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Abstract 

Systematic errors in regional climate models (RCMs) hinder their implementation and lead to uncertainties in regional 
hydrological climate change studies. As a result, checking the accuracy of climate model simulations and applying 
bias correction are preliminary methods for achieving consistent findings. Therefore, identifying suitable RCM models 
for bias correction is important for providing reliable inputs for evaluating climate change impacts. The impacts 
of bias correction methods on streamflow were assessed on the Katar catchment within the Lake Ziway subbasin 
using coordinated regional climate downscaling experiments with a spatial resolution of 50 km (CORDEX-44) RCMs 
through the Integrated Hydrological Modelling System (IHMS) version 6.3. This study evaluated fourteen RCM 
models under five precipitation and three temperature bias correction methods for the Katar catchment. Statistical 
approaches, such as bias (PBIAS), the root mean square error (RMSE), the mean absolute error (MAE), the coefficient 
of variation (CV), the coefficient of determination (R2), and the relative volume error (RVE), are used for performance 
analysis. GERICS-MPI, RAC4-NOAA-2G, and CCLM4-NCCR-AFR-22 have better performances for both rainfall 
and temprature. The empirical cumulative distribution function (ECDF) method performed best in removing bias 
from the frequency-based statistics of rainfall and streamflow, followed by the power transformation (PT), distribution 
mapping (DM), local intensity scaling (LOCI), and linear scaling (LS) methods. Specifically, for temperature, the VARI 
and DM methods perform better in frequency-based statistics than the LS method. The performance of hydrological 
modeling is strongly affected by the selection of rainfall bias correction methods. In addition, the effect 
of the temperature bias correction method was not significant. The adequacy of the BCM depends on the RCM 
models and regional context. Therefore, the BCM implementation procedure can be adapted from region to region. 
This study revealed that the performance of the RCM models differed and that the errors in the RCM model outputs 
were reduced by the use of bias correction methods.
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Introduction
The effect of climate change on river hydrology is 
a prime concern for water resource management. 
Therefore, assessing the impact of global climate change 
on watershed hydrology is a precondition for predicting 
climate variables (Galata et al. 2021). The main challenge 
in assessing climate change vulnerability is quantifying 
the cause of future changes in the frequency and 
distribution of extreme daily rainfall.
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The Integrated Hydrological Modelling System 
(IHMS) and Soil and Water Assessment Tool (SWAT) 
are the most widely used hydrological modeling tools 
for climate change analysis. Integrated hydrological 
models (IHMs) offer distinct advantages over soil and 
water assessment tools (SWATs) due to their flexible 
and modular structure, enabling tailored solutions to 
address specific research questions and management 
needs (Sivapalan et  al. 2012). Unlike SWAT, which is 
primarily designed for watershed-scale hydrological 
modeling, IHMs can accommodate a wider range of 
spatial and temporal scales, from small catchments to 
large river basins, while also facilitating interdisciplinary 
collaboration by incorporating diverse data sources 
and modeling approaches from hydrology, climatology, 
ecology, and other related fields (Janjic and Tadc 2023). 
This adaptability empowers users to seamlessly integrate 
various hydrological models, data sources, and analytical 
tools, allowing more comprehensive and customizable 
assessments of hydrological processes and their 
responses to changing environmental conditions (Paudel 
and Benjankar 2022).

General circulation models (GCMs) and regional 
climate models (RCMs) have been developed to 
forecast future climate conditions (Stefanos et  al. 
2020). Compared with general circulation models 
(GCMs), regional climate models (RCMs) provide a new 
opportunity for climate change effect analysis due to their 
higher spatial resolution and more reliable results at the 
regional scale. Numerous studies have shown that RCM 
outputs improve the representation of climate change 
information at the mesoscale by providing spatially and 
physically coherent outputs with observations (Luo et al. 
2018). However, the original RCM outputs still contain 
considerable bias, which is inherited from the forcing 
of GCMs or produced by systematic model errors (Luo 
et al. 2018). Therefore, bias correction of RCM data is the 
prerequisite step for the use of data in any climate change 
effect analysis.

Climate outputs derived from GCMs consistently 
exhibit systematic biases compared to the actual 
observed outputs (Shimelash et  al. 2024). Therefore, it 
is essential to adjust some form of statistical data before 
utilizing them in any application. Bias corrections for 
model data adjustment have become common in climate 
change studies (Soriano et  al. 2019). Different methods 
have been developed in the last decade to minimize 
errors, ranging from simple scaling to sophisticated 
distribution mapping (Worakoa et al. 2022). For climate 
impact studies, bias-corrected climate data such as 
precipitation and temperature data must be used to 
minimize the errors resulting from the raw RCMs (Daniel 
2023).

Bias correction methods are not expected to modify 
observed climate data (Ngai et  al. 2017), but most 
of them develop a statistical relationship between 
the historical model and observed climate data. 
Nevertheless, this assumption may not be true because 
of the nonstationarity of climate change processes 
(Mendez et  al. 2022). Although BCMs are capable of 
reducing biases from RCM outputs (Tumsa 2022), their 
performances are most likely regionally dependent 
and should be evaluated and validated over a recent 
period before any climate change application. Bias 
correction modifies biased simulated data to observed 
data (Mendez et  al. 2022). Several BCMs have been 
developed to modify the meteorological variables 
of RCMs (Matthias et  al. 2012). Even though BCMs 
reduce bias from RCM outputs, their performances 
are most likely regionally dependent and should be 
evaluated and validated over a recent-past period of 
data for any climate change study (Matthias et al. 2012; 
Tumsa 2022).

Currently, climate change is a sensitive issue 
worldwide. The Katar watershed is a part of the Lake-
Ziway subbasin that is also a highly vulnerable area to 
climate change which is mainly affected by drought 
risk (Abraham et al. 2018), due to its strong impact on 
hydrology systems. The consequences on the hydrology 
systems of the observed and projected change in 
the precipitation and temperature parameters affect 
the whole ecosystem. Climate change enhances 
the trend of higher levels of global warming which 
affects socioeconomic activities, like drinking water 
distribution (surface and groundwater) (Ahmed et  al. 
2020), and soil moisture availability for food production 
(occurrence of dry spells) (Biniak-Pieróg et  al. 2020; 
Luo et  al. 2018). Therefore, predicting uncertainty for 
the impacts of future climate change on meteorological 
variables (precipitation and temperature) and the 
hydrology (streamflow) of the watershed has been 
important. Several studies have used GCMs and 
RCMs to assess the effects of climate change on 
different water resource areas (Mengistu et al. 2021a, b; 
Assfaw et al. 2023; Lafon et al. 2013; Mair et al. 2018). 
However, the errors in the GCM and RCM outputs will 
be both spatial and temporal and the outputs will vary 
from catchment to catchment (Senatore et  al. 2022). 
Therefore, this study is important for contributing to 
the ongoing uncertainty in projecting climate change 
in hydrological impact composed of the regional 
climate model (RCM) and bias correction to both 
precipitation and temperature parameters at the main 
input parameters of several hydrological models. 
Climate change research is also critical for tackling 
the wide-ranging consequences of climate change on 
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the environment, society, and economy, as well as 
developing effective mitigation policies and strategies 
for future resilience.

Study area
Description of the study area
This study was carried out in the Katar catchment, which 
is located in Ethiopia’s Lake Ziway subbasin as shown in 
Fig. 1. Geographically, the Katar River is located at 7° 45’ 
to 8° 30’ N and 38° 15’ to 39° 30’ E. The Katar River is the 
largest tributary in the subbasin of Lake Ziway and occu-
pies a catchment area of approximately 3580  K.m2. The 
river originates at approximately 4000–4250  m.a.s.l. in 
the eastern volcanic chains of the Arsi Zone and drains 
south and west of Lake Ziway from the highlands. The 
elevation of the catchment ranges from 1620 to 4180 m, 
with a mean elevation of 2266  m of m.a.s.l. Only one-
third of the whole watershed area has an elevation below 
1867 m.a.s.l., and more than 56% of the whole watershed 
has an elevation greater than 2000 m.a.s.l., which magni-
fies the upland terrain of most parts of the area.

Land use/land cover
The dominant land use in the Katar watershed is agricul-
ture, as shown in Fig. 2. The basin is intensively cultivated 

overall, and different crops are grown in the catchments 
using both rain and irrigation. The LULC map was gen-
erated by the Ministry of Water Irrigation and Energy 
(https://​www.​mowe.​gov.​et/).

Distribution of meteorological data in the watershed
There are seven meteorological stations around the Katar 
watershed, as shown in Table 1.

Data and their sources
Climate data, including rainfall, maximum and minimum 
temperatures for evapotranspiration estimations and 
other datas with their sources are shown in Table 2.

Coordinated regional down‑scaling
The outputs of nine dynamically downscaled GCMs from 
the CORDEX program archives were used for evaluating 
the performances of the regional climate model outputs 
(Table  3). Three dynamically down scaled GCMs 
were obtained from CORDEX-22, and the remaining 
GCMs were obtained from CORDEX-44. These data 
were generated by a global climate model at horizontal 
resolutions of 25 km and 50 km over the African domain 
for the period 1980–2005. Four RCMs (RAC4, REMO, 
CCLM4, and CCCmoc) were used for GCM down 
scaling (Geleta et al. 2022).

Fig. 1  Map of the study area

https://www.mowe.gov.et/
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Hydrological model
The IHMS model (integrated hydrological model 
system) is a conceptual hydrological model that 
simulates discharge using the input variables of 
rainfall, temperature, and potential evapotranspiration 
(Bergström 1976). The version of the model used in 
this study is the IHMS version 6.3 IHMS rainfall-runoff 
model for stream flow simulation using Eq. 1.

(1)P-E-Q =
d

dt
(SP+ SM+ SUZ+ SLZ)

Fig. 2  Katar land use/land cover map for 2016

Table 1  Distribution of meteorological stations around the 
catchment

Stations Mean RF Longitude Latitude Elevation

Ketera Genet 726.26 7.83 39.1 2400

Assela 1053.93 7.96 39.14 2413

Kulumsa 815.03 8.01 39.15 2211

Ogolcho 714.21 8.04 39.02 1682

Arata 774.17 7.98 39.06 1777

Sagure 835.12 7.46 39.09 2480

Bekoji 790.52 7.45 39.367 2940

Table 2  Data and their sources

Data type Sources of data Description

ARC-GIS 10.4
Terrain

Researches
From Alaska satellite facility https://​asf.​alaska.​edu/)

Used to obtain the physical parameters and spatial information of the watershed, 
to generate the climate data from CODEX-Africa to the watershed
12.5 × 12.5 m used for watershed delineation

Climate National Meteorological Agency (NMA)
(http://​www.​ethio​met.​gov.​et/)

Rainfall, temperature, and evapotranspiration (1984–2005) are input data for bias 
correction

Stream-flow Ministry of Water, Irrigation, and Energy (MoWIE) 
(https://​www.​mowe.​gov.​et/)

Hydrological data for simulation and validation of the model

https://asf.alaska.edu/
http://www.ethiomet.gov.et/
https://www.mowe.gov.et/
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where P is rainfall (mm/day), E is evapotranspiration 
(mm/day), Q is runoff (mm/day), SP is snow pack (mm), 
SM is soil moisture (mm), SUZ is upper groundwater 
zone storage (mm), and SLZ is lower groundwater zone 
storage (mm).

Methods of bias correction
The goal of bias correction methods is to adjust the 
mean, variance, and distribution of the simulated rainfall 
through the inclusion of a constant function h, as shown 
in Eq. 2.

where; PObs is the observed meteorological data, Pmod is 
the model output data and ℎ is the constant coefficient.

(2)Pobs = h(Pmod)

Several bias correction methods have been developed. 
However, it is important to use appropriate and recently 
used bias correction methods. The five most frequently 
used rainfall bias correction methods and three tempera-
ture bias correction methods were evaluated during this 
study, as shown in Table 4.

i.	 Linear scaling (LS) of rainfall and temperature

The LS approach works based on the differences between 
observed and raw data (RCM) to match the monthly mean 
of corrected values with observed values (Teutschbein 
and Jan 2012). The LS method corrects for rainfall and 
temperature by using a multiplier and an additive term for 
every month via Eqs. 3 and 4, respectively.

Table 3  List of RCM outputs used for the studies

RCM Model center Short name of RCM Driving model Short name for the study

CLMcom-CCLM4-8-
17(CLMcom)

Climate Limited-area
Modeling (CLM) Community

CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 
ICHEC-EC-EARTH
MOHC-HadGEM2-ES

CCLM4-CNRM
CCLM4-ICHEC CCLM4-MOHC

SMHI Rossby Center Regional 
Atmospheric Model (RCA4)

Sveriges Meteorologiskaoch 
Hydrologiska Institute (SMHI), 
Sweden

RCA4 CNRM-CERFACS-CNRM-CM5 
ICHEC-EC-EARTH
CSIRO-QCCCE-CSIRO-Mk3-6-0 
NOAA-GFDL-GFDL-ESM2G

RCA4-CNRM RCA4-ICHEC 
RCA4-CSIRO
RCA4-NOAA-2G

GERICS REMO2009 Helmholtz-Zentrum
Geesthachet, Climate Service 
Germany

GERICS ICHEC-EC-EARTH IPSL-IPSL-
CM5A-MR MPI-M-MPI-ESM-LR
NOAA-GFDL-GFDL-ESM2M

GERICS-ICHEC GERICS-IPSL 
GERICS-MPI
GERICS-NOAA-2M

CCCma(Canadian Centre 
for Climate Modeling 
and Analysis, Victoria, BC, 
Canada

CCCma-CanESM2

CCCma-CanRCM4 CCCma CCCma-CanESM2

AFR-22

CCCma-CanRCM4 CCCma CCCma-CanESM2 CCCma-CanESM2-AFR-22

GERICS REMO2009 GERICS MOHC-HadGEM2-ES GERICS-MOHE-AFR-22

CLMcom-CCLM4-8-
17(CLMcom)

CCLM4-8-17 NCC-NorESM1-M CCLM4-NCC-AFR-22

Table 4  Bias correction methods for RCM-simulated precipitation and temperature data

Climate data Bias correction methods

For rainfall Linear scaling (LS)

Local intensity scaling (LOCI)

Power transformation (PT)

Distribution mapping for precipitation using gamma distribution (DM)

Empirical cumulative distribution function (ECDF)

For temperature Linear scaling (LS)

Variance scaling (VARI)

Distribution mapping for temperature using Gaussian distribution (DM)
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where; PCor,m,d is corrected rainfall, TCor,m,d is corrected 
rainfall and temperature on the dth day of the mth 
month, Praw,m,d is raw rainfall, Traw,m,d is raw temperature 
in the mth month and µ is expectation operator.

	 ii.	 Local intensity scaling (LOCI) of precipitation

The LOCI approach adjusts the intensities and 
frequencies of wet days in simulated RCM data, which 
include too many drizzle days (Schmidli et  al. 2006). 
First, the rainfall threshold ( Ptresh,m ) is fixed from the 
daily RCM rainfall series where the excess threshold 
matches the frequency of the wet day in the observed 
series; second, the scaling factor is calculated using Eq. 5.

If the mean of the observed rainfall is equal to the mean 
corrected precipitation, then the observed rainfall (Pobsr, 
m, d) is calculated by using Eq. 6.

	iii.	 Power transformation (PT)

The PT technique provides exponential formulas for 
adjusting the standard deviation of rainfall series. In this 
PT, each daily rainfall amount Praw is transformed to a 
corrected amount Pcor using Eq. 7.

The values of a and b are determined by the 
correspondence of the mean and CV of the daily and 
corrected rainfall, respectively.

	iv.	 Variance scaling (VARI) of temperature

The VARI technique adjusts the temperature parameters, 
especially the mean and variance (Fang et  al. 2015). 
The governing VARI equation was used to correct for 
temperature using Eq. 8.

	xxii.	Distribution mapping (DM) of precipitation and 
temperature

(3)Pcor,m,d = Praw.m,d ×
µ(PObs,m)

µ(Praw,m)

(4)TCor,m,d = Traw,m,d + (µ
(

TObs,m)− µ(TObs,m)).

(5)Sm =

(

µ(PObs,m,d

∣

∣PObs,m,d > 0

µ(Praw,m,d

∣

∣Praw,m,d > Pthresh,m
.)

(6)

Pcor,m,d =

{

0 if Praw,m.d < Pthresh,m

Sm× Praw,m.d if Praw,m.d > Pthresh,m)

(7)Pcor = a ∗ Praw,m,d
b

(8)Tcor,m,d =
⌊

Traw,m.d − µ(Traw,m)
⌋ (Tobs,m

α(Traw,m)
+ (Tobs)

The DM approach corrects the rainfall and temperature 
parameters (mean, standard deviation, and quintiles). 
The raw data distribution and corrected data functions 
are used to correct the parameters. The DM assumes 
that both observed and raw weather variables have 
equal probability distributions, causing uncertainty. The 
probability distributions of observed and RCM day-to-
day precipitation datasets can be approximated by using 
γ-distribution-based Eq. 9 (Piani et al. 2010).

For the γ-distribution, k > 0 and θ > 0 are the form and 
scale parameters, respectively, and P represents the daily 
RCM precipitation.

	vi.	 Empirical cumulative distribution function (ECDF) 
of precipitation

The ECDF method is a nonparametric rainfall correction 
procedure that generally applies to all possible rainfall 
distributions without precipitation distribution 
assumptions. This approach is the result of an empirical 
transformation (Jakob Themeßl et  al. 2011), and it has 
been implemented successfully to correct simulated 
rainfall with an RCM. The mean, standard difference, 
and wet-day frequency and quantile can be effectively 
corrected. Rainfall correction can be represented using 
the ECDF technique in terms of the CDF (ECDF) and the 
inverse (ECDF-1) of the empirical Eqs. 10 and 11.

Performance evaluation of the bias correction methods
The bias correction performance assessment is 
determined by the ability to replicate the rainfall, 
temperature, and stream flow generated by hydrological 
IHMS models powered by bias-corrected RCM 
simulation. In particular, stream flow is driven by 15 
possible combinations of bias correction methods when 
evaluating the capacity to reproduce stream flow. The 
frequency and time-series performance of the corrected 
precipitation data are compared with those of the 
observed data. The coefficient of variation (CV), percent 
bias ( PBIAS ), root mean square error (RMSE), mean 
absolute error (MAE), and Coefficient of determination 
(R2) are used to evaluate the performance of the models, 
as shown in Table 5.
PBIAS shows the average fitness of the simulated 

model and observed data. Positive values indicate 

(9)f (P,K , θ) = PK−1
exp

(

−
P
θ

)

τ (K )θK

(10)Pcor,m,d = ecdf −1
obs,m

(

ecdf cor,m
(

Pobs,m
))

(11)Tcor,m,d = ecdf −1
obs,m

(

ecdf cor,m
(

Tobs,m

))
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underestimation, while negative values indicate overesti-
mation by the climate model. The optimal value of PBIAS is 
0.0, with low magnitude values indicating accurate model 
simulations (Fang et al. 2015). The RMSE is a measure of 
the absolute error of a climate model when simulating 
certain climate variables. A smaller RMSE indicates bet-
ter performance, and vice versa. The coefficient of deter-
mination is a measure of the strength of the relationship 
between model simulations and observed data. It ranges 
between 1 and − 1, where 1 indicates a perfect positive 
correlation between the model and observed data and − 1 
indicates a perfect negative correlation, and greater than 
0.5 is considered satisfactory (Dibaba et al. 2019).

Performance evaluation for stream flow
The hydrological impact of BCMs will be evaluated by 
comparing stream flow simulated by the IHMS model, 
and the simulated raw RCM and bias-corrected rainfall 
and temperature will be applied. The IHMS model 
calibrates and validates the observed daily stream flow 
data for each subroutine. The streamflow is represented 
by the hydrological model, controlled by 15 varying 
combinations of corrected rainfall, the maximum/
minimum temperature, and different correction 
techniques in the assessment of streamflow reproduction. 
For this study, the model is initialized for the first year, 
calibrated from 1985 to 1998, and validated for the next 
six years (1999–2005) using the equations in Table 5 and 
Eqs. 12–13.

Nash Sutcliffe efficiency (NSE): This is a normal-
ized statistic that determines the relative magnitude of 

(12)NSE = 1−

∑n
i=1

(

Qsim,i − Qobs,i

)2

∑n
i=1

(

Qobs,i − Qmean,obs

)2

(13)RVE =

⌊

∑n
I=1

(

Qsim,i − Qobs,i

)

∑n
i=1Qobs,i

⌋

the residual variance compared to the measured data 
variance (Mathevet et  al. 2006). The NSE indicates how 
well the corrected satellite data matches the gauge data 
and ranges between negative infinity and unity. The lat-
ter indicates perfect agreement. An RVE of 0 indicates 
a perfect match between the observed and simulated 
stream flow volumes, values between + 5% and − 5% indi-
cate good model performance, and values between + 5% 
and + 10% or between − 5% and − 10% indicate fair model 
performance (Bizuneh et al. 2021).

Results and discussion
Identification of the best models for precipitation 
and temperature
The performances of the RCM models for rainfall and 
temperature are shown in Table 6 and Fig. 3. The output 
from the RCM model shows a large bias, with the high-
est bias of 100% for four model outputs (CCLM4-CNRM, 
RCA4-CSIRO, RCA4-ICHEC, and GERICS-NOAA-
2M). This indicates that the systemic error in the model 
accounts for 100% of the annual rainfall, which suggests 
that the model was unacceptable. GERICS-MPI has a 
bias of 7.5%, which indicates that the model has well-
captured catchment-wide rainfall. Most models have a 
relatively high bias, with values greater than + 50%. This 
value suggests that the observed rainfall was not well 
captured by the RCM outputs. The RMSE and MAE of 
the GERICS-MPI were the lowest (94.10 and 81.20 mm/
year, respectively). The four RCM models show the larg-
est biases, which are greater than 20%. Additionally, the 
three selected models (GERICS-MPI, RAC4-NOAA-2G, 
and CCLM4-NCCR-AFR-22) exhibited relatively high 
correlation coefficient (R2) values, indicating that they 
reproduce the maximum and minimum seasonal tem-
peratures. The three models also show a small bias of less 
than ± 5%, which indicates that the model shows a perfect 
fit simulation. The RCM models such as GERICS-MPI, 
RAC4-NOAA-2G, and CCLM4-NCCR-AFR-22 are bet-
ter performed than the other models.

Table 5  Performance evaluation of bias correction methods

N.B: Gi and Si observed and simulated data, Gi  , and Si  are the means of the observed and simulated data

No Statically indicators Formulas References

1 Coefficient of variation CV =
δR

R
Moriasi et al. (2007)

2 Percentage of bias
PBias =

∑

n

i=1
(Gi−Si)

∑

n

i=1
Gi

Fang et al. (2015)

3 Mean absolute error
MAE =

∑

n

i=1
|Si−Gi|

n

Zhang et al. (2013)

4 Root mean square error
RMSE =

√

∑

(Si−Gi)2

n

5 Coefficient of determination
R
2
=

⌈

∑
(

Gi−Gi

)

∗(Si−Si)
√

∑
(

Gi−Gi

)2
∗
(

S−Si

)2

⌉2 Zhang et al. (2013), Dibaba et al. (2019)
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The results of the annual rainfall comparison of the 
RCM outputs are also similar to the findings of Alem-
seged and Tom (2015) on the evaluation of regional cli-
mate model simulations of rainfall over the Upper Blue 
Nile basin. According to the findings of Alemseged and 

Tom (2015), the MPI-ESM-LR model performed best 
in terms of bias, CV and RMSE, which is similar to the 
findings of this study, as GERIC-MPI, which exhibited 
the best performance in annual rainfall comparisons. 
The result contradicts the findings proposed by Tumsa 
(2022), who indicated that RACMO22T and RCA4 were 

Table 6  Performance value of the models for annual rainfall

RCM methods Annual rainfall PBIAS (%) RMSE (mm year−1) MAE (mm year−1) R2 (–)

Observed 864.62 – – – –

CCCma-CanESM2 1198.29 38.59 386.35 349.56 0.12

CCLM4-CNRM 2234.04 158.38 1435.69 1434.63 − 0.24

RCA4-CSIRO 2673.63 209.23 1893.53 1895.15 − 0.03

RCA4-ICHEC 3094.74 257.93 2320.25 2336.36 − 0.45

CCLM4-ICHEC 861.23 − 10.39 202.89 180.936 − 0.35

GERICS-ICHEC 1227.00 41.91 383.17 379.64 0.27

GERICS-IPSL 1660.24 92.02 855.55 833.50 0.22

GERICS-MPI 929.19 7.50 94.10 81.20 0.35

RAC4-NOAA-2G 964.46 11.55 131.8 112.00 0.30

GERICS-NOAA-2 M 2607.01 201.52 1815.57 1825.36 0.17

CCLM4-MOHC 432.58 − 49.97 462.69 452.61 0.07

CCLM4-NCC-AFR-22 929.74 7.53 139.3 118.80 0.30

CCCma-CanESM2-AFR22 1310.93 51.62 504.84 467.56 0.03

HadGEM2-ES-AFR-22 1280.42 48.09 515.31 435.60 − 0.08

Fig. 3  Performance of the models on temperature
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better, performed at upper awash catchments. The rea-
son behind the result was the performance of Regional 
climate models was different at different catchments 
along with the specified locations and topographies 
(Tumsa 2022). The performance of RCM models var-
ies with catchment. According to Dibaba et  al. (2019), 
all RCMs are not equal when their performance varies 
within a localized study area.

Performance evaluations of bias‑corrected annual rainfall
The statistical approaches of the observed three raw 
RCM-simulated (SIM) and bias-corrected mean annual, 
measured, rainfall rates for the Katar catchment are 
shown in Table 7. All the BCMs improved the raw RCM-
simulated annual rainfall of all the RCM outputs. Except 
for the DM methods, all the other BCM methods esti-
mated the annual mean rainfall for all the RCM models. 
The ECDF method provides good annual rainfall estima-
tion, followed by the LOCI and LS methods, for all the 
statistical approaches. The DM method slightly over-
estimates the PBIAS by − 0.10%. This means that rainfall 
does not follow the assumed gamma distribution. Gener-
ally, the performances of the ECDF and PT were better 
than those of the other methods for rainfall correction. 
Similar findings were observed in previous research by 
Sundaram and Radhakrishnan (2023), Tan et  al. (2020) 
and Ouyang et al. (2022), who suggested that the ECDF 

model shows good performance for bias correction 
methods under various statistical parameters. Jaiswal 
et al. (2021), Luo et al. (2018), and Piani et al. (2010) also 
agreed that PT and ECDF performed best in correcting 
frequency-based indices, while LOCI was poor at cor-
recting time-series-based indices. In contrast, the DM 
bias correction method performed better than any of 
the other bias correction methods (Fang et al. 2015). All 
bias correction methods well-adjusted the rainfall error, 
except that the DM method slightly overestimated the 
rainfall. In contradiction; the EQM method is more effec-
tive, while, LOCI was relatively less effective in correcting 
the errors (Jaiswal et al. 2021; Daniel 2023). The perfor-
mance of bias correction methods is watershed, catch-
ment, and sub-basin scale-dependent (Tumsa 2022).

Performance evaluations of bias‑corrected daily rainfall
The frequency-based statistics and time-series-based 
statistical approach of the observed, three raw RCM-
simulated (SIM), and bias-corrected daily rainfall data 
for the Katar catchment are shown in Table 8. All the bias 
correction methods evaluated were able to somewhat 
improve the amount of raw RCM-simulated rainfall to a 
certain extent. However, there were differences in their 
corrected statistics. Except for DM, all the other meth-
ods showed that the mean of the corrected distribution 

Table 7  Annual rainfall comparison of observed, three RCM outputs, and five BCMs

RCM BCMs Mean (mm) SD (mm) CV (–) PBIAS (%) RMSE (mm/year) MAE (mm/year) R2 (–)

GERICS- MPI Obser 864.62 69.26 8.01 – – – –

SIM 929.19 84.51 9.10 7.50 94.10 81.20 0.35

LS 864.66 61.34 7.09 0.00 40.40 31.09 0.59

LOCI 864.65 61.35 7.10 0.00 40.20 31.02 0.57

PT 864.18 65.58 7.59 0.00 45.90 34.01 0.70

DM 863.45 64.84 7.51 − 0.10 52.10 40.16 0.58

ECDF 864.26 71.02 8.22 0.00 38.32 29.50 0.85

RAC4-NOAA-2G Obser 864.62 69.26 8.01 – – – –

SIM 964.46 83.86 8.70 11.55 131.8 112.00 0.30

LS 864.64 72.26 8.36 0.00 40.84 30.43 0.66

LOCI 864.63 83.31 9.63 0.00 50.11 37.30 0.61

PT 864.59 70.54 8.16 0.00 51.22 40.30 0.63

DM 847.15 73.53 8.68 − 2.20 51.12 44.05 0.58

ECDF 864.4 68.79 7.96 0.00 32.87 26.67 0.76

CCLM4- NCCR-AFR-22 Obser 864.62 69.26 8.01 – – – –

SIM 929.74 116.42 12.52 7.53 139.3 118.8 0.30

LS 864.7 72.19 8.35 0.01 51.78 40.83 0.54

LOCI 864.23 75.16 8.70 − 0.05 55.00 42.32 0.53

PT 864.69 64.21 7.43 0.01 46.56 35.57 0.66

DM 856.14 46.45 5.43 − 0.98 54.05 38.26 0.58

ECDF 864.69 67.51 7.81 0.01 37.12 29.31 0.75
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was equal to that of the observed distribution in all three 
models, while the overestimation and underestimation of 
the other statistical variables occurred in all the models. 
All the BCMs except DM exhibited very similar trends 
in terms of the correction of the mean rainfall in all the 
models.

The DM approach showed lower performance in the 
correction of average rainfall in all models. The LS and 
LOCI methods minimize the error in the simulated 
rainfall SD and CV in all models but do not capture the 
observed SD and CV in all models, with a small overes-
timation. DM methods marginally overestimated the SD 
and CV in RAC4-NOAA-2G but did better in the other 
versions. These statistics were well approximated by the 
PT and ECDF models and were the only ones used to 
correct the mean, SD, and CV precisely in all three mod-
els, as shown in Table 8. All the BCM methods minimize 
the RMSE, MAE, and PBIAS for all the models in the time 
series-based statistical approaches. However, the DM had 
the worst outcome in terms of reducing the rainfall gap 
for CCLM4-NCCR-AFR-22, which increased the pre-
sent rainfall bias. All of the PT and ECDF models display 
better efficiency in minimizing the errors in the RMSE, 
MAE, and PBIAS. The results showed that the percentage 
of distortion was almost zero.

The use of raw RCMs did not perform well in 
replicating the 99th percentile (as a predictor of high 
rainfall events), as these RCMs overestimate the 
values of all three models. Since LS and LOCI use the 
same correction factor to adjust heavy rainfall to light 
precipitation, the 99th percentile was overestimated in 
all three models. This suggests that mean-dependent 
correction methods take into account the mean 
monthly precipitation and do not take into account 
the extremes of daily rainfall. The LS approach yielded 
lower values than the other four methods used to 
correct the 99th percentile (high precipitation) due to 
the inability to correct the rainy day frequency.

All the methods significantly reduce the precipitation 
error, as shown in Fig.  4. In addition to reducing high 
and low rainfall errors, LS and LOCI have increased 
errors. The LS and LOCI systems underestimated 
small and medium rainfall, respectively, while the high 
rainfall values for all the models were overestimated. 
Since the RCM-simulated rainfall corrected the LOCI 
process, the higher rainfall than that in the LS process 
improved. Lafon et al. (2013) noted that these changes 
are limited to the specific timeframe of significant vari-
ations in the statistical properties of the data." LOCI” 
is an extended version of the LS method, given the 

Table 8  Daily rainfall comparison of observed, three RCM outputs, and five BCMs

Frequency-based indices Time-series-based metrics

RCMs BCMs Mean (mm) SD (–) CV (–) 99th 
percentile(mm)

R
2(–) RMSE (mm/day) MAE (mm/day) PBIAS(%)

Obser 2.37 3.59 1.52 16.52 – – – –

SIM 2.73 4.94 1.81 21.79 0.205 6.57 3.16 15.354

GERICS- MPI LS 2.37 4.44 1.88 19.26 0.410 5.30 2.96 0.004

LOCI 2.37 4.44 1.88 19.27 0.435 5.29 2.96 0.003

PT 2.37 3.59 1.52 14.48 0.465 4.59 2.77 0.002

DM 2.23 3.38 1.51 13.86 0.455 4.44 2.64 − 0.001

ECDF 2.37 3.39 1.52 15.33 0.470 1.84 1.02 − 0.001

Obser 2.37 3.59 1.52 16.52 – – – –

SIM 2.75 4.91 1.78 21.05 0.160 5.45 1.32 16.279

RAC4- NOAA- 2G LS 2.37 4.82 2.04 20.23 0.375 5.55 1.23 0.003

LOCI 2.37 4.97 2.10 20.46 0.376 5.69 1.24 0.002

PT 2.37 3.59 1.52 14.41 0.454 4.52 1.15 − 0.003

DM 1.98 3.13 1.58 12.66 0.418 4.23 1.05 − 6.215

ECDF 2.37 3.39 1.52 15.33 0.461 1.84 1.43 − 0.002

Obser 2.37 3.59 1.52 16.52 – – – –

SIM 2.85 5.99 2.10 30.16 0.160 6.67 3.47 19.988

CCLM4- NCC- AFR-22 LS 2.37 5.14 2.17 25.60 0.376 5.96 3.02 − 5.880

LOCI 2.31 5.24 2.27 26.19 0.376 6.04 3.08 − 5.882

PT 2.37 4.48 1.89 22.74 0.480 5.39 2.96 − 5.881

DM 2.37 5.21 2.20 27.36 0.404 6.02 3.09 − 6.765

ECDF 2.37 3.40 1.43 15.34 0.467 1.84 1.02 − 5.880
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overestimation of the wet-day frequency simulated by 
RCMs. This approach is especially relevant if a rela-
tively high rainfall threshold is used for the observed 
precipitation. Fang et  al. (2015) showed that LOCI 
greatly increased, in particular, the mean and extreme 
rainfall simulated by the RCM.

In minimizing the errors in high and low rainfall 
events, DM, PT, and ECDF performed better than 
the mean-based techniques (LS and LOCI), as they 
did not use simple scaling of the data by one factor to 
correct the rainfall distribution. A similar conclusion 
was drawn by Dibaba et al. (2020), who suggested that 
differences exist between correction methods but that 
the DM reproduces very well for temperature bias 
correction. The most common occurrence in the DM 
method is the medium rainfall value, which dominates 
the estimation parameter for the gamma distribution; 
as a result, high rainfall extremes cannot be captured 
well by the DM (Fang et  al. 2015). The ECDF method 
showed the best performance over the other methods 
because it perfectly balanced the regular distribution 
of rainfall observed and its better representation of the 
distribution of rainfall at high extreme and low values. 
This finding is in line with the results of previous 
research. Chen et  al. (2013), showed that empirical 
distribution mapping is consistently better than the 
methods of LS and LOCI based on just one correction 
factor, which corrects all wet-day precipitation in a 

month. Holthuijzen et  al. (2022), Enayati et  al. (2021) 
and Maraun et  al. (2010) showed that the quantile 
mapping method produced the best output compared 
with other techniques, particularly when downscaling 
extreme rainfall. Lafon et  al. (2013) concluded that 
the weakest correction was shown by LS because it 
only takes into account the mean shift, whereas the 
nonlinear approach does.

The daily mean rainfall of the observed, RCM-simu-
lated (GERICS-MPI and CCLM4-NCCR-AFR-22) cor-
rected values were smoothed with the 7-day moving 
average for all seasons and the wet season as shown in 
Fig.  5. There is a mismatch between the observed and 
raw RCM-simulated rainfall time series. Since the bias 
correction methods failed to overcome the discrepancy 
in daily rainfall sequences between the raw RCM-simu-
lated and observed data, there was a mismatch between 
the corrected and observed rainfall time series. The raw 
CCLM4-NCCR-AFR-22 data exhibited very low coher-
ence with the observed rainfall, with the highest bias and 
the lowest correlation coefficient compared with those of 
the other two models. The temporal structure of rainfall 
was not well reproduced by the climate models on a daily 
scale.

Among the three models, the PT and ECDF methods 
demonstrated better performances than the other meth-
ods, and the R2 values between the simulated and cor-
rected rainfall were very low. Since all three raw models 

Fig. 4  Exceedance probability curve
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simulated by RCMs had very low coherence and errors 
over time with the observed rainfall, all five methods of 
bias correction could not correct the temporal struc-
ture of the day-to-day precipitation. Fang et  al. (2015) 
reported that there was no effective bias correction 
mechanism in catchments with low consistency between 
rainfall sequences simulated with an RCM. The corrected 
rainfall values for PBIAS and MAE vary from 0.0 to 0.6. All 
bias correction processes except DM yielded a zero PBIAS 
value, which indicated a perfect fit.

Performance evaluations of bias‑corrected monthly rainfall
The performances of bias-corrected monthly rainfall 
are shown in Table  9. The statistical data for the mean 
monthly observed (observed), raw RCM (SIM), and bias-
corrected rainfall datasets for three models, namely, 
two CORDEX-44 models (GERICS-MPI and RAC4-
NOAA-2G) and CCLM4-NCCR (CORDEX-AFR-22). 
The average monthly rainfall in all three models was 
greater than the average monthly observed rainfall. 
Moreover, the best results for the average month-to-
month rainfall correction were found with three separate 
models, while the lowest potential to correct the error 

of these statistical measures was shown for the other 
rainfall properties, such as the SD, CV, maximum, 90th, 
and 10th percentiles. This is because all methods correct 
the average monthly rainfall.

In PT and ECDF, the errors improved in terms of 
the SD, CV, and 90th percentile of the mean monthly 
rainfall compared to those of the other three methods. 
All average monthly corrected statistical measurements 
were well matched with the observed data according to 
the three models constructed with the ECDF method, 
followed by the PT, DM, LOCI, and LS methods. When 
the daily data were aggregated to the mean monthly 
rainfall, the corrected rainfall data exhibited better 
performance at the monthly scale than at the daily scale. 
rainfall corrected by the mean method had an R2 value of 
0.99 for all three models.

The raw RCM-simulated rainfall overestimates the 
wet month observed rainfall in all the RCM- out-
puts (GERICS-MPI, RAC4-NOAA-2G, and CCLM4-
NCCR-AFR-22), as shown in Fig.  6. All bias correction 
methods reduce the overestimation of the raw RCM-
simulated rainfall in all models. Additionally, these meth-
ods increase the underestimation of rainfall in the raw 

Fig. 5  Daily mean rainfall in the Katar catchment:
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simulated model data. Generally, the graph shows that 
the raw RCM outputs were directed for errors, so work-
ing with raw RCM data without applying any bias cor-
rection method can reduce the performance. The ECDF 
performed better than the other bias correction methods 
based on the corrected annual, monthly, and daily rain-
fall comparisons. This result is supported by Fang et  al. 
(2015), who sugestes that ECDF performed better than 
the other bias correction methods based on the corrected 
annual, monthly, and daily rainfall comparison. As men-
tioned in the three sections above, the ECDF approach 
yields the best output for frequency-based and time-
based indicators, followed by PT, DM, LOCI, and LS. 
This result was in agreement with the result of Ouyang 
et al. (2022), the ECDF-corrected method performs bet-
ter than the LOCI-corrected and LS-corrected method. 
However, according to the visual analysis of the graph 
discussed above, the ECDF method achieves the best 
performance by matching the corrected rainfall graph 
with the observed precipitation graph in the catchment 
area. Therefore, it is best to apply the ECDF bias cor-
rection approach to determine the rainfall in the Katar 
catchment to evaluate climate change effects and adap-
tive effects.

Evaluation of the corrected maximum and minimum 
annual temperatures
A statistical comparison of the observed (Obser) and 
raw RCM-simulated data of the three model outputs and 
bias-corrected annual maximum (Tmax) and minimum 
(Tmin) temperatures are shown in Table 10. All the BCM 
methods improved the raw simulated mean temperature 
in all three RCMs. LS and VS equalized the mean to 
the observed mean, whereas the DM method improved 
the mean in all three RCM outputs but minimized the 
mean in RAC4-NOAA-2G and CCLM4-NCCR. In 
minimizing the RMSE and MAE, the DM exhibited the 
best performance in all RCMs, with values ranging from 
1.3 to 0.43 °C/year (RSME) in GERICS-MPI and from 5.7 
to 0.54  °C/year and 2.78–0.59  °C/year (CCLM4-NCCR-
AFR-22) at the maximum temperature, and the bias 
correction performance at the minimum temperature 
followed the maximum temperature.

Evaluation of the corrected maximum and minimum daily 
temperatures
The frequency-based statistics of the observed (obs), raw 
RCM-simulated (SIM), and corrected (denoted by the 
corresponding method) maximum (Tmax) and minimum 
(Tmin) temperature data for the three model outputs 

Table 9  Monthly rainfall comparison of observed, three RCM outputs, and five BCMs

Frequency-based indices Time-series-based metrics

RCMs BCMs Mean (mm) SD (–) CV (–) 99th % (mm) R2 (–) RMSE (mm/day) MAE (mm/day) PBIAS(%)

Obser 75.48 51.56 0.68 152.50 – – – –

SIM 87.07 73.88 0.85 208.97 0.95 29.81 22.96 5.36

GERICS- MPI LS 75.49 51.55 0.68 152.51 0.99 0.01 0.01 0.00

LOCI 75.48 51.55 0.68 152.50 0.99 0.01 0.01 0.00

PT 75.48 51.56 0.68 152.51 0.99 0.01 0.01 0.00

DM 73.21 51.70 0.73 151.85 0.99 6.31 4.50 − 2.66

ECDF 75.46 41.66 0.59 135.31 0.99 0.01 0.01 0.00

Obser 75.48 51.56 0.68 152.50 – – – –

SIM 87.77 84.60 0.96 243.09 0.87 46.72 34.64 6.28

RAC4- NOAA-2G LS 75.48 51.56 0.68 152.51 1.00 0.01 0.01 0.00

LOCI 75.48 51.56 0.68 152.51 1.00 0.01 0.01 0.00

PT 75.48 51.56 0.68 152.51 1.00 0.01 0.01 0.00

DM 63.24 54.11 0.86 151.52 0.99 25.74 12.24 − 3.22

ECDF 75.48 41.66 0.55 135.31 1.00 0.01 0.01 0.00

Obser 75.48 51.56 0.68 152.50 – – – –

SIM 90.57 67.77 0.75 214.99 0.71 48.20 31.35 9.99

CCLM4-NCC- AFR-22 LS 75.79 47.89 0.63 151.15 0.99 5.58 4.54 0.40

LOCI 75.44 41.68 0.55 135.31 0.99 5.32 3.29 0.03

PT 75.44 41.68 0.55 135.31 0.99 4.32 3.28 0.30

DM 70.38 42.56 0.60 134.90 0.99 5.01 2.71 0.02

ECDF 75.04 41.68 0.56 135.31 0.99 3.32 2.29 0.01
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Fig. 6  Monthly mean hyetographs of observed and corrected rainfall events

Table 10  Annual mean maximum temperature comparison of the observed, three RCM outputs, and three BCMs

Tmax

RCMs BCMs Mean (0C) SD (–) CV (%) R2 (–) RMSE (°C/year MAE (°C/year) PBIAS (%)

GERIC-MPI Obser 24.96 0.61 2.45 – – – –

Raw 24.58 1.33 5.42 0.35 1.32 1.05 − 1.5

LS 24.96 0.52 2.09 0.59 0.55 0.38 − 0.53

VS 24.96 0.60 2.42 0.59 0.55 0.39 − 0.34

DM 24.96 0.61 2.45 0.64 0.43 0.28 0.14

RAC4-NOAA-2G Obser 24.96 0.61 2.45 – – – –

Raw 19.29 0.58 2.99 0.31 5.7 5.67 − 12.7

LS 24.96 0.58 2.15 0.63 0.59 0.42 − 0.37

VS 24.96 0.64 2.68 0.63 1.24 1.08 − 0.35

DM 24.91 0.62 2.31 0.65 0.54 0.42 0.16

CCLM4- NCCR-AFR-22 Obser 24.96 0.61 2.45 – – – –

Raw 22.45 0.50 2.26 0.31 2.78 2.7 − 10.83

LS 24.96 0.71 2.85 0.61 0.51 0.41 0

VS 24.96 0.70 2.81 0.61 0.56 0.41 − 0.3

DM 24.88 0.64 2.56 0.62 0.51 0.41 − 0.01
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are shown in Table  11. The Raw RCM model outputs 
overestimate the minimum temperature SD in all the 
models, and the maximum temperature SD in all three 
selected models is underestimated.

All three bias correction methods corrected errors in 
the raw and improved estimations of the statistics. The 
means of both Tmax and Tmin were perfectly corrected 
in all the models via the three bias correction methods. 
Among all the models, the LS bias correction method 
yielded the worst results in terms of Tmax SD correction, 
and good SD correction results were obtained for Tmin. 
According to the SD error correction, the LS method 
exhibited low performance, with values between 3.57 °C 
in GERICS- MPI and 4.18 °C in CCLM4-NCCR-AFR-22 
for Tmax. The LS method provides a reasonable estimate 
of the mean temperature. However, there was a small 
underestimation of the SD and 90th percentile and a 10th 
percentile overestimation of Tmax and Tmin. When the 
SDs were corrected for the median, 90th percentile, and 
10th percentile, the variance and distribution mapping 
(VARI) methods exhibited good performance but yielded 
similar results when the medians and the mean were cor-
rected with the LS method. These findings support (Fang 
et  al. 2015) that the VARI and DM methods performed 
better at adjusting the standard deviation and percentiles 
than did the LS method. The raw RCM simulation over-
estimated the observed Tmin, with PBIAS values between 
3.58% in CCLM4-NCCR and between − 7.003 and 15.391 
in RAC4-NOAA-2G and GERICS-MPI. Tmax was 
underestimated, as the PBIAS ranged between − 22.664 
and − 5.783.

The time-series-based metrics of bias-corrected Tmax 
and Tmin daily for the four RCM outputs are shown in 
Table  12. The raw RCM simulation overestimated the 
observed Tmin, with a PBIAS of 3.58% (CCLM4-NCCR) 

and underestimations of − 7.003 (RAC4-NOAA-2G) and 
− 15.391 (GERICS-MPI). Tmax was underestimated, with 
PBIAS values between − 12.664 (RAC4-NOAA-2G) and 
− 5.873 (GERICS-MPI). The PBIAS values of the corrected 
temperatures were zero for the maximum temperature 
and within ± 0.07 for the minimum temperature. The LS 
method showed better performance in terms of the GER-
ICS-MPI (R2 = 0.32 for Tmax and 0.67 for Tmin), RAC4-
NOAA-2G (R2 = 0.32 for Tmax and 0.35 for Tmin), and 
CCLM4-NCCR (R2 of 0.20 for Tmax and 0.45 for Tmin) 
than did the other BCM methods. The LS method 
had better time series-based metric R2 values ranging 
between 0.20 and 0.32 for Tmax and between 0.35 and 
0.67 for Tmin than did the VARI and DM methods.

Evaluation of the corrected maximum and minimum 
monthly temperatures
The frequency-based statistics and time-series-based 
metrics of the average monthly raw RCM model-
observed and bias-corrected Tmax datasets for the three 
RCM outputs are shown in Table  13. The raw RCM-
simulated Tmax performance for the monthly data was 
very low, with PBIAS values ranging from (−) 12.668 to (+) 
10.824%. The PBIAS for the corrected Tmax was 0.00%, 
and the R2 values approached one for all the BCMs. 
The three RCMs (GERICS-MPI, RAC4-NOAA-2G, and 
CCLM4-NCCR-AFR-22) underestimate the mean maxi-
mum temperature. All three bias correction methods 
improve the raw maximum temperature to equal the 
observed maximum temperature. Additionally, based 
on the SD, CV, and 90th percentile comparisons, all bias 
correction methods achieved the best performance by 
matching the raw RCM maximum temperature statisti-
cal values with the observed maximum temperature sta-
tistical values. Fang et al. (2015) reported that the PBIAS 

Table 12  Time-series-based comparison of minimum and maximum temperatures

Tmax Tmin

RCM BCM R2 (–) RMSE (°C/day) MAE (°C/day) PBIAS (%) R2 (–) RMSE (°C/day) MAE (°C/day) PBIAS (%)

GERICS-MPI SIM 0.310 6.732 2.417 − 5.873 0.600 2.643 2.084 − 15.391

LS 0.320 4.492 1.986 − 0.002 0.670 1.998 1.485 0.005

VARI 0.310 5.626 3.178 0.001 0.520 2.367 1.744 0.002

DM 0.440 4.843 3.090 0.000 0.670 2.235 1.683 0.002

RAC4-NOAA-2G SIM 0.210 8.567 5.679 − 12.664 0.270 3.212 2.440 − 7.003

LS 0.320 6.310 1.867 0.004 0.350 2.530 1.914 0.002

VARI 0.330 5.749 1.034 0.000 0.290 2.267 1.709 0.000

DM 0.370 5.556 1.123 0.000 0.230 2.313 1.735 0.000

CCLM4-NCCR-AFR22 SIM 0.180 6.866 2.997 − 10.813 0.420 2.731 2.108 3.504

LS 0.200 5.331 1.705 − 0.001 0.450 2.506 1.889 0.002

VARI 0.110 5.751 3.053 0.000 0.320 2.357 1.736 0.000

DM 0.110 5.509 3.045 0.000 0.440 2.276 1.713 0.000
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values for corrected temperatures were within ± 5%, and 
there was no substantial difference between these find-
ings for all three correction methods, which suggested 
that the corrected monthly Tmax series was in good 
agreement with the observations.

Calibration and validation of stream‑flow
The calibration and validation results and subsequent 
model performance of the Katar catchment are sum-
marized in Fig. 7. Visual inspection of the observed and 
simulated hydrographs showed that high flows were 
generally not well modeled, but good flow simulations 
were observed on the rising and recession limbs. The 
Nash and Sutcliffe efficiency criterion is commonly 
considered the main model performance indicator in 

the IHMS model, with NS (0.72) and log Reff (0.74) for 
streamflow calibration. This demonstrated that for the 
calibration period, the observed and simulated runoff 
exhibited good and acceptable agreement.

The model was also validated by using the same 
parameters used in the calibration against an independ-
ent dataset that was not used during the calibration. 
The overall fit was strong for validation, with NSE and 
log Reff values of 0.76 and 0.78, respectively (Fig.  8). 
Compared to the calibration results for the Katar catch-
ment, the model showed better efficiencies in simulat-
ing discharges during validation. Although the IHMS 
model was limited by high flow capture, satisfactory 
model efficiencies (NS = 0.72) were obtained during the 

Table 13  Comparison of the mean monthly maximum temperature

RCMs BCMs Mean (°C) SD (–) CV (–) 90th % (°C) RMSE (°C/
month)

MAE (°C/month) R2 (–) PBIAS (%)

GERICS- MPI Obser 24.96 1.23 20.32 26.54 – – – –

SIM 23.51 1.79 13.12 25.91 1.775 1.457 0.817 − 5.835

LS 24.96 1.23 20.29 26.54 0.003 0.002 1.000 − 0.002

VS 24.96 1.23 20.32 26.54 0.000 0.000 1.000 0.000

DM 24.96 1.23 20.32 26.54 0.000 0.000 1.000 0.000

RAC4-NOAA-2G Obser 24.96 1.23 20.32 26.54 – – – –

SIM 19.30 2.12 9.09 22.64 5.799 5.664 0.829 − 12.688

LS 24.96 1.23 20.31 26.54 0.008 0.004 1.000 − 0.005

VS 24.96 1.23 20.31 26.54 0.007 0.002 1.000 − 0.008

DM 24.96 1.23 20.31 26.54 0.007 0.002 1.000 − 0.008

CCLM4- NCCR-AFR-22 Obser 24.96 1.23 20.32 26.54 – – – –

SIM 22.26 1.72 12.92 24.8 2.872 2.704 0.816 10.824

LS 24.96 1.23 20.28 26.54 0.009 0.004 1.000 0.009

VS 24.96 1.23 20.31 26.54 0.007 0.002 1.000 0.008

DM 24.96 1.23 20.31 26.54 0.007 0.002 1.000 0.008

Fig. 7  Daily model calibration of the Katar catchment Fig. 8  Model validation results for the Katar catchment
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calibration and validation periods for the Katar catch-
ment for stream flow simulation.

The calibrated model parameters are shown in 
Table  14. The calibrated values of 1.00 (LP), 850.00 
(FC), 2.50 (BETA), 1.00 (Alfa), 0.90 (khq), 0.10 (k4), 
0.22 (PERC), and 1.00 (CFLUX) are within the ranges 
for model calibration by Goshime et  al. (2019) for the 
Zeway watershed.

Performance evaluation of the bias correction methods 
for stream flow
The daily mean and monthly mean stream flows of the 
observed stream flows were simulated by the RCM out-
puts, and the streamflows were simulated by the ECDF 
(DT) precipitation bias correction method combined 
with DM temperature bias correction methods as shown 
in Fig.  9. Concerning the daily streamflow simulation 
using the IHMS hydrological model, all fifteen simula-
tions were run by using a rainfall and temperature bias 
correction combination, which reduced the error in the 
streamflow simulation from the raw RCMs. The raw 
RCM simulation does not capture the picture of the 
observed streamflow, as the maximum observed stream-
flow is overestimated by the raw RCM simulation. The 
ECDF-DM simulation reduces the error in the raw RCM 
simulation by reducing the overestimation of streamflow. 
In all fifteen simulations, the streamflow of the rising and 

resection limbs was simulated throughout all the simula-
tion periods.

A monthly streamflow graph of the observed, Raw–
Raw, and fifteen streamflow simulations simulated by 
the five rainfall bias correction methods combined with 
the three rainfall bias correction methods is shown in 
Fig.  10. The results showed that the stream flow simu-
lated by using the raw RCM was directed for error by 
overestimating the wet month stream flow and by under-
estimating the dry month stream flow (March–May). 
All simulations involving bias-corrected rainfall and 
temperature data can correct the raw RCM simulation. 
From the graph simulation, the combination of the ECDF 
(DT) with all three temperature bias correction methods 
yielded the best streamflow performance.

BCM performance value on the combined rainfall 
and temperature
The combined performance of bias correction methods 
on rainfall and temperature is shown in Table 15. Using 
observed meteorological inputs (default), raw RCM 
simulations (raw) with combinations of corrected rain-
fall and corrected temperature (simulations 1–15), and 
comparison values of NSE, RVE, R2, and MAE. With NS 
(near 0.06), RVE (25.69%), R2 (0.37), and MAE (8.17), the 
raw simulation was heavily biased. The RCM-simulated 
rainfall for Katar stream flows was enhanced by all bias 
correction techniques. Compared to those of the raw 

Table 14  Calibrated model parameter values for the Katar catchment

Parameters LP FC BETA Alfa khq K4 PERC CFLUX

Value 1.00 850.00 2.50 1.00 0.90 0.10 0.22 1.00

Fig. 9  Mean daily stream flow graph of observed, raw 
RCM-simulated, and ECDF (DT) precipitation BCM combined with DM 
data

Fig. 10  Monthly streamflow graph of the observed raw 
RCM-simulated and five rainfall BCMs combined with three BCMs 
of temperature
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simulation, the NSE values were consistently improved 
by all bias correction methods, although the performance 
was poor.

For simulations 1–3, which were corrected by the LS 
method, the NSE values ranged from 0.21 to 0.29, while 
for simulations 4–15, which were corrected by the LOCI, 
PT, DM, and ECDF rainfall bias correction methods, the 
reproduced stream flows were better than those in simu-
lations 1–3. The main difference between simulations 
1–3 and the other simulations was that LS-corrected 
rainfall was used for simulations 1 to 3, which means 
that rainfall was heavily overestimated by the WDF and 
that very high rainfall values occurred within the LS sys-
tem, as shown in Fig. 9; thus, there was great bias in the 
flow simulation. Simulations 1–3 and simulations 4–6, 
whose rainfall has been corrected by the LS and LOCI 
methods, differ. The distinction between LS and LOCI is 
that by setting the modeled rainfall values below a cer-
tain threshold to zero, while LS does not, LOCI takes into 
account the high rainfall occurrence simulated by RCMs 
because, in raw RCM-simulated rainfall, there was nor-
mally too much drizzle with little rainfall (Teutschbein 
and Jan 2012). Simulations 7–15 had NS values higher 
than those of simulations 1 to 6. All the wet-day rainfall 
data were corrected with monthly correction values via 
the LS and LOCI methods. DM method-corrected sim-
ulations 10–12 exhibited poorer performance than did 
simulations 7–9 and 13–15, in which the PT and ECDF 
methods corrected rainfall. Because the ECDF method 

performed well in the correction of high and low rainfall, 
simulation 15 with rainfall and temperature corrected by 
the ECDF and DM methods, respectively, was consist-
ently better than the other simulations. In addition to 
rainfall intensity, Chen et al. (2020) described the rainfall 
sequence as one of the main components for the gen-
eration of runoff; this sequence is driven by high rainfall 
events that last longer than several days and by previous 
events that affect runoff by changing the soil moisture 
content.

The simulated raw rainfall sequence discharge had an 
NSE value of 0.06 for the daily stream flow, and 28% of 
the stream flow with the RVE was underestimated. The 
simulated streamflow that was corrected by LS had a 
low NS value that was less than 0.5. Simulations 4–6 
increased the average monthly stream flow more than 
did simulations 1–3 by more than 60% of the NS value. 
For 7–15 simulations, the NS and R2 values (> 0.8) were 
very good for simulating monthly streamflow via PT, 
DM, and ECDF corrected rainfall, suggesting that these 
values can replicate satisfactory monthly stream flows in 
a basin that is close to the monthly scale bias-corrected 
rainfall results. The discharge simulated using the ECDF 
approach was more balanced than that of the other four 
methods, with NS (> 0.87) and RVE (0.10) values very 
well, with those simulated using observed data. Monthly, 
all the BCMs except for the mean-based methods (LS 
and LOCI) yielded similar results. This approach is simi-
lar to that of Fang et  al. (2015) for simulations using 

Table 15  Comparison of daily and monthly observed, raw RCM-simulated, and five precipitation BCMs combined with three 
temperature BCMs

Daily stream flow Monthly stream flow

Precipitation Temperature NSE (–) R2 (–) RVE (%) MAE (m3/s) NSE (–) R2 (–) RVE (%) MAE (m3/s)

Observed Observed 0.75 0.78 – – – – –

LS LS 0.21 0.29 4.40 7.54 0.81 0.85 9.40 3.47

VS 0.22 0.31 9.63 7.63 0.83 0.87 4.79 3.56

DM 0.29 0.33 − 0.27 7.19 0.83 0.89 − 0.11 3.04

LOCI LS 0.30 0.32 − 17.98 6.93 0.73 0.89 − 7.88 3.22

VS 0.30 0.32 − 1.09 7.21 0.81 0.88 − 0.94 3.20

DM 0.31 0.32 − 0.29 7.18 0.83 0.89 − 0.12 3.04

PT LS 0.51 0.51 − 10.99 5.59 0.81 0.87 − 5.93 2.71

VS 0.52 0.54 − 5.60 5.53 0.85 0.90 − 2.52 2.65

DM 0.52 0.55 − 4.95 5.49 0.86 0.91 − 1.85 2.52

DM LS 0.48 0.49 − 12.23 5.97 0.79 0.85 − 12.15 2.75

VS 0.50 0.50 − 8.05 5.87 0.82 0.89 − 7.94 2.64

DM 0.50 0.56 − 1.07 5.41 0.89 0.92 − 0.99 2.31

ECDF LS 0.54 0.61 − 24.51 4.78 0.88 0.86 − 4.42 3.44

VS 0.59 0.63 − 18.56 4.66 0.90 0.90 − 1.45 3.17

DM 0.63 0.64 − 0.43 4.78 0.93 0.88 − 0.31 2.89
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LOCI, PT, DM, and ECDF, for which the monthly NS 
values are greater than 0.6. The bias correction method 
performance can be influenced by various factors, such 
as climate variability, land use/land cover, data availabil-
ity, and the specific hydrological processes that dominate 
the catchment (Tumsa 2022). However, if catchments dif-
fer significantly in these aspects, the performance of bias 
correction methods may vary (Dibaba et al. 2020).

PT, DM, and ECDF have consistently been stronger 
than the two mean-based approaches because they take 
directly into account the resulting rise in extreme daily 
rainfall in the high runoff, as shown in Fig. 11. Compared 
to the PT and ECDF systems, the DM system did not per-
form very well in correcting the high runoff characteris-
tics, as it was correlated with its weakness in reproducing 
the characteristics of high flow and low rainfall, as shown 
in Fig. 11. In simulating high runoff, accompanied by the 
PT, DM, LOCI, and LS methods, the ECDF method per-
formed best. This is in line with bias-corrected rainfall 
efficiency.

Conclusion and recommendation
The RCM outputs from the CORDEX-22 and COR-
DEX-44 simulated rainfall and temperature data were 
biased, which hindered their direct use for climate 
change and hydrological models. This study compared 
the abilities of various RCM models with five rainfall and 
three temperature correction methods for downscaling 
RCM simulations in the Katar watershed. For tempera-
ture and rainfall, GERICS-MPI, RAC4-NOAA-2G, and 
CCLM4-NCCR-AFR-22 show better performances than 
the other models. The corrected rainfall and temperature 
efficiency depended on the correction method chosen. 

Different rainfall correction methods significantly affect 
downscaled rainfall, while different temperature correc-
tion methods yield similar results for downscaled rainfall. 
The ECDF worked better for the correction of frequency-
based indices and high and low catchment rainfall prop-
erties than the other methods. The linear approach was 
the most unfit for correcting different rainfall character-
istics because it only modifies the mean. Compared with 
other methods, the PT and ECDF techniques better cor-
rect frequency-based indices and time series-based indi-
ces in daily, monthly, and annual terms. For temperature, 
the VAR and DM methods performed better in terms of 
frequency-based indices than the LS method at the daily 
scale. The LS method performed best in terms of the 
time-series-based indices at the monthly scale.

The empirical cumulative distribution function (ECDF) 
method showed the best performance over the other 
methods for simulated streamflow, similar to the perfor-
mance of bias-corrected rainfall, particularly in the high-
flow simulation, followed by the PT, DM, LOCI, and LS 
methods. The LS did not correct the frequency of rainy 
days. The bias-corrected rainfall errors contributed to an 
improvement in the modeled runoff errors. In simulating 
all rainfall characteristics that influence runoff, particu-
larly for daily rainfall series, the bias correction methods 
tested here can overcome the limitations of the RCM. 
Modeled runoff errors were heavily affected over time by 
inconsistent RCM errors.

Finally, this study clearly outlines the importance of 
proper validation of bias correction methods before they 
are applied to any climate change impact study. Bias-
corrected climate input should therefore be used with 
extreme caution, as different methods have different 

Fig. 11  Boxplot of ARD of low flow and high flow
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strengths in correcting biases. Interpretation and usage 
of the outputs should be performed according to the spe-
cific needs of the study. Combining other approaches for 
climate change projection and hydrology impact stud-
ies can be another approach to consider. Nevertheless, 
this study has shown that bias correction methods can 
reduce biases as raw RCM-simulated rainfall time series 
improve; thus, information from RCMs can become use-
ful for hydrological studies that focus on monthly scales. 
Generally, the selection of the rainfall correction method 
is more important than the selection of the temperature 
correction method for downscaling the GCM/RCM. This 
study specifically selected representative RCM outputs 
and BCMs for the Katar catchments. However, future cli-
mate change impacts have not been studied for the catch-
ment. Therefore, it is recommended that future studies 
analyze future climate changes. The model simulation 
considers only the climate variable by assuming that all 
other factors remain constant. However, changes in land 
use will also greatly impact rainfall-runoff processes in 
watersheds. Therefore, future studies should consider 
land use/land cover change.
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