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Abstract 

The proliferation of non-native plant species has caused significant changes in global ecosystems, leading to a surge 
in international interest in the use of remote sensing technologies for both local and global detection applica-
tions. The Greater Cradle Nature Reserve, a UNESCO World Heritage Site, is facing a decline in its global status due 
to the spread of pompom weeds, affecting its biodiversity. A significant reduction in grazing capacity leads to the dis-
placement of game animals and the replacement of native vegetation. We used Sentinel-2A multispectral images 
to map the distribution of pompom weeds. At the nature reserve from 2019 to 2024, which allowed us to distin-
guish it from other land cover types and determine the appropriateness of the habitat. The SVM model provided 
44% and 50.7% spatial coverage of pompom weed at the nature reserve in 2019 and 2024, respectively, whereas 
the RF model yielded 31.1% and 39.3%, respectively. The MaxEnt model identified both soil and rainfall as the most 
important environmental factors in fostering the aggressive proliferation of pompom weeds at the nature reserves. 
The MaxEnt predictive model obtained an area under curve score of 0.94, indicating outstanding prediction model 
performance. Classification of above 75%, indicating that they could distinguish pompom weeds from existing land 
cover types. For sustainable environmental management, this study suggests using predictive models to effectively 
eradicate the spatial distribution of invasive weeds in the present and future.

Keywords Campuloclinium macrocephalum (Less.) DC, Sentinel-2A, MaxEnt model, Machine learning models, Cradle 
Nature Reserve, South Africa

Introduction
Invasive alien plants (IAPs) are non-native plants trans-
planted into new ecosystems (Peerbhay et  al. 2016). 
Preston et al. (2018) note that their introduction has eco-
nomic and ecological effects. IAPs compete with native 
vegetation for water and space, and they can grow and 
reproduce across broad areas unaided and negatively 
influence ecosystem services (Peerbhay et  al. 2016). 
IAPs have negative effects on soil characteristics and 
water retention, thereby threatening biodiversity, human 
welfare, and agricultural productivity (Kganyago et  al. 
2018). At the country level, South Africa reports invasive 
alien plant status and dispersion, joining the worldwide 
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community. According to Mafanya (2022), South Africa 
takes steps to reduce biodiversity loss, allocate funds for 
initiatives, and execute strategic environmental manage-
ment. Campuloclinium macrocephalum (Less) DC, also 
known as pompom weed, is a hemicryptophytic herb 
that invades disturbed rangelands. The 1.3-m-tall peren-
nial weed has green to purple stems and light purple to 
pink flowerheads that bloom in summer (Goodall et  al. 
2011). In South America and Central America, weeds 
are native to Argentina and Brazil. Pompom weed is a 
prominent IAP in South Africa that grows along roads, 
disturbed grounds, and endangered rangelands.

Pompom weed poses a significant threat in the Gaut-
eng, Limpopo,  Northwest and Mpumalanga provinces of 
South Africa, where it falls under category 1b of invasive 
species. The National Environmental Management: Bio-
diversity (NEM: BA) Act of August 2014 suggests catego-
rizing the remaining five provinces of the country under 
category 1a of the listed invasive species. The presence 
of pompom weed dominates the central highveld in the 
Gauteng and Mpumalanga provinces, As well as in the 
coast of KwaZulu Natal province. Since the 1960s inva-
sion, the intensity has increased (Goodall et al. 2011). The 
weed is wind-driven, and human mobility has dispersed 
powdery seeds through mud on shoes and wheels. The 
frost conditions in the Highveld encouraged the success-
ful emergence of pompom weeds (Goodall et  al. 2011). 
Pompom weeds pose environmental and economic 
threats to grasslands and wetlands. The Greater Cra-
dle Nature Reserve in Krugersdorp, Gauteng, is a UNE-
SCO World Heritage Site, yet the weed is flourishing 
there, threatening biodiversity and ecosystem services 
and reducing its cultural value. The UNESCO General 
Assembly established the 1972 World Heritage Conven-
tion to conserve world cultural and heritage objects of 
cultural significance. The Convention protects and pre-
serves designated sites with outstanding significance and 
biodiversity within inscribed sites for all humanity and 
promotes international cooperation. The ecosystem and 
sustainability of inscribed World Heritage Sites depend 
on land cover and biodiversity protection. Protecting 
heritage sites and monitoring biodiversity can help pre-
vent biodiversity loss and IAP invasions. Understand-
ing how different plant species affect a region’s ecology 
requires vegetation mapping (Saini and Ghosh 2021). 
South Africa lacks accurate localized spatial data on 
IAPs, which is critical for planning and eradicating IAPs 
(Kganyago et al. 2018).

Site surveys, which are a traditional form of terrestrial 
mapping, are expensive and arduous, and certain loca-
tions of interest are inaccessible and difficult to reach 
(Matongera et al. 2016; Al-dowski et al. 2020). Advanced 
remote sensing technology has opened new avenues 

for challenging existing methodologies (Al-Dowski 
et  al.  2020). Remote sensing is useful for gathering IAP 
spatial data with comprehensive coverage, temporal 
observations, and affordability (Mafanya et  al.   2022). 
Vegetation mapping studies measure leaf area index 
(LAI) and biomass using vegetation indicators and spec-
tral characteristics. Satellite remote sensing imagery has 
low to high resolution. Low-spatial-resolution sensors, 
while frequently used in short cycles, are not suitable 
for monitoring. The cost and duration of high-resolution 
sensors limit periodic monitoring. UAV’s are an option 
to low and high spatial resolution sensors (Katternboorn 
et al. 2019). UAVs can record remote data with high tem-
poral and geographical resolutions and provide real-time 
and exact spectrum information (Zhang et al. 2021). Fur-
ther studies are necessary to understand how environ-
mental factors such as climatic conditions, topography, 
and biology promote IAP infestations, despite progress 
in using remote sensing technologies to identify and 
map IAPs worldwide. These environmental conditions 
can help or hinder the adaptability of IAPs (Ndlovu and 
Shoko  2023). Species distribution models (SDMs) have 
helped quantify how environmental variables play a sig-
nificant role in IAP adaptability (Miller 2012). SDMs are 
statistical and mathematical methods used to forecast 
species proliferation and environmental variables.

Significantly, SDMs aid in the analysis of interactions 
between the environment and species, as well as predict-
ing the spread of species in different landscapes. This, in 
turn, facilitates informed decision making regarding the 
allocation of resources for conservation planning and 
environmental protection (Mkungo et al. 2023). There are 
several SDMs techniques that are employed in modelling 
IAP landscape invasions these includes but not limited to 
maximum entropy (MaxEnt), generalized linear model 
(GLM), bioclimatic envelope model (BEM), and Logistic 
Regression are examples. MaxEnt’s computational effi-
ciency, resilience, and ability to analyze incomplete data 
have contributed to its popularity and extensive publica-
tion. Ndlovu and Shoko  (2023) considered rainfall and 
temperature when mapping and forecasting the spread 
of L. camara in the Inkomati catchment of Mpuma-
langa. Image classification employs remote sensing tech-
niques to gather data on land-use and land-cover types 
(Xu 2021). Selecting an image classification algorithm is 
challenging because of the diverse range of data sources 
and variations in training data sizes (Saini and Ghosh 
2021). A multitude of studies have assessed parametric 
and non-parametric image classifiers to determine their 
suitability for land cover and IAP mapping, with the 
aim of aligning them with scientific and environmental 
objectives. Distance-based and probabilistic paramet-
ric image classifiers can categorize objects or features by 
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determining their similarities to predefined thresholds. 
Parametric image classifiers include the maximum like-
lihood classifier (MLC), the minimum-to-distance mean, 
and Iterative Self-Organizing Data Analysis Technique 
(ISODATA). The robust support vector machine (SVM), 
random forest (RF), artificial neural network (ANN), and 
convolutional neural network (CNN) are all image classi-
fiers that don’t use parameters. Instead, they use training 
samples made by analysts to find the best object bounda-
ries. Remote sensing studies have focused on combining 
machine learning (ML) and deep learning (DL) to address 
the issue of data duplication and improve the accuracy of 
classifying land cover challenges posed by large datasets.

South Africa’s Greater Cradle Nature Reserve at the 
Cradle of Humankind is a private game reserve and herit-
age site northwest of Gauteng Province. In 1999, Durand 
et  al. The Cradle of humankind is declared a world-
historic site owing to its outstanding cultural value and 
distinct biodiversity. The Cradle of Humankind World 
Heritage Site (COH-WHS) is a popular tourist desti-
nation, as well as a paleo-scientific and archaeological 
research-intensive site (Durand et  al. 2010). The 1972 
Convention on Cultural and Natural Heritage has pro-
tected all world heritage sites. The World Heritage Con-
vention Act of 1999 (Act No. 49 of 1999), the National 
Heritage Resources Act of 1999 (Act No. 25 of 1999), the 
National Environmental Protected Areas Act of 2003 
(Act No. 57 of 2003), the National Environmental Man-
agement Biodiversity Act (Act No. 10 of 2004), and the 
Physical Planning Act of 1967 all protect COH-WHS 
from mining. This law ensures the protection of world-
historic sites from mining. Any development must 
undergo an environmental impact assessment (UNE-
SCO 1972). According to Article 11.4, the World Herit-
age Committee must report all inscribed world heritage 
sites threatened by rapid urban development, illegal land 
invasions, and military, natural, or human-caused envi-
ronmental degradation (UNEP World Conservation 
Monitoring Center 2000).

The plant known as Campuloclinium macrocephalum 
(Less.) DC, which is native to South America and Central 
America, is highly invasive in the Greater Cradle Nature 
Reserve.

In South Africa, Regulation 15 of the Conservation of 
Agricultural Resources (Act 43 of 1983) and Section 97(1) 
of the Alien and Invasive Species Regulations (2014) of 
the National Environmental Management: Biodiversity 
Act (Act 10 of 2004) have declared the plant an invasive 
or exotic weed and placed it in category 1b invasive spe-
cies. A highly invasive rangeland weed, Campuloclinium 
macrocephalum (Less.) DC is currently causing unprec-
edented growth in the Greater Cradle Nature Reserve. 
“Pompom weed” invades grasslands and wetlands, 

turning green landscapes pink in spring and autumn. 
Soil erosion accelerates land degradation and dimin-
ishes the capacity of wetland water retention, thereby 
providing an opportunity for poisonous pompom weeds 
to rapidly surpass the native South African species. This 
poisonous weed displaces the native South African spe-
cies and threatens biodiversity. Pompom weed is a rap-
idly spreading invasive alien plant in South Africa that 
threatens the highveld grassland and savannah biomes. 
Pompom weeds degrade UNESCO World Heritage Sites 
and harm biodiversity. The unregulated spread of pom-
pom weeds reduces game animals’ grazing capacity and 
leads to migration. The nature reserve loses its value and 
recognition. Thus, Gauteng tourism suffers, resulting in 
job losses owing to lower revenue. To effectively manage 
the environment sustainably, it is crucial for community, 
government, and non-governmental organizations to col-
laborate (Gebregergs et al. 2021).

The National Environmental Management Biodiversity 
Act (Act 10 of 2004) prohibits invasive weed planting, 
propagation, and sale. Therefore, we must monitor and 
eradicate pompom weeds to stop their spread through-
out South Africa and preserve the heritage designation 
of the Greater Cradle Nature Reserve. The eradication 
measures that are currently used to control IAPs include 
the use of registered herbicides (Plenum, Access, and 
Climax), uprooting and burning of the weeds. Eradi-
cation efforts provide only temporary solutions for 
IAP control. Spring-growing pompom weeds possess 
water-retaining roots and are fire- and herbicide resist-
ant. Some remote sites may be inaccessible to control. 
Researchers have successfully applied remote sensing to 
monitor and map IAPs at various locations. Remote sens-
ing can detect invasive weeds early and accurately track 
their spatial distribution, thereby aiding decision-making 
and control. Understanding the proliferation and geo-
graphical shifting of IAPs under different environmental 
conditions can assist in reducing their environmental 
impact and improving environmental management. This 
research study uses remote sensing to help the nature 
reserve manage pompom weeds and improve environ-
mental management practices. The report highlights the 
following research challenges: Numerous studies have 
not demonstrated the superiority of any machine learn-
ing or deep learning algorithms. Tracking IAPs improves 
environmental management. However, tracking the spa-
tial distribution of pompom weeds is not sufficient to 
address its complexity and quick expansion. As a result, 
we must investigate soil moisture, topography, and cli-
mate to understand their impact on weed growth, as well 
as forecast sensitive landscapes and potential future inva-
sions. The aim of this study was to: i) model the spatial 
distribution of Campuloclinium macrocephalum (Less.) 
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DC invasive weed at the Greater Cradle Nature Reserve 
using multispectral Sentinel-2A data and machine learn-
ing models; ii) use the MaxEnt species distribution model 
to strengthen the SVM and RF model findings and rec-
ommend effective eradication control measures.

Materials and methods
Study area
The study was conducted in the Greater Cradle Nature 
Reserve, which is situated in the Cradle of Humankind 
between Johannesburg and Pretoria, two of the country’s 
largest cities in the Gauteng Province of South Africa. It is 
located between 27°43′30 ʹʹ E and 27°540 ʹʹ E and 27°57′0 
“ S to 25°50′0 “ S on the Kromdraai Road (Fig. 1). The pri-
vately owned Greater Cradle Nature Reserve spans 3000 
to 9000 ha of pristine dolomite grassland on Muldersdrift 
Farm, located near Krugersdorp in the municipality of 
Mogale. The Blaaubank River Valley runs on the north-
ern side. It has exceptional paleoanthropological value 
because it includes sites (Swartkrans, Coopers Cave, and 
Bolts Farm) that document over three and a half million 
years of landscape, faunal, environmental, and human 
evolution (Stradford et al. 2016). Owing to the discovery 

of fossilized remains, The Greater cradle nature reserve 
is situated within the Cradle of humankind, has served as 
a significant research hub for archaeologists and anthro-
pologists for over a decade. This site is associated with 
the origin of the modern human race. Researchers have 
discovered numerous fossils, and the variety of plant and 
wildlife species preserved in the nature reserve represents 
South Africa’s diversity. The United Nations Educational 
and Scientific Council Organization (UNESCO) accorded 
the Greater Cradle Nature Reserve a World Heritage Site. 
The pompom weed, Campuloclinium macrocephalum 
(Less.) DC, is a 1.3 m-high perennial, erect herb flowering 
mostly in the spring–autumn season (McConnachie et al. 
2011; Mafanya et al. 2022). Fluffy pink flowerheads with 
light green leaves adorn the plant, strew along the entire 
length of the green stem, and cluster at the base to form a 
rosette (McConnachie et al. 2011). The plant begins flow-
ering in spring and dies in autumn (Goodall et al. 2011). 
The 1960s saw the introduction of pompom weed for 
ornamental purposes in South Africa, but between the 
1990s and the 2000s, it underwent dramatic expansion 
and became invasive (McConnachie et al. 2011). Seven of 
the nine South African provinces currently host pompom 

Fig. 1 Location of the study area
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weeds. In Gauteng Province, there are frequent infesta-
tions of pompom weeds. This invasive weed invades 
grassland and savannah biomes, where it has a detri-
mental impact on biodiversity and ecosystem services. It 
degrades the rangeland and reduces the grazing capacity 
of large herbivores.

Methods of data acquisition
Field data
Its 26 and 27, 2024, when pompom weeds had aggres-
sively encroached on the Cradle Nature Reserve, field 
data collection took place. We conducted an initial field 
survey in the winter of June 2023, when the pompom 
weed had completely died. The second survey took place 
in November 2023 during the flowering stage of the 
pompom weed. However, erratic rainfall in 2023 caused 
the weed to flower late, resulting in sparse availability in 
nature reserves. The field survey of 25th and 26th Janu-
ary 2024 was conducted following the full flowering and 
encroachment of pompom weed, which transformed 
the nature reserve into a vibrant pink-purple hue. We 
constructed a 10  m × 10  m plot and randomly collected 
469 pompom weed ground control points (GCP) using a 
handheld Garmin Etrex 10 Global Positioning System. To 
perform classification, validation, and species modeling 
using MaxEnt software and machine learning models, 
such as SVM and RF, we split the ground truth data into a 
ratio of 70:30. We utilized existing knowledge of the study 
area and employed pixel image classification to generate 
additional land cover categories (such as bushland, ripar-
ian zones, water bodies, bare land, and cropland) on sat-
ellite imagery. We recorded the Ground Control Points 
(GCPs) using Microsoft Excel spreadsheets, saved them 
as comma-separated values (CSV), imported them into 
Google Earth Engine Pro, and superimposed them on the 
shapefile of the study area.

Earth observation data
The European Space Agency (ESA) (https:// scihub. coper 
nicus. eu) operates the Copernicus Open Access Hub, 
which produces multispectral Sentinel-2A data pre-
sented in Table  1. The present study employed Senti-
nel-2A, with a spatial resolution of 10  m. The obtained 
satellite imagery corresponded to the date of field data 
collection, which was January 2024. As a result, we 
recorded cloud cover below 10%. In addition, for Janu-
ary 2019, we obtained data from the same sensor with a 
spatial resolution of 10 m and less than 1% cloud cover. 
Initially intended for land and coastal applications, Sen-
tinel-2A satellite imagery has gained popularity owing to 
its global coverage and unrestricted access. The advanced 
satellite Sentinel-2A has a multispectral imager (MSI) 
with a 290 km swath width, allowing it to monitor land 

cover. The 13 spectral bands, which encompass the vis-
ible, near-infrared (NIR), and shortwave infrared, range 
in pixel size from 10 to 60 m. The temporal resolution is 
10  days when conducted using a solitary satellite; when 
utilized in conjunction, the satellites provide data with a 
spatial resolution ranging from 10 to 60 m within a revisit 
time of 5  days (Miranda et  al. 2018). We arranged the 
sensor’s thirteen bands as follows (Table 1).

For vegetation monitoring research, the Sentinel-2A 
multispectral sensor is better than Landsat and the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) 
because it can provide information at a higher resolution 
(Royimani et  al. 2019; Mafanya et  al. 2022). Biophysical 
information about plants, like the amount of chloro-
phyll in the leaf and the leaf area index (Xie et al. 2019), 
is easier to get with the Sentinel-2A MSI red-edge bands 
between 705 and 750  nm. When environmental fac-
tors are added to the extra vegetation-sensitive bands of 
Sentinel-2A MSI, they can help determine the differences 
between species and make predictions and maps more 
accurate (Mtengwana et al. 2021).

Image pre‑processing and analysis techniques
To correct geometric and radiometric errors and achieve 
a cloud-free study area, image preprocessing is a pre-
requisite (Wong and Sarker 2014). Sen2Cor is a soft-
ware application that processes Sentinel-2A satellite 
data, generates Level 2A products, and formats outputs. 
A classification approach in which a user oversees the 
pixel-classification process is known as supervised clas-
sification (Miranda et al. 2018). For land cover mapping, 
the user selects various pixel values or spectral signa-
tures that represent a specific class (Miranda et al. 2018). 

Table 1 The study presents the Sentinel-2A image 
characteristics for the years 2019 and 2024

Band Resolution (m) Central 
wavelength (nm)

Description

B1 60 443 Ultra blue

B2 10 490 Blue

B3 10 560 Green

B4 10 665 Red

B5 20 705 Visible and NIR

B6 20 740 Visible and NIR

B7 20 783 Visible and NIR

B8 10 842 Visible and NIR

B8A 20 865 Visible and NIR

B9 60 940 SWIR

B10 60 1375 SWIR

B11 20 1610 SWIR

B12 20 2190 SWIR

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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The supervised classification process begins by identify-
ing sample locations for the various types of land cover 
training sites. Following that, the computer algorithm 
codes the training site’s spectral signature and sorts the 
whole remote sensing image into groups based on the 
pixel values or the spectral reflectance of the different 
types of land cover and land use (Civico 1993; Miranda 
et al. 2018; Akalu et al. 2019). Ideally, classes should not 
overlap or overlap slightly with other classes (Miranda 
et al. 2018). This study utilized ESRI ArcGIS Pro to per-
form supervised image classification. We employed the 
SVM and RF classification models to perform supervised 
image classification.

Support vector machines (SVM)
Support Vector Machine (SVM) are a widely published 
supervised machine learning algorithm for classifica-
tion and regression modeling (Kganyago et al. 2018). The 
support vector machine (SVM) algorithm sorts things 
into groups by fitting a hyperplane, which is ideally an 
expression of a two-dimensional plane in three-dimen-
sional space, to mathematical spaces with any number 
of dimensions. We select the hyperplane with the maxi-
mum margin, which indicates the distance between the 
classifier and training datasets. An optimal hyperplane 
with the maximum margin reduces the generalization 
error of the overall classifier (Vapnik 1999). The kernel 
approach follows the principle of SVM, which transforms 
data into a higher-dimensional space through nonlinear 
transformation. The strength of SVM lies in its ability to 
overcome high dimensionality and perform well with a 
small number of training samples. Several studies have 
indicated that SVM produces high accuracy for land 
cover classification and alien species distribution map-
ping (Kganyago et al. 2018; Mafanya et al. 2022).

Random Forest (RF)
Breiman (2001) defined random forests (RF) as “a tree-
based algorithm that depends on the value of an inde-
pendent random vector sampled for all trees in the 
forest.’’ RF employs a variety of tree classifications and 
classifies a new input vector according to the number of 
trees within the forest. Then, RF assigns a classification 
to each tree, symbolizing the tree’s ‘‘votes’’ for the class 
with the most frequent input data. During the classifi-
cation process, the forest prioritized the class with the 
most ‘‘votes’’ over forest trees (Adelabu et al. 2015). The 
tree regression-based model, when trained with sufficient 
field data plots representative of vegetation variability at 
the national scale, produces satisfactory results. Random 
forests use bootstrap samples from other trees combined 

with ensemble regression and tree classification to build 
binary classifications. Random forest, similar to any other 
algorithm, has both advantages and disadvantages. Ran-
dom forest is efficient in implementing large datasets and 
has an easily saved structure for the future use of pre-
generated trees. The algorithm is not sensitive to noise, 
avoids overfitting, and has high accuracy. It has spectral 
bands and feature selection layers like NDVI, soil index, 
and water index. It also has texture features for classifica-
tion like entropy, variance, morphology, and line features 
(Chaturvedi and de Vries 2021). The RF algorithm shows 
enormous potential for solving environmental problems, 
such as water resources and natural hazard management 
(Talukdar et  al. 2020). Breiman (2001) integrated a ran-
dom forest with a decision tree algorithm, utilizing both 
classification and regression trees.

Accuracy assessment
We conducted an accuracy assessment using SVM and 
RF models to validate the classified Sentinel-2A imagery. 
The traditional confusion matrix shows the degree of 
agreement between the classified image and reference 
ground data for overall accuracy, user accuracy, producer 
accuracy, and kappa coefficient. Overall accuracy (OA) 
measures the proportion of accurately classified LULC 
classes (Petropoulos et al. 2012). The overall kappa coef-
ficient measures the agreement between training and 
validation datasets. However, many studies have not used 
the kappa coefficient due to conceptual flaws. However, 
this study added a kappa coefficient to the assessment 
of accuracy. Additionally, precision can be evaluated 
using various machine learning measures, including 
the F-score (Gidey and Mhangara 2023). We used the 
F-score to gain a thorough understanding of the perfor-
mance of both the SVM and RF models. We achieved this 
by combining precision and recall into a single metric. 
Equations 1, 2, 3, 4, 5 demonstrate our consideration of 
the overall accuracy (OA), consumer accuracy (CA), and 
producer accuracy (PA).

(1)CA = xii

/

xi+ × 100

(2)PA = xii

/

x+i × 100

(3)OA = D
/

V × 100

(4)F− score = 2× (PA× CA)/(PA+ CA)
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where K̂  = K-coefficient, xii refers to the total number 
of observations in both the  rowi and the  columni, xi+ 
and x+i refers to the respective marginal totals, N refers 
to the total number of observations, and D refers to the 
total number of correct pixels in the diagonal, which 
is the same as the total number of pixels in the V error 
matrix. The F-score is calculated as the harmonic mean 
of the producer’s accuracy (PA) and consumer’s accuracy 
(CA) (Gidey and Mhangara 2023).

Moreover, we used both Pearson correlation coeffi-
cients and regression models to assess the effectiveness 
of the SVM and RF models using the STATA software 
version 14.

MaxEnt‑based pompom weed distribution modeling
Ecological studies have used species distribution models 
(SDMs) to study the spatial distribution of alien plants 
(Mtengwana et  al. 2021; Dai et  al. 2022). SDM mod-
els, as IAPs, are effective in modeling the spatial distri-
bution of alien plants and forecasting their current and 
future land distributions (Ndlovu and Shoko 2023). If the 
environmental conditions of an ecosystem invaded by 
IAPs are the same as those of their native areas, then the 
conditions necessitate the survival of IAPs and influence 
further invasion into other areas. This study uses open-
access Maximum Entropy Species Distribution Modeling 
version 3.4.4 for its computer efficiency and ability to cal-
culate environmental variables such as rainfall, tempera-
ture, and topography. The software divides a user-defined 
landscape into grid cells and integrates presence-only 
data and a sample of captured species locations (Mteng-
wana et al. 2022; Mkungo et al. 2023). It produces alien 
species whose habitat suitability ranges from high to low 
(Ndlovu and Shoko 2023). We employed the MaxEnt spe-
cies distribution model to explain the spatial distribution 
of pompom weed, considering selected environmental 
variables such as (i) elevation, (ii) land cover, (iii) rain-
fall, (iv) temperature, and (v) soil. We downloaded the 
environmental variables (rainfall, temperature, soil, and 
elevation) from NASA Power Data at https:// power. larc. 
nasa. gov/ data- access- viewer/. It is important to note that 
the climatic data are historical from 2019 to 2023 and 
aggregated monthly. We used the 2024 SVM-classified 
imagery as the land cover variable, as it demonstrated the 
highest and most accurate classification. We processed 
the environmental variable data using ArcGIS, version 
10.8.2. We converted the imported environmental vari-
ables in ArcMap from raster to ASCII, the American 
Standard Code for Information Interchange, to ensure 
compatibility with MaxEnt. We converted 469 pompom 

(5)K̂ =
N
∑

k

i=1
xii −

∑

k

i=1
(xi+ × x+i)

N 2 −
∑

k

i=1
(xi+ × x+i)

weed ground control points to comma-separated values 
(CSV) and added them to the MaxEnt sample file. The 
MaxEnt model divided the pompom weed GCPs (sam-
ples) into 70% training and 30% validation groups. We 
used the environmental layer in MaxEnt to import con-
tinuous environmental variables. To run ten-fold cross-
validation, we set the model to 1 with 500 iterations, and 
we set the output to the highly cited and recommended 
‘‘Clog-log’’ format (Ndlovu et al. 2018; Ndlovu and Shoko 
2023).

MaxEnt model evaluatio
We used the AUC to evaluate MaxEnt SDM’s perfor-
mance. The AUC measures the classifier’s ability to cor-
rectly predict species presence-only data (sensitivity) 
versus absence (specificity) by comparing actual and 
predicted species distributions (Mkungo et  al.  2023). 
The AUC rates the model with values between 0.5 and 
0.6 as poor, 0.7 and 0.8 as decent, and 0.9 and 1 as excel-
lent model performance prediction. Therefore, we used 
the AUC to evaluate the performance of the MaxEnt 
predictive model. MaxEnt uses a jackknife test to assess 
the efficacy of predictor variables in predicting landscape 
vulnerability to invasion by IAPs, as well as to produce 
distinct information on species distribution.

Results
Spatial distribution of Campuloclinium macrocephalus 
(Less) DC in the greater cradle nature reserve for 2019 
to 2024
Figures 2 and 3 show The spatio-temporal trends of pom-
pom weed distribution from 2019 to 2024. Figure 2 pre-
sents the changes in area coverage by pompom weeds 
in the Cradle Nature Reserve between 2019 and 2024. 
The Cradle Nature Reserve total area coverage is 92.38 
km2, and in January 2019, the pompom weed area cov-
erage was 31.1 km2 and 29.7.42 km2 using SVM and 
RF, respectively. The SVM reported 46.84 km2 and RF 
of 12.0 km2 area coverage for January 2024. The com-
parison of the SVM and RF models for 2019 and 2024 
yielded quite different results. However, the SVM model’s 
analysis of how pompom weed spreads over time across 
nature reserves matches what we saw when we looked at 
the weed on satellite images and in the field. The nature 
reserve experienced a swift surge in pompom weeds 
between 2019 and 2024, thereby establishing the SVM 
model as a potent supervised machine learning method. 
Figure  3 shows the SVM and RF models’ performance 
in mapping the spatial distribution of pompom weed 
against the co-existing land cover types at the Cradle 
Nature Reserve between January 2019 and January 2024. 
In both years, we detected the presence of invasive pom-
pom weeds throughout the nature reserve. We found 

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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that the spatial distribution of pompom weeds increased 
from 44% in 2019 to 50.7% in 2024 using the SVM model 
Fig. 4.

In contrast, the RF model indicated that the spatial 
distribution of pompom weed at the nature reserve was 
31.14% in 2019 and increased further to 39.3% in 2024. 
Pompom weeds exhibit a patchy and heterogeneous pres-
ence, invading various land-cover types and vegetation 
species, with a notable concentration in bushland and 
riparian zones. We found that the SVM and RF models 
effectively discriminated and displayed the spatial extent 
of pompom weeds in the Cradle Nature Reserve. Current 
observations reveal that uncontrolled exotic pompom 
weeds heavily invade 50% of the nature reserve, mask-
ing it in pink and purple during the spring and summer 
seasons. The map outputs for both years revealed that 
previously uninvaded regions, such as the northwestern 
side of the nature reserve, experienced an expansion of 
pompom weed, while the former experienced a marginal 
decline. The encroachment of pompom weeds causes 
environmental degradation at the nature reserve, leading 
to a high-risk migration of game animals, reducing biodi-
versity, and lowering the nature reserve’s world-assigned 
status. This leads to the rapid degradation of potential 
land (Gidey et al. 2023).

We applied SVM and RF models to illustrate the 
dynamics of the spatial distribution of pompom weeds 
(Fig.  5). The SVM model estimated that from 2019 to 
2024, there has been an increase in pompom weed 

presence in the nature reserve; the dominant land cover 
is pompom weed. In contrast, the RF model estimated 
that pompom weeds declined. This explains the discrep-
ancies between the two models and highlights each mod-
el’s weaknesses. However, the SVM model results were 
consistent with the current visual assessments in the 
field, indicating a rapid encroachment of pompom weed 
in the study area. In relation to other land cover types, 
the RF model indicated a high decline in bushland over 
the years, and the SVM also indicated a gradual decline 
in bushland. Land disturbances and pompom weed inva-
sions could explain the decline in bushlands. Both models 
showed a decrease in cropland during the same periods, 
with the SVM model indicating a significant decline 
in cropland. In the RF model, bare land dominates the 
land cover, whereas in the SVM model, the opposite is 
observed.

Analysis of pompom weed distributions along various land 
cover types
The spatial distribution of pompom weeds across other 
land cover types (Fig.  6) indicates that pompom weeds 
strongly invaded the bushland and riparian zones (58% 
and 30%, respectively). In such cases, bushlands are sus-
ceptible to pompom weed invasion due to numerous fac-
tors, such as bush thickening and land disturbances in 
terms of road construction. The excessive encroachment 
of invasive plants causes the infectious bush to thicken, 

Fig. 2 Pompom weed coverage in the Greater Nature Reserve compared to other land cover types in the study area
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Fig. 3 RF (a) and SVM  (b) model based spatial distribution of pompom weed at Cradle nature reserve for 2019
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Fig. 4 RF (a) and SVM  (b) model based spatial distribution of pompom weed at Cradle nature reserve for 2019
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Fig. 5 Showing temporal changes in pompom weed distribution from 2019 to 2024

Fig. 6 Distribution of pompom weed across various land cover types in the nature reserve
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making it a serious threat to savanna rangelands. Ripar-
ian vegetation grows along river streams with its natu-
ral pompom weed and invades wetlands (Gooddall et al. 
2011); therefore, riparian vegetation is also susceptible 
to pompom weed invasion. Pompom weed did not infil-
trate 0% of the cropland, whereas it only affected 3% of 
the bare land.

SVM and RF models classification accuracy and confusion 
matrix assessment
We performed accuracy assessments for both 2019 and 
2024 Sentinel-2A classified imagery using the popular 
confusion matrix; Tables 2, 3, 4, 5, present the results. We 
manually calculated the overall accuracy by taking the 
sum of correctly classified values and dividing it by the 
total number of values. Despite the criticisms of redun-
dancy and misleadingness in remote sensing applications 

Table 2 Confusion matrix for SVM 2024

Land use type Pompom weed Bush land Riparian 
vegetation

Bare land Water body Crop land Total U‑accuracy F‑score Kappa

Pompom weed 30 0 0 0 0 0 30 0.97 0.92 –

Bushland 1 29 0 0 0 0 30 0.96 0.96 –

Riparian 1 0 29 0 0 0 30 0.97 0.94 –

Bareland 0 1 1 28 0 0 30 0.93 0.96 –

Waterbody 0 0 1 0 29 0 30 0.97 0.98 –

Cropland 2 0 1 0 0 27 30 0.90 0.95 –

Total 34 30 32 28 29 27 180 – – –

P-Accuracy 0.88 0.97 0.91 1 1 1 0 0.96 – –

Kappa – – – – – – – – – 0.94

Table 3 Confusion matrix for RF 2024

Land use type Pompom weed Bush land Riparian 
vegetation

Bare land Water body Crop land Total U‑Accuracy F‑score Kappa

Pompom weed 28 1 0 0 0 0 30 0.96 0.85 –

Bushland 1 29 0 0 0 0 30 0.95 0.94 –

Riparian vegetation 0 1 27 0 2 0 30 1 1.00 –

Bareland 8 2 0 20 0 0 30 0.65 0.79 –

Waterbody 0 0 5 0 25 0 30 1.00 1.00 –

Cropland 0 0 0 0 0 30 30 1.00 1.00 –

Total 39 31 30 20 30 30 180 – – –

P-Accuracy 0.76 0.93 1 1 1 1 0 0.94 – –

Kappa – – – – – – – – – 0.92

Table 4 Confusion matrix for SVM model 2019

Land use type Pompom 
weed

Bush land Riparian 
vegetation

Bare land Water body Crop land Total U‑Accuracy F‑Score Kappa

Pompom weed 26 2 1 0 0 1 30 0.94 0.83 –

Bushland 2 28 0 0 0 0 30 1.00 0.82 –

Riparian 0 1 24 0 5 0 30 1.00 1.00 –

Bareland 0 2 1 26 0 1 30 1.00 1.00 –

Waterbody 0 2 5 0 23 0 30 1.00 1.00 –

Cropland 0 7 0 5 0 18 30 0.58 0.73 –

Total 28 42 31 31 28 20 180 – – –

P-Accuracy 0.8 0.7 1 1 1 1 0 0.90 – –

Kappa – – – – – – – – – 0.91
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(Pontius and Millones 2011), we include both the user’s 
and producer’s accuracy, as well as the kappa coefficient. 
We rank the Kappa coefficient as follows: we consider any 
value from 0 to 0.4 to be moderate, any value from 0.4 
to 0.8 to be substantial agreement, and any value above 
0.8 to be excellent agreement. In addition, the F-score 
values for the same period and model indicate that they 
exceed the minimum limit thresholds, i.e., 0.5 or 50%. All 
our findings in this case exceed the minimum standards. 
The F-score values for the pompom and waterbody range 
from 0.92 to 0.98, respectively.

The SVM model achieved a kappa coefficient of 0.94 
for the classification accuracy of 2024 classified imagery, 
indicating excellent agreement with Table  2. The SVM 
model successfully classified pompom weed, achieving 
user and producer accuracy of 0.96 and 0.88, respectively, 
compared to other land cover types. The bushland and 
riparian vegetation obtained high accuracies above 70%, 
and the overall classification accuracy for detecting pom-
pom weed using the SVM model was 95%. The RF model 
achieved an overall classification accuracy of 93% when 
detecting pompom weeds in 2024 classified imagery. The 
Kappa coefficient was 0.92, user accuracy was 0.94, and 
producer accuracy was 0.76, as shown in Table 3. Using 
RF, we accurately classified the water body with no spec-
tral confusion in 2024 imagery, compared to other land 
cover types. The classification accuracy for the year 2024 
proved successful in obtaining high accuracy; addition-
ally, the SVM outperformed RF. The F-score obtained 
using the RF model ranged from 0.79 to 1.00. The ripar-
ian vegetation, water bodies, and crop land cover types 
exhibited the highest F-scores, reaching 1.00. Neverthe-
less, in bare land, pompom weed, and bush land, the val-
ues were 0.79, 0.85, and 0.94, respectively.

The overall classification accuracy for 2019 using the 
SVM model was 94%, with a kappa coefficient of 0.91 
(Table  4). The user’s accuracy and the producer’s accu-
racy were 0.92 and 0.75, respectively. A 2019 study using 

the RF model found that the overall classification accu-
racy was 80%, with kappa coefficients of 0.90 for pro-
ducer accuracy and 0.92 for user accuracy (Table  5). In 
summary, the SVM model performed better than the RF 
model in accurately detecting pompom weeds against co-
existing land cover types in 2019 and 2024. The F-score 
values acquired through SVM varied between 0.73 and 
1.00 for each land cover category. The vegetation types 
that exhibited the highest F-score values (1.00) were 
riparian, barren land, and water bodies. In contrast, the 
F-score values for cropland, bushland, and pompom 
weed were 0.73, 0.82, and 0.83, respectively (Table  4). 
Conversely, the F-scores produced by the RF model 
exhibited similar outcomes. This varies between 0.73 and 
1.00. The F-score values for riparian vegetation, bareland, 
and water bodies were the highest (i.e., 1.00), whereas 
the values for crop land, bush land, and pompom weed 
were comparatively lower (0.73, 0.82, and 0.83, respec-
tively) than those of the remaining land cover categories 
(Table 5).

SVM and RF model testing
We assessed the effectiveness of the SVM and RF mod-
els using a dataset of 120,659 samples. These samples 
included pompom weeds and other types of land cover 
within a 2-km radius of the center of nature reserves. 
Our evaluation considers the computational and process-
ing capabilities of a desktop computer. We use samples 
to evaluate the identification proficiency of each model. 
Pearson’s correlation coefficients and regression mod-
els were used to assess the efficacy of the SVM and RF 
models. The Pearson correlation coefficients indicated 
that both the SVM and RF models accurately identified 
pompom weeds, with a correlation coefficient of 0.672. 
The correlation coefficient was statistically significant at a 
p-value of 0.00. Furthermore, a highly significant p-value 
of 0.000 supported a robust positive linear correlation 
between RF and SVM in the regression model. Both the 

Table 5 Confusion matrix for RF model 2019

Land use type Pompom weed Bush land Riparian 
vegetation

Bare land Water body Crop land Total U‑accuracy F‑score Kappa

Pompom weed 26 2 1 0 0 1 30 0.94 0.83 –

Bushland 2 28 0 0 0 0 30 1.00 0.81 –

Riparian 0 1 24 0 5 0 30 1.00 1.00 –

Bareland 0 2 1 26 0 1 30 1.00 1.00 –

Waterbody 0 2 5 0 23 0 30 1.00 1.00 –

Cropland 0 7 0 5 0 18 30 0.58 0.73 –

Total 28 42 31 31 28 20 180 – – –

P-Accuracy 0.75 0.68 1 1 1 1 0 0.92 – –

Kappa – – – – – – – 0.9
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constant term (_cons) and intercept exhibit statistical 
significance, indicating that the intercept is not equal to 
zero (Fig. 7).

MaxEnt model‑based analysis of pompom along various 
environmental variables
Figures  8, 9, 10 display the results of the jackknife test 
for variable significance. When running in isolation, 
the soil is the environmental variable with the highest 
training gain (Fig. 8). This means that it provides useful 

_cons .0508302 .0012891 39.43 0.000 .0483036 .0533568
svm .5232784 .0016589 315.43 0.000 .5200269 .5265299

rf Coef. Std. Err. t P>|t| [95% Conf. Interval]

Total 38418.8421 120,658 .318411063 Root MSE = .41774
Adj R-squared = 0.4519

Residual 21055.8799 120,657 .174510222 R-squared = 0.4519
Model 17362.9622 1 17362.9622 Prob > F = 0.0000

F(1, 120657) = 99495.39
Source SS df MS Number of obs = 120,659

Fig. 7 Model validation results outputs using STATA v.14 software

Fig. 8 Jackknife results in training gain for pompom weed. *Note: Elevation (ele); Land cover (lc); Rainfall (rf ); soil and Temperature (temp)

Fig. 9 Jackknife results from test gain for pompom weed
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information for explaining the study area’s vulnerability 
to pompom weed invasion. After soil, rainfall and tem-
perature were the environmental variables with the high-
est gain. However, omitting the temperature reduces the 
gain, indicating that it contains more information than 
the other environmental variables. Elevation and land 
cover were the environmental variables with the lowest 
training gains.

The jackknife test results in Fig.  8 show that soil and 
rainfall are still the environmental variables with the 
highest test gain, which holds the most valuable informa-
tion for determining the area’s susceptibility to pompom 
weed invasion. In contrast to the results from the Jack-
knife regularized training gain, the Jackknife test gain 
identified elevation as the third contributing environ-
mental variable. Land cover remained the least contribut-
ing environmental variable Fig. 9.

Finally, Fig. 10 shows the jackknife test results using the 
pompom AUC. We selected soil, rainfall, and tempera-
ture as environmental variables that yielded the great-
est gains. The results of our analysis indicate that soil, 
rainfall, and temperature are the most influential envi-
ronmental variables affecting the spatial distribution of 
pompom weeds in nature reserves. Soil contains the most 
valuable information for explaining the pompom weed 
invasion. The nature reserve’s soil nutrient composition 

creates a favorable environment for the pompom weed 
to thrive. Elevation and land cover contributed less to the 
pompom weed infestation.

Analysis of each environmental variable contributions 
to pompom
Table 6 presents the estimated relative contributions of 
the chosen environmental variables trained using the 
MaxEnt model. These estimates show how each envi-
ronmental variable affects the suitability of the habi-
tat for pompoms. Soil was the leading environmental 
variable (44.8%), which explains why the soil and nutri-
ent composition of the study area are favorable for 
pompom weed growth. Temperature and rainfall also 
showed high percent contributions of 29.8 and 14.3, 
respectively. Elevation and land cover had fewer contri-
butions; therefore, they were less significant.

Fig. 10 Jackknife test using AUC on test data

Table 6 Estimates relative contributions of environmental 
variables

Environmental variables Percent contribution Permutation 
importance

Soil 44.8 39.3

Temp 29.8 30.3

Rf 14.3 21.2

Elev 10.7 8.7

Lc 0.4 0.5

Fig. 11 The AUC curve results in predicting pompom weed habitat 
suitability
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MaxEnt model performance evaluation
We assessed the MaxEnt model’s performance by calcu-
lating its AUC. We consider AUC model rates between 
0.5 and 0.6 as poor, 0.7 to 0.8 as decent, and 0.9 to 1 as 
excellent. Figure 11 shows the results of the area under 
the receiver operating characteristic curve (AUC). We 
used selected environmental variables and presence-
only data (pompom weed samples) to predict the dis-
tribution of pompom weeds and habitat suitability. We 
achieved an AUC score of 0.94 with training and test 
data to accurately predict the spatial distribution of 
pompom weed in the study area for the year 2024. This 
study regarded 0.94 as an excellent model performance 
prediction.

Spatial distribution of pompom weed based 
on a maximum predictive model
The MaxEnt model predicts the growth locations of pom-
pom weeds based on the selected environmental varia-
bles, as shown in Fig. 12. The presence of pompom weeds 
dominates the central part of the nature reserve; the 
lower southern part of the nature reserve is highly char-
acterized by pompom weed presence, and this is where 
the locations of pompom weeds were collected during 
the field survey. This explains why the MaxEnt model 
predicted that the central, southern, and eastern tips of 
the nature reserve would have high habitat suitability for 
pompom weeds. The western region showed low habitat 
suitability. However, parts that exhibit low suitability and 
are adjacent to the central part of the nature reserve are 
at risk of future invasion. The MaxEnt predictive model’s 
results suggest prioritizing parts of the nature reserve 
with high pompom weed for effective weed control and 
environmental management.

Responsive curves
In Fig.  13, the response curve graphs indicate how the 
individual environmental variables affect the maximum 
prediction. The curves illustrate the changes in the esti-
mated probability of the adjusted environmental vari-
ables, while maintaining the average sample value for all 
other environmental variables.

In contrast to the response curve graphs in Fig. 14, each 
of the following curves indicates a MaxEnt model cre-
ated using only individual environmental variables. These 
plots reflect the predicted suitability’s dependence on the 
selected variable, as well as the dependencies induced 
by correlations between the selected variable and other 
variables.

Discussions
Application of SVM and RF models in mapping the spatial 
distribution of pompom weed
Invasion by alien plants is considered the second-larg-
est threat to biodiversity (Newete et al. 2023). They out-
compete native vegetation in terms of space, nutrients, 
and water retention (Mafanya et  al. 2022). To imple-
ment control measures and minimize their impact on 
the environment, precise data on the spatial distribu-
tion of IAPs are still lacking (Kganyago et al. 2018). We 
adopted remote sensing technology to accurately moni-
tor and map the spatial distribution of invasive weeds. 
The temporal resolution of remote sensing technology 
gives users the advantage of obtaining historical infor-
mation. We can obtain historical data to monitor IAPs, 
forecast their future distribution, and develop effective 
eradication methods. The current study used the Sen-
tinel-2A MSI product to successfully show how inva-
sive pompom weeds spread across the Cradle Nature 

Fig. 12 Spatial distribution of pompom weed using Maxent predictive model
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Reserve from 2019 to 2024. This is possible with Band 
4: Red (665 nm), Band 3: Green (560 nm), and B2: Blue 
(490  nm), which come with the product. Sentinel-2A’s 
red band effectively maps vegetation and provides 
detailed 10 m spatial resolution. Sentinel-2A’s red edge 
band played a key role in pompom-weed detection. 
The adoption of SVM and RF models was significant 
in discriminating pompom weeds from existing land 
cover types. There were slight differences between the 
two models; however, the overall accuracy was statis-
tically significant. The results of this study align with 
those of previous studies that evaluated the effective-
ness of machine learning models in mapping invasive 
alien plants (Mafanya et al. 2022; Kganyago et al. 2018; 
Ndlovu and Shoko 2023), despite SVM’s overall supe-
rior accuracy over RF in identifying the locations of 
pompom weeds.

Findings of this study indicate that invasive pompom 
weeds heavily invaded the nature reserve. Pompom weed 
encroachment into nature reserves has been increasing 
for the periods chosen for this study. The 2019 imagery 
showed that pompom weed was present in the nature 
reserve; the presence of pompom weed was 44% using 

Fig. 13 Responsive curve of various environmental variables

Fig. 14 MaxEnt model responsive curve of each environmental 
variable
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the SVM model, and 31.1% using the RF model. For the 
current year (2024), the SVM indicates 50.7% encroach-
ment of pompom weed in the nature reserve, which is 
an increase of 44% in 2019. The RF model predicted this 
to be 39.3% in 2024. The presence of pompom weeds in 
nature reserves has increased, and this trend is likely to 
continue into the future. Therefore, we should implement 
effective seasonal monitoring and eradication manage-
ment strategies. Given the current land cover types in 
nature reserves, pompom weed has significantly infil-
trated bushland. Approximately 58% of bushlands are 
susceptible to pompom weed infestation. This poses 
environmental and economic challenges, reducing the 
grazing capacity of game animals, causing their migra-
tion, and jeopardizing tourism. The construction of roads 
in nature reserves for game vehicles is a form of land 
disturbance that results in bush thickening. The densi-
fication of alien plants causes a serious environmental 
problem known as infectious bush thickening (Kellner 
2020). In nature reserves, the encroachment of bush 
thickening replaces the native vegetation; in turn, pom-
pom weeds take advantage of this and grow rapidly with 
less competition. Bush thickening thus led to a significant 
invasion of bushland by pompom weed. Pompom weeds 
heavily affected other land cover types, such as riparian 
zones (30%). Other land cover types, such as bare land, 
water bodies, and cropland, were less affected by pom-
pom weeds. Pompom weeds may not invade crops due to 
the use of herbicides or chemicals in agriculture.

In this study, the use of ESA Sentinel-2A imagery was 
successful in distinguishing the presence of pompom 
weeds from the existing land cover types. Overall, the 
study yielded an accuracy of > 75% for both years. Pre-
vious studies that used Sentinel-2A to map the spatial 
distributions of alien plants can supplement this study’s 
findings. Ndlovu and Shoko (2023) used Sentinel-2A 
imagery to map the spatial distribution of L. camara and 
differentiate it from other LULC types. They obtained 
an overall classification accuracy of 90.27% using the RF 
model on Sentinel-2A data. Newete et  al. conducted a 
different study in 2023, using Sentinel-2A images and RF 
and SVM algorithms to determine the locations of inva-
sive genotypes and their relationship to diverse types of 
land cover in the Leeu, Swart, and Olifant River valleys of 
the Western Cape Province. The utilization of Sentinel-
2A imagery proved to be successful in mapping invasive 
species, resulting in an impressive overall classification 
accuracy of 85%.

Modeling potential distributions of pompom weed using 
environmental variables in the Maxent species distribution 
model
This study found that the MaxEnt predictive model 
worked effectively with a small sample of data, provid-
ing robust and accurate estimations. Previous stud-
ies (Mtengwana et al. 2021; Dai et al. 2022; Ndlovu and 
Shoko 2023; Mkungo et al. 2023), which used the Max-
ent model to predict species distribution, agree with the 
results of this study. We chose historical environmental 
variables (like temperature, rainfall, soil type, and eleva-
tion) and land cover from the 2024 classified Sentinel-2A 
imagery to look into how they affected the spread of pom-
pom weed in Cradle Nature Reserve. Research has con-
sistently shown that environmental and climatic variables 
significantly influence the distribution of invasive species 
(Ncube et al. 2020; Ndlovu et al. 2018; Ndlovu and Shoko 
2023). This study used the environmental variable in the 
MaxEnt species distribution model to predict areas in the 
nature reserve that are suitable for pompom weeds. The 
AUC for this study’s predictions was 0.94, which is high 
compared to other studies in Southern Africa that used 
the MaxEnt species distribution model (Mtengwana et al. 
2021; Mkungo et al. 2023; Ndlovu and Shoko 2023), and 
the same model. The model predicted a concentration 
of pompom weed in the central and southern regions, 
as well as the eastern tip of the nature reserve. We con-
sider these parts of the nature reserve to be high-quality 
habitats for the pompom weeds. According to Jackknife’s 
MaxEnt model results, soil, rainfall, and temperature all 
have an impact on pompom weed growth. These three 
environmental factors provided significant insights into 
weed initiation and rapid spread within the study area. 
We identified soil as the environmental variable that had 
the greatest influence on the establishment of pompom 
weeds. Nature reserves’ soil chemistry encourages weeds 
to thrive. Therefore, we recommend researching the soil 
composition of nature reserves. Rainfall also contributes 
to infestation by pompom weeds. Rainfall is a significant 
climatic variable that promotes the growth and spatial 
distribution of pompom weeds (Mtengwana et al. 2021).

The highveld moist conditions are suitable for pom-
pom weed, and the Cradle Nature Reserve, which is in 
the highveld region, receives rainfall during the spring 
and summer seasons. The wettest seasons, when the 
nature reserve receives rainfall, provide moisture to the 
pompom weed, which is important for its germination 
and growth. During the rainfall season, the availability 
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of water or moisture in the soil promotes the germina-
tion and establishment of pompom weeds. Gooddall 
et al. (2011) have observed the growth of pompom weeds 
along roadsides. Land disturbance during road construc-
tion and carbon feeding from vehicles can explain the 
infestations of pompom weeds along roadsides. We rec-
ommend conducting studies on the effects of carbon on 
pompom weeds.

Environmental impacts of pompom weed at the cradle 
nature reserve
UNESCO has granted cradle nature reserve world status, 
making it a protected and sensitive nature reserve. The 
introduction of pompom weed into nature reserves has 
resulted in adverse impacts on the environment, society, 
and economy of Gauteng Province. The proliferation of 
pompom weeds has an impact on nature reserves’ biodi-
versity. The invasion of pompom weeds decreases graz-
ing capacity and water content. The invasive pompom 
weed grows unaided and replaces the natural vegeta-
tion. The predictive model results indicate that pompom 
weed invasions in nature reserves will continue to grow 
in the future. Implementation of preventive measures 
will determine the outcomes. The implementation of 
integrated environmental management approaches is 
necessary to curb the rapid spread of pompom weeds in 
nature reserves. In nature reserves, the current meth-
ods of eradication and weed control are mechanical, 
including uprooting and chemical spraying. To prevent 
further spread, the predictive model recommends prior-
itizing the currently used eradication methods in areas 
highly suitable for pompom weeds. Community engage-
ment and raising awareness about invasive species could 
inform members of their impact.

Conclusions
This study investigated the ability of Sentinel-2A to map 
the spatial distribution of pompom weeds in Cradle 
Nature Reserve. SVM and RF were effective in accurately 
detecting pompom weeds against existing land cover. The 
findings revealed that the spatial distribution of invasive 
pompom weeds will increase between 2019 and 2024. 
Current observations and model estimations indicate 
that the presence of pompom weeds is worse than that 
in previous years. Under current environmental condi-
tions, the number of pompom weeds may increase in 
the future. We investigated this using the MaxEnt spe-
cies distribution model to assess which environmental 
variables significantly support the germination and flow-
ering of pompom weeds in the study area. The model 
indicated that the soil was the most significant variable 
influencing the distribution of pompom weeds. The find-
ings of this study revealed the robustness and capability 

of MaxEnt SDM in predicting habitat suitability. Envi-
ronmental practitioners and conservationists can use the 
findings of this study to implement effective eradication 
methods, monitor areas that are susceptible to pompom 
weeds, and formulate the best environmental practices. 
The findings of this study recommend further research to 
determine whether the presence of carbon from automo-
biles causes pompom weed infestations along roadsides. 
We recommend investigating the efficacy of eradication 
measures at nature the reserves, starting with a five-year 
change detection period.
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