the RF for strongly clustered 
samples for common species.

For all degrees of clustering, species abundance class, 
and spatial autocorrelation, Fig. 8a show that the most 
reliable R2 is obtained using blocked spatial K-fold 

Fig. 8  Impact of clustering and spatial autocorrelation levels on RF predictive power and spatial CV approaches
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CV with a checkerboard pattern in the assignment of 
blocks to folds. Its prediction power from clustered 
samples is not significantly different from that expected 
assuming that the sample is representative of the pop-
ulation. However, if the species is rare and the spatial 
autocorrelation is low, its predictive power is not sig-
nificantly different from the random and systematically 
blocked spatial CV K-fold CV.

Effects of spatial autocorrelation and imperfect detection 
on the performance of spatial CV approaches in RF using 
random sampling to predict species abundance
Given spatial autocorrelation and imperfect detection, 
CV methods behave differently depending on species 
type (abundance class) and sample size. The probability 
of species detection significantly affects the predictive 
accuracy and predictive discrimination of RF (see Figs. 9 
and  10). When the probability of detecting a species is 

Fig. 9  Effect of imperfect detection and spatial autocorrelation levels on the predictive power of spatial CV techniques in RF for different species 
abundance class. Expected: Design-based validation using all the population; DesignBased Design-based validation using sampled sites; RandomKF 
Standard random K-fold CV, BLOOCV Buffered leave-one-out CV, Spat_KFran Random spatial K-folds CV, Spat_KFsyst Systematic Spatial K-folds CV, 
Spat_KFcheck Checkerboard spatial K-folds CV, EnviBlock Environmental blocking. The red dashed line shows the expected average performance 
measures; There is no statistically significant difference between the means for CV methods sharing the same letter
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high, RF provides low predictive accuracy but high pre-
dictive power, whereas when the probability of detecting 
a species is low, it provides high predictive accuracy but 
low predictive power.

Effect of species characteristics and spatial autocorrelation 
level on the predictive power of spatial CV techniques in RF
For a relatively small random sample, design-based vali-
dation and standard random CV are the best methods, 

but not significantly different from checkerboard spatial 
CV in assigning blocks to folds. However, design-based 
validation yields predictive accuracy with high variability. 
When spatial autocorrelation is low, random and system-
atic spatial CV overestimate the predictive power of the 
RF. In contrast, Fig.  9 shows that the buffer-leave-one-
out CV and environmental blocking underestimate the 
predictive power of the RF. When spatial autocorrela-
tion is high, the buffer-leave-one-out CV gives a similar 

Fig. 10  Effect of imperfect detection and spatial autocorrelation levels on the MEC of RF for different species abundance classes using different 
spatial CV techniques. Expected: Design-based validation using all the population; DesignBased Design-based validation using sampled sites, 
RandomKF Standard random K-fold CV, BLOOCV Buffered leave-one-out CV, Spat_KFran Random spatial K-folds CV, Spat_KFsyst Systematic Spatial 
K-folds CV, Spat_KFcheck Checkerboard spatial K-folds CV, EnviBlock Environmental blocking. The red dashed line shows the expected average 
performance measures; There is no statistically significant difference between the means for CV methods sharing the same letter
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predictive ability to the most reliable methods, which 
are the standard random K-fold CV and the spatial CV 
with a checkerboard pattern in block-to-fold assign-
ment methods for all species detection probabilities 
and abundance classes. They do not differ significantly 
from those estimated using the design-based validation, 
however, in contrast to the case of low spatial autocor-
relation, when spatial autocorrelation is high and the 
sample size is relatively small, environmental blocking 
overestimates RF predictive ability more than random 
and systematic spatial CV, which overestimates RF pre-
dictive ability and prediction accuracy for both low and 
high spatial autocorrelation. For large sample sizes, when 
spatial autocorrelation is low, other spatial CV methods 
do not significantly affect RF performance to predict the 
abundance of a species with a low probability of detec-
tion, common or rare, except for environmental blocking, 
which is the least effective CV method in terms of predic-
tive power, followed by buffer leave-one-out CV. When 
spatial autocorrelation is high, buffer-leave-one-out CV 
and environmental blocking are not statistically different 
from other methods. However, standard random CV and 
spatial CV with checkerboard assignment of blocks to 
folds are the methods with the lowest variability in pre-
dictive performance for both rare and common species.

Influence of species characteristics and spatial 
autocorrelation levels on the prediction accuracy of spatial 
CV techniques in RF using random sampling
For common species (see Supplementary Figure  4a), 
there is no significant difference in prediction accuracy 
between the different CV methods, regardless of sample 
size. However, environmental blocking has the lowest 
mean RMSE. The predictive accuracy of environmental 
blocking is not significantly different from that of system-
atic, random, and checkerboard spatial K-fold CV meth-
ods, given the variability in the accuracy of RF prediction. 
The different spatial CV methods do not correct for sam-
pling biases and incomplete detection effects when spa-
tial autocorrelation is present in small sample sizes. For 
rare species, box-plots in Supplementary Figure 4b depict 
the lack of a substantial effect for low or no spatially auto-
correlated species abundance distribution. When spa-
tial autocorrelation is high, the buffer-leave-one-out CV 
method allows RF to make accurate predictions with a 
relatively small sample size compared to other CV meth-
ods. However, when the spatial autocorrelation is low, 
this method is no longer more accurate than the other 
methods. For both rare and common species, where spa-
tial autocorrelation is high, environmental blocking sig-
nificantly overestimates the predictive accuracy of RF 
when sample sizes are small. When the probability of 
detecting a rare species is low and spatial autocorrelation 

is high, Figure Supplementary Figure  4b shows that the 
checkerboard spatial CV, buffer-leave-one-out CV meth-
ods and the standard K-fold CV methods yield RMSE no 
significantly different from expected values.

Influence of data features on the modelling efficiency 
coefficient of RF using different spatial CV methods
For high spatially autocorrelated species abundance and 
imperfect detection, even when the sample is representa-
tive, Fig. 10 demonstrates that the RF may perform very 
poorly regardless of the CV strategy used. RF fails to cap-
ture the variation and direction of observed abundance. 
These negative values suggest that alternative mod-
els, which take into account spatial autocorrelation and 
imperfect detection, should be considered to improve 
species abundance prediction. The standard random CV 
and the checkerboard spatial CV methods yield better 
MEC compared to other CV methods. However, they 
are not statistically different from other CV methods for 
common species due to the high variability in MEC.

Discussion
In the present study, we compared spatial CV strate-
gies using the standard RF to predict species abundance 
in the presence of spatial autocorrelation and imperfect 
detection, two common characteristics of abundance 
data. Results showed that imperfect detection and spatial 
autocorrelation significantly affect the predictive accu-
racy and ability of the RF regardless of the CV technique. 
This is particularly the case when there is a cooccurrence 
of these factors.

Following the discussion of spatial CV methods, this 
section explores the conditions under which spatial or 
non-spatial CV methods may or may not be reliable in 
ecological studies, taking into account spatial autocor-
relation level, sampling method, species abundance class 
and measurement error.

RF over or under‑fitting using various CV methods 
for small sample size
Wadoux et  al. (2021) found that the standard random 
K-fold CV method was less biased than spatial CV 
methods. Spatial CV methods are highly subjective and 
depend on various factors such as the sampling design 
used to define the folds, the method used to determine 
the spatial partitioning, and the exclusion distance. How-
ever, this study demonstrates that it is not prudent to 
draw such a general conclusion, as several factors can 
influence the performance of CV techniques. For exam-
ple, except for environmental blocking which is the least 
accurate CV method in cases of perfect detection and no 
spatial autocorrelation, all methods provide predictive 
power, modelling efficiency, bias and accuracy that match 
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that of the underlying population, provided that the sam-
ples are large and representative of the population due to 
the large size of spatial blocs or exclusion distance. When 
the dependent variable is a count variable, such as the 
abundance of a species, the large variation in observa-
tions can mask the effect of the CV technique.

When the sample size is small and not representative 
of the population it was drawn from, either spatial or 
non-spatial CV methods may not produce prediction 
estimates equivalent to population validation parameters. 
Although RF can handle datasets with limited sample 
sizes (Ishwaran et al. 2010; Chen and Ishwaran 2012), its 
application requires a large sample to ensure that esti-
mates reflect the population validation parameters. For 
the small sample size, the predictive performance of RF 
is overestimated. This suggests that in CV, the presence 
of spatial structure in the data is not the only factor influ-
encing the over or underestimation of RF performance. 
When the species is common, spatial CV approaches that 
randomly and systematically allocate blocks to folds yield 
the highest RMSE in scenarios with imperfect detection 
even if data are not spatially autocorrelated, but they do 
not differ significantly from other CV methods.

However, as with all CV methods, they may overesti-
mate the predictive accuracy and underestimate the pre-
dictive power of the RF, especially for rare species. Based 
on random sampling in the presence of high spatial auto-
correlation, environmental blocking CV achieved the 
highest RMSE. However, the different spatial CV meth-
ods did not significantly improve prediction accuracy for 
the large sample size. Results from this study show that 
both spatial and non-spatial CV methods can signifi-
cantly overestimate the accuracy of species abundance 
predictions with small samples and high spatial auto-
correlation. This finding contrasts with those of Rob-
erts et  al. (2017) and Ploton et  al. (2020), who showed 
that ignoring spatial dependence when cross-validating 
models can lead to severe underestimation of prediction 
error and false confidence in model predictions, masking 
model overfitting. However, Ploton et al. (2020) findings 
are likely to apply only to cluster samples and may not 
apply to all datasets and levels of spatial autocorrelation. 
Therefore, although the RF is robust to overfitting due to 
random noises (Breiman 2001), researchers should not 
assume that it is robust to overfitting caused by hetero-
geneity in predictor and response relationships (Wenger 
and Olden 2012) or other data features and selected vali-
dation method.

Performance of spatial CV methods in species abundance 
modelling
In terms of prediction ability, environmental blocking 
is the least efficient CV approach. It yields the poorest 
relationship between the observed abundance and the 
predicted values. When the probability of detecting a 
rare species is low and spatial autocorrelation is high, 
the checkerboard assignment of blocks to folds in the 
spatial K-fold CV methods, and the standard random 
K-fold CV method predict species abundance with an 
accuracy that is not significantly different from that of 
the population. However, the determination of the opti-
mal block or buffer size is one of the challenges in the 
use of spatial blocks and buffered CV (Trachsel and 
Telford 2016). One of the approaches used to deter-
mine the block size is to fit a variogram to the raw spe-
cies data and use the resulting range as the block size 
for spatial K-fold CV or the radius around each location 
in buffered leave-one-out CV (Roberts et  al. 2017; Bio 
et al. 2002; Valavi et al. 2019).

Several studies Roberts et  al. (2017); Telford and 
Birks (2009); Trachsel and Telford (2016) have used 
the spatial autocorrelation range in the model residu-
als to determine the block size for optimal separation 
between the training and test sets. Using the empiri-
cal variogram, which is an essential geostatistical tool 
for determining spatial autocorrelation, it is possible to 
define the range over which the residuals are independ-
ent of each other (Valavi et al. 2019). The empirical var-
iogram is a measure of the variability between all pairs 
of points to explain the spatial autocorrelation pattern 
(O’Sullivan and Unwin 2010).

For spatial independence, (Ploton et al. 2020) recom-
mend excluding validation data that are geographically 
close to the calibration data by a distance greater than 
the autocorrelation range of the empirical variogram. 
In the case of spatial autocorrelation, we assumed that 
each block size was 1.25 * the range of the variogram 
fitted to the raw species data. However, this proved 
insufficient to significantly improve the predictive per-
formance of RF over what would be obtained using a 
randomly selected sample and standard random K-fold 
cross-validation. Wadoux et  al. (2021) found similar 
results when assessing the accuracy of aboveground 
biomass (AGB) maps. Their results indicate that the 
design-based estimation of the population RMSE is 
unbiased and the estimates have little variation, but it 
requires probability sampling from the population.

For systematic and simple random sampling designs, 
CV using the standard random K-fold CV is close to 
unbiased but is too optimistic for clustered sampling. 
They also showed that the buffered leave-one-out and 
random spatial CV methods were too pessimistic, and 
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the former significantly overestimated the RMSE. Our 
results show that environmental blocking is more pessi-
mistic about predictive ability and overestimates RMSE 
compared to other methods. These findings support a 
statement by Wadoux et al. (2021) that the pessimistic 
results of random spatial K-fold CV and buffered leave-
one-out CV are likely caused by an overrepresentation 
of environmental conditions different from those at the 
calibration points and an underrepresentation of condi-
tions comparable to those at the calibration points.

Checkerboard assignment of blocks to folds in the spatial 
K‑fold CV methods for clustered samples
However, if the data are spatially structured, the perfor-
mance of the RF using validation based on the sampling 
design or standard random K-fold CV varies significantly 
depending on the sampling method used. For example, 
standard K-fold CV is accurate even in the presence of 
spatial autocorrelation, regardless of species abundance, 
if the sample size is representative of the population and 
sampling is random or systematic. If the data are spatially 
structured, standard K-fold CV is unreliable for clustered 
samples. Over-fitting problems with structured data can 
be addressed by block cross-validation, which strategi-
cally splits data rather than randomly (Roberts et al. 2017). 
Bruin et  al. (2022) used cross-validation to assess map 
accuracy and found that blocked spatial cross-validation 
was closest to the reference map accuracy metrics for 
highly clustered samples, where a large proportion of maps 
were predicted by extrapolation. However, there was still 
bias in the results. To avoid extrapolation in these cases, 
the best approach was shown to be either to restrict the 
predicted area or to perform additional sampling.

As alternatives to random blocked spatial CV, Bruin 
et  al. (2022) proposed inverse sampling-intensity 
weighted and two geostatistical model-based CV meth-
ods. Sampling-intensity weighted CV directly addresses 
the problem of spatial clustering, rather than the errone-
ously described problem of physical proximity of test and 
training data. They found that, compared to blocked spa-
tial cross-validation, sampling-intensity weighted CV was 
less biased and more reliable for unclustered to moder-
ately clustered data, but more biased for highly clustered 
samples. They emphasise the need for further research to 
improve accuracy assessment using CV from highly spa-
tially clustered samples and suggest the use of the stand-
ard random CV for unclustered data and weighted CV for 
moderately clustered samples.

Recently, Wang et  al. (2023) proposed a new CV 
method for evaluating geospatial ML models by con-
sidering the geographical and feature spaces to split the 
samples into training and validation sets. This method 
resulted in a more rational split, which led to more 

accurate results when evaluating the models. However, 
they used random assignment of blocks to folds, like 
most studies evaluating spatial CV methods.

According to our findings, regardless of the degree of 
spatial autocorrelation, the probability of species detec-
tion, and the type of species, the checkerboard assign-
ment of blocks to folds in the spatial CV method provides 
accurate predictive performance for clustered samples. 
Roberts et al. (2017) suggest using grouped sets of blocks, 
such as the checkerboard pattern, to select evaluation 
blocks in cases of irregular or unbalanced data sam-
pling. As species abundance samples are rarely evenly 
distributed across the landscape, one of the most impor-
tant processes in species modelling is the assignment of 
blocks to folds (Valavi et al. 2019).

The checkerboard pattern in assignment of blocks to 
folds in the spatial CV method provides an excellent 
opportunity to explore when samples are clustered. The 
checkerboard pattern is a technique used in ecological 
models to ensure spatial independence between the train-
ing and test sets. It prevents neighbouring blocks from 
sharing observations, allowing the model to be applied to 
distinct areas. This is crucial in ecology, where species dis-
tribution may vary. The checkerboard pattern exposes the 
model to various spatial patterns, enhancing its robust-
ness to spatial heterogeneity. It ensures an even repre-
sentation of spatial patterns across each fold, preventing 
biases due to unequal distributions. It also minimizes the 
risk of leakage by keeping neighbouring blocks separate 
during cross-validation, which occurs when information 
from the training set affects the test set.

This study explored the application of spatial CV for 
evaluating models with clustered and unclustered spatial 
data. While the different spatial CV approaches tested 
in this study do not offer advantages over traditional CV 
methods, even for high spatially autocorrelated data for 
large samples randomly or systematically collected, the 
checkerboard pattern in spatial CV gives better perfor-
mances for clustered samples in most cases. Recent work 
suggest alternative methods to random blocked spatial 
CV such as inverse sampling-intensity weighted and geo-
statistical model-based CV methods that enhance predic-
tive performance for clustered samples (Bruin et al. 2022). 
However, the performance of these methods depends on 
the clustering level, and to our knowledge, no approach 
performs well regardless of the data clustering level. Future 
research could explore the effectiveness of applying the 
checkerboard pattern, commonly used in blocked spa-
tial CV, to these alternative methods for clustered data, 
contributing to a more comprehensive understanding of 
spatial CV strategies for evaluating models with spatial 
dependence.



Page 22 of 24Mushagalusa et al. Environmental Systems Research           (2024) 13:23 

Conclusion
Making accurate and reliable predictions of species 
abundance can help us respond to changing ecological 
conditions and improve scientific understanding. To 
select, validate and assess the predictive power of eco-
logical models, cross-validation is often used. Ecologi-
cal data often have internal dependence structures, so 
there is increasing interest in spatial cross-validation 
techniques that increase the independence between 
training and test data by dividing the data into ’blocks’ 
at some central point(s) of the dependence structure, 
and avoid overfitting to produce unbiased errors and 
parameter estimates. The findings indicate that even in 
the presence of high spatial autocorrelation and imper-
fect detection, design-based validation and the stand-
ard K-fold CV remain effective strategies for evaluating 
the performance of machine learning methods for pre-
dicting species abundance, provided that sampling is 
random and, in some cases, systematic. Although RF 
can deal with data sets with limited sample sizes, for 
small sample sizes, both the standard and spatial CV 
approaches overestimate prediction accuracy and dis-
crimination. Standard K-fold CV overestimates RF’s 
predictive performance, particularly for clustered data. 
Checkerboard block-fold assignment in spatial CV is 
the spatial strategy that provides accurate prediction 
regardless of sampling design, whereas environmental 
blocking CV is overly pessimistic for predictive ability 
and overestimates RF predictive accuracy. Thus, in the 
case of clustered data, the checkerboard allocation of 
blocks to folds in the spatial CV method is an opportu-
nity to explore. This is because, until proven otherwise, 
spatial CV methods have no theoretical basis.
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