
Kassaye et al. 
Environmental Systems Research            (2024) 13:2  
https://doi.org/10.1186/s40068-023-00328-1

RESEARCH

Quantifying the climate change impacts 
on the magnitude and timing of hydrological 
extremes in the Baro River Basin, Ethiopia
Shimelash Molla Kassaye1*, Tsegaye Tadesse2, Getachew Tegegne3 and Aster Tesfaye Hordofa4 

Abstract 

Extreme hydrological events, like floods and droughts, exert considerable effects on both human and natural sys-
tems. The frequency, intensity, and duration of these events are expected to change due to climate change, pos-
ing challenges for water resource management and adaptation. In this study, the Soil and Water Assessment Tool 
plus (SWAT +) model was calibrated and validated to simulate flow under future shared socioeconomic pathway 
(SSP2-4.5 and SSP5-8.5) scenarios in the Baro River Basin with R2 values of 0.88 and 0.83, NSE of 0.83 and 0.74, 
and PBIAS of 0.39 and 8.87 during calibration and validation. Six bias-corrected CMIP6 Global Climate Models (GCM) 
were selected and utilized to investigate the effects of climate change on the magnitude and timing of hydrological 
extremes. All climate model simulation results suggest a general increase in streamflow magnitude for both emis-
sion scenarios (SSP2-4.5 and SSP5-8.5). The multi-model ensemble projections show yearly flow increases of 4.8% 
and 12.4% during the mid-term (MT) (2041–2070) and long-term (LT) (2071–2100) periods under SSP2-4.5, and 15.7% 
and 35.6% under SSP5-8.5, respectively. Additionally, the analysis revealed significant shifts in the projected annual 
1 day, 3 day, 7 day, and 30 day maximum flows, whereas the annual 3 day and 7 day minimum flow fluctuations 
do not present a distinct trend in the future scenario compared to the baseline (1985–2014). The study also evalu-
ated the timing of hydrological extremes, focusing on low and peak flow events, utilizing the annual 7 day maximum 
and minimum flow for this analysis. An earlier occurrence was noted for both peak and low flow in the SSP2-4.5 
scenario, while a later occurrence was observed in the SSP5-8.5 scenario compared to the baseline. In conclusion, this 
study showed the significant effect of climate change on river hydrology and extreme flow events, highlighting their 
importance for informed water management and sustainable planning.
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Introduction
Water resources management and sustainable devel-
opment depend on understanding river hydrology and 
its potential changes under future climate conditions 
(Shrestha et  al. 2021). Changes in climate, specifically 
alterations in temperature and precipitation patterns, 
have the potential to significantly influence water avail-
ability, exacerbating both flooding and droughts (Majone 
et  al. 2022). For example, the rainfall pattern may shift, 
causing more frequent and intense floods or prolonged 
droughts, thereby affecting availability and distribution 
(Murthy 2012; Society 2021). Moreover, climate change 
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can also alter the timing of hydrological extremes within 
the year, not only their magnitude (Lane and Kay 2021).

In addressing the challenge of climate change, a criti-
cal goal involves uncovering how climate change affects 
the mechanisms of the hydrologic cycle and forecasting 
its impact on related areas (Wang et  al. 2016). Several 
researchers have explored the linkage between climate 
change and hydrological extremes (Taye et  al. 2015; 
Lane and Kay 2021; Ich et  al. 2022), with the major-
ity reporting that extreme values are highly susceptible 
to climate change (Romanowicz et  al. 2016; Bian et  al. 
2021; Ich et al. 2022; Tefera and Ray 2023). In general, as 
global temperatures rise, precipitation patterns become 
more erratic, directly affecting the flow’s magnitude and 
increasing the risk of flash floods in some regions and 
intensifying drought conditions in others.

Environmental water requirements are influenced not 
only by the amount of water but also by its timing (Patil 
et al. 2023). A shift in the timing of streamflow will have 
substantial consequences for ecosystems, water avail-
ability, agricultural practices, and overall water resource 
management (Nachtergaele et  al. 2016). For instance, 
even a slight change in the timing of floods can have a 
significant impact on the environment, increasing the 
risk of flooding, decreasing farm productivity (Klaus 
et al. 2016), and affecting the dependability of the water 
supply (Barnett et al. 2005). Some researchers have inves-
tigated the link between climate change and the timing 
of extreme flow events (Lane and Kay 2021; Society 2021; 
Fang et al. 2022; Patil et al. 2023). The consensus among 
them is that climate change does indeed cause shifts in 
the timing of hydrological extremes. However, these 
shifts can either be towards earlier or later dates, depend-
ing on regional and local factors. For example, statisti-
cally significant shifts with no consistent spatial pattern 
have been observed in China (Gu et al. 2017). Meanwhile, 
flood peaks in Scandinavia have shifted earlier in the year 
(Matti et al. 2017), whereas flood timing in Australia has 
shifted earlier in the year in tropical regions and later 
in the year in temperate areas, aligning with changes in 
antecedent moisture conditions (Wasko et  al. 2020). 
Consequently, the timing of hydrological extremes needs 
to be assessed on a regional basis, taking into account 
the potential influence of spatial variations in climate 
changes and the unique physical attributes of each area.

In Ethiopia, there has been a lack of comprehensive 
research on hydrologic extremes, with no study con-
ducted in the Baro River Basin (BRB). Although the 
common issue of flooding affecting the lower Baro down-
stream of Gambella is acknowledged, there have been no 
studies done to adequately quantify the extent of these 
extremes within the basin. Moreover, local communi-
ties have observed a shift in the timing of flooding from 

August to September, necessitating scientific valida-
tion from the past, extending through the present, and 
projecting into the future. Therefore, it is important to 
adequately quantify the magnitude and timing of these 
extremes using hydrological modeling. This will assist 
policymakers and stakeholders in developing appropri-
ate strategies to mitigate adverse effects and adapt to the 
changing conditions.

Hydrological models can be used to investigate changes 
in both the magnitude and timing of peak and low flows 
and how these changes might occur with future climate 
conditions (Kay and Crooks 2014; Kiprotich et al. 2021; 
Pulighe et  al. 2021). In this study, the soil and water 
assessment tool plus (SWAT+) model was employed 
to simulate flow in the Baro River Basin. The climate 
change impact analysis is based on the Global Climate 
Models (GCMs) output from the Coupled Model Inter-
comparison Project Phase 6 (CMIP6), considering both 
emission scenarios of Shared Socioeconomic Pathways 
(SSPs) SSP2-4.5 and SSP5-8.5, for the mid-term (2041–
2070) and long-term (2071–2100) periods. The SSP2-4.5 
scenario represents middle-of- the- road development 
where socio-economic factors follow their historical 
trends with no significant change, whereas SSP5-8.5 rep-
resents the worst-case scenario with the high end of 
the range of future pathways. These two scenarios were 
selected as they offer contrasting pathways that are rel-
evant for studying potential impacts and policy impli-
cations across a range of sectors. The preference for the 
CMIP6 model arises from its higher resolution, expanded 
parameterization, and incorporation of updated emission 
scenarios, in contrast to the CMIP5 model. Addition-
ally, the significance of the new SSP scenarios lies in their 
consideration of important socio-economic factors like 
population when making predictions (Siabi et  al. 2023). 
Accordingly, the main goals of this study are to address 
the following questions: (i) What is the potential impact 
of climate change on the magnitude of low and high flows 
in the Baro River Basin? (ii) Is there a significant shift in 
the timing of the basin’s extreme flows?

Materials and methods
Study area
The research was conducted in the Baro River Basin 
(BRB), located in southwestern Ethiopia and bounded 
by latitudes ranging from 7° 24 to 9° 25ʹ and longitudes 
from 33° 20ʹ to 36° 20ʹ (Kassaye et al. 2022), with its out-
let in Gambella (Fig. 1). The basin is divided into upper 
and lower Baro regions at Gambella, covering an area of 
approximately 23,400   km2 with an altitudinal range of 
400 and 3500 m. Notably, 42% of the areas lies between 
1000m and 2000  m in altitude (Getu Engida et  al. 
2021). The lower Baro is a floodplain area dominated by 
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grassland and woodland (Moges and Taye 2019), whereas 
the upper Baro is mostly covered by agriculture and 
forest.

The entire basin is characterized by a single monsoon 
wet season that typically occurs from late May or early 
June to the end of September, experiencing annual pre-
cipitation ranging from 1100  mm to 2500  mm. Moreo-
ver, the basin experiences temperature extremes ranging 
from 17.7 to 42 °C for maximum temperatures and 6.4 to 
27 °C for minimum temperatures (Kebede 2013; Kassaye 
et al. 2022). Subsequently, this wet season is followed by a 
long dry season.

From the geological perspective, the BRB follows a 
distinctive pattern (Alemayehu et  al. 2016; Bayou et  al. 
2021). It begins with the presence of Precambrian crys-
talline basement rocks forming the foundational layer. 
Overlying these are sediments dating from the late Paleo-
zoic to the early Tertiary period. Subsequently, these sed-
iments are covered by Cenozoic volcanic rocks along with 
associated sedimentary formations. While the precise 
coverage and depth of each rock type remain unknown, 
all three major categories: the ancient Precambrian base-
ment rocks, the Tertiary to Quaternary volcanic rocks, 

and the substantial Neogene sedimentary deposits exist 
within the region, albeit varying in depths and lateral 
extent. This geological sequence signifies a complex lay-
ering of rock formations that have evolved over extensive 
periods, contributing to the diverse geological landscape 
of the upper Baro River Basin.

The Upper Baro River Basin in Ethiopia exhibits a 
diverse range of dominant soil types, each playing a piv-
otal role in shaping the region’s agricultural landscape. 
Vertisols, Nitisols, Cambisols, and Fluvisols are among 
the dominant soil types encountered across the basin 
(Alemayehu et  al. 2018), each exhibiting specific char-
acteristics influenced by factors such as topography, cli-
mate, and geological formations.

Data quality analysis
Hydro‑meteorological datasets
Observed streamflow data for BRB at Baro Gambella 
were collected from Ethiopia’s Ministry of Water and 
Energy for the period from 1980 to 2021. Similarly, 
meteorological data, including precipitation, maximum 
and minimum temperature, wind speed, humidity, and 
sunshine hour data, were collected from the Ethiopian 

Fig. 1 Location map of the study area
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National Meteorological Agency (ENMA) for the period 
from 1990 to 2021. A 30  year base period was selected 
for this analysis, starting from 1985 to 2014, based on the 
availability of climate data.

In the initial phase of this study, we conducted data 
quality control procedures. This involved assessing data 
availability, identifying and addressing outliers, conduct-
ing a homogeneity test, and subsequently filling in any 
missing data, following the guidelines provided by (Kas-
saye et al. 2022) for the BRB. After checking the outlier 
test and homogeneity test, the missing values were filled 
using the inverse distance weighted (IDW) method, 
where six stations were selected based on the quality of 
data, as shown in Table 2.

Geospatial datasets
In addition to the meteorological data, SWAT+ also 
utilizes spatial data such as the Digital Elevation Model 
(DEM), Soil, and land use/land cover data (LULC) as 
input for simulating flow. The DEM, with a 30  m reso-
lution, was derived from the Shuttle Radar Topography 
Mission (SRTM), and it was employed for delineating the 
basin (Fig. 2).

Land use/cover (LULC) data were obtained from the 
Ethiopian Geospatial Agency for the year 2016. Within 

the basin, the LULC classes were classified into four pri-
mary classes based on their dominant features: AGRL 
(Agricultural land-generic), RNGE (Schrubland), FRST 
(Forest-mixed), and AGRC (Agricultural land close 
grown). Furthermore, spatial soil data were collected 
from the Ethiopian Ministry of Water and Energy, and 
the soil types were reclassified into nine classes based on 
their dominance.

Methods
Climate model data
The Copernicus Climate Change Service was utilized 
to extract data from the CMIP6 climate data archive. In 
total, six climate models were identified for the study 
area based on the availability of all variables (rainfall, 
Tmax, and Tmin) for both historical and future periods. 
To refine the selection, the models were filtered based 
on daily data, a nominal resolution of 100 km, a source 
type of Atmosphere-Ocean General Circulation Model 
(AOGCM) with the r1p1f1 variant, as recommended by 
(Balcha et al. 2022) (Table 1).

This study investigated the impact of climate change 
on the magnitude and timing of selected hydrological 
extremes during the mid-term (2041–2070) and long-
term (2071–2100) periods compared to the historical 

Fig. 2 Flowchart showing the general methodology used in the study
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period (1985–2014). The models were divided into three 
30  year intervals: 1985–2014 as the historical period, 
2041–2070 as the mid-term period, and 2071–2100 as 
the long-term period.

In contrast to actual observations, climate outputs 
derived from GCMs consistently exhibit systematic 
biases (Mehrotra and Sharma 2015). Hence, it is essen-
tial to perform some form of statistical adjustment before 
utilizing them in any application. In this study, the Cli-
mate Model Data for Hydrological Modelling (CMhyd) 
tool was employed to downscale and bias-correct rain-
fall and temperature data using the distribution mapping 
method (Musie et al. 2020). This tool has found extensive 
usage in correcting biases in precipitation and tempera-
ture data for various applications (Tian et  al. 2020). For 
instance, Zhang et  al. (2018) found that among the five 
bias correction algorithms tested, the distribution/Quan-
tile mapping emerged as the most effective in terms of 
performance.

Soil and water assessment tool plus (SWAT +) application
SWAT+ (Soil and Water Assessment Tool Plus) is 
an advanced hydrological modelling framework that 
extends the capabilities of the well-established Soil and 
Water Assessment Tool (SWAT) (Chawanda 2021). It 
integrates various components to comprehensively 
model watershed processes, including hydrology, 

water quality, land use, and climate interactions. One 
of the key features of SWAT+ is its ability to simulate 
complex hydrological processes at different spatial and 
temporal scales, making it a valuable tool for studying 
watersheds and their responses to changing environ-
mental conditions (Akoko et al. 2021).

At its core, SWAT+ employs a process-based 
approach to simulate water movement, erosion, nutri-
ent cycling, and pollutant transport within a water-
shed. It partitions the watershed into sub-basins and 
further divides them into hydrological response units 
(HRUs) based on land use, soil types, topography, and 
other relevant factors. This allows for a detailed repre-
sentation of landscape heterogeneity and its impact on 
water flow, sediment transport, and nutrient dynamics. 
The model considers various hydrological components, 
such as precipitation, evapotranspiration, surface run-
off, infiltration, groundwater flow, and streamflow 
routing, to simulate the movement and fate of water 
through the watershed. SWAT+ also incorporates cli-
mate data, enabling the assessment of climate change 
impacts on hydrology and water resources by integrat-
ing future climate projections into the simulations.

The SWAT+ model requires point inputs of precipi-
tation (PCP), temperature (both Tmax and Tmin), wind 
speed (wnd), relative humidity (hmd), and sunshine 
hour’s (slr) data for simulating river flows (see Table 2 
below). In this study, three distinct sets of model simu-
lations were conducted, each utilizing different input 
data: (1) using climate data over the baseline period of 
1985–2014; (2) using climate data for the near-future 
period 2041–2070 for both SSP2-4.5 and SSP5-8.5 sce-
narios; and (3) using climate data for the long-term 
future period 2071–2100 for both SSP2-4.5 and SSP5-
8.5 scenarios.

The area was divided into 19 sub-basins using DEM 
data, with 15.4% constituting floodplain and the 
remaining 84.6% of the landscape representing upslope 
terrain. Taking the short channel merging threshold as 
5%, a total of 118 channels were generated during this 
delineation process. The basin is dominated by four 
classes of landuse as AGRL, RNGE, FRST, and AGRC. 
Additionally, the basin is classified into three slope 
classes: 0–15%, 15–30%, and >30%.

During the simulation period, observed climate 
data from five representative stations were used as an 
input, selected based on the completeness of their data 
(Table  2). The model setup involved utilizing the Soil 
Conservation Service’s Curve Number (CN) method 
for runoff estimation, the Hargreaves method for actual 
evapotranspiration (ET) estimation, and the Musk-
ingum method for flow routing.

Table 1 List of CMIP6 climate models selected for climate 
projection in BRB

No CMIP6 Model Name Country Resolution 
(lon. Lat. 
deg)

1 EC-Earth3-CC Europe 0.7o× 0.7o

2 EC-Earth3-Veg Europe 0.7o× 0.7o

3 INM-CM4-8 Russia 2° × 1.5o

4 INM-CM5-0 Russia 2° × 1.5o

5 MRI-ESM2-0 Japan 1.1° × 1.1o

6 NorESM2-MM Norway 0.9° × 1.3o

Table 2 Meteorological stations used in the SWAT + model

Stations Lat (deg) Long (deg) Data period

Masha 7.75 35.4667 1980–2018

Gore 8.1333 35.5333 1980–2018

Itang 8.1667 34.2667 1980–2016

Gambella 8.25 34.58333 2000–2018

Metu 8.28333 35.56667 1981–2018

Dembidollo 8.516667 34.8 1987–2018
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Sensitivity analysis
The SWAT+ Toolbox, specifically designed to work with 
the SWAT+ model, was used for model sensitivity analy-
sis, calibration, evaluation, and validation. The SOBOL 
sensitivity analysis method was employed to identify and 
screen the most sensitive parameters, examining which 
input parameter had the most impact on the model’s out-
put (Hordofa et al. 2023) before initiating the calibration 
process. The software automatically calculates sensitive 
parameters and ranks them in ascending order (Hordofa 
et al. 2023).

Model simulation, calibration, validation, and performance 
criteria
After identifying sensitive input parameters, calibration 
was conducted by adjusting the model parameters to 
align observed and simulated flows. Subsequently, using 
the identified input parameters, the model underwent 
validation using another set of data to ensure its reliabil-
ity and suitability for real-world applications. The model 
underwent simulation for the 30  year baseline period 
spanning from 1985 to 2014.

The SWAT+ model’s performance was evaluated 
using goodness-of-fit statistics, involving a comparison 
between the observed and simulated streamflow data. 
Various statistical metrics, such as the Nash-Sutcliffe 
(NSE), bias percentage (PBIAS), and coefficient of deter-
mination (R2), were employed for this assessment. These 
metrics served as indicators of how well the model’s pre-
dictions aligned with the actual streamflow data, pro-
viding valuable insights into the model’s accuracy and 
reliability.

Impact of climate change on the magnitude and timing 
of hydrological extremes
The influence of climate change on hydrological extremes 
is substantial, resulting in an increased frequency and 
heightened severity of diverse hydrological events. These 
changes are attributed to rising global temperatures, 
altered precipitation patterns, and other shifts in weather 
systems. The effect can be observed in the magnitude and 
timing of hydrological extremes.

Impact of climate change on the magnitude 
of hydrological extremes
The impact of climate change on the magnitude of 
hydrological extremes is significant and evident across 
various regions. A statistical approach was used for the 
analysis of low flow and high flow in the river. Within this 
research, high flows are represented by the maximum 
flows observed over annual 1 day, 3 day, 7 day, and 30 day 
periods, calculated using daily average discharge data. 
Conversely, low flows are indicated by the annual 7 day 

and 30 day minimum discharge values. Those indices are 
extracted from daily flow data using the Annual Maxi-
mum Series (AMn) Model (Gregor 2010) from the Hydro 
Office package.

Impact of climate change on timing of hydrological 
extremes
For determining the timing of hydrological extremes, the 
first step was identifying the day of the year when the 
annual maximum of 7 day and 30 day for peak flow anal-
ysis and the annual minimum7  day and 30  day for low 
flow occurs using AMn statistical tool from Hydro Office 
Package. The AMn software (Gregor 2010) allows calcu-
lating extreme (N-daily) values from time-series data. To 
analyze any potential shift in the timing of hydrological 
extremes under both the baseline and future scenarios 
(SSP2-4.5 and SSP5-8.5), the mean day of occurrence 
was estimated using a circular mean package from R pro-
gramming. In general, the methodologies employed in 
this study are summarized in the figure below (Fig. 2).

Results and discussion
Calibration and validation of the SWAT + model
Six climate models from CMIP6 (MRI-ESM2-0, 
NorESM2-MM, EC-Earth3-Veg, EC-Earth3-CC, INM-
CM5-0, and INM-CM4-8) were selected based on (i) 
the common availability of climatic variables (Tmax, 
Tmin, and PCP) for historical, mid-term (MT), and long-
term (LT) periods, and (ii) availability for the two sce-
narios SSP2-4.5 and SSP5-8.5. The distribution mapping 
method from CMhyd was employed to downscale and 
bias-correct the climate data.

Observed data from 2002 to 2010 and 2012 to 2016 
were then used to calibrate and validate the SWAT+ 
model, respectively. Subsequently, flow simulations were 
performed for future periods. The results showed very 
good agreement between the observed and simulated 
values (Fig.  3). The goodness of fit was assessed using 
NSE, PBIAS, and R2, with respective values of 0.83, 0.39, 
and 0.88 during calibration and 0.74, 8.87, and 0.83 dur-
ing validation, respectively (Table 3).

Evaluation and projection of streamflow
The initial phase of the analysis involved a comparison 
between the observed and simulated streamflow time 
series spanning from 1985 to 2014. Fig.  4 below illus-
trates the results, revealing that for the winter (Decem-
ber, January, and February-DJF), summer (June, July, 
and August-JJA), and spring season (September, Octo-
ber, and November-SON), climate models INM-CM5-0 
and INM-CM4-8 demonstrated better simulation 
results compared to other climate models. The average 
percentage change between observed and simulated 
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flows for those seasons varies within the range of 
5–10%. However, during the autumn season (March, 
April, and May-MAM), INM-CM5-0 and INM-CM4-8 
underestimated the flow, while NorESM2-MM pro-
vided a better estimation with an average difference of 
3% between the simulated and observed flows. Gener-
ally, climate models EC-Earth3-CC and MRI-ESM2-0 
overestimated the flow (Fig. 4).

Numerous researchers worldwide have recognized the 
value of employing multi-model ensembles to enhance 
the quality of climate data, primarily in the context of 
model evaluation (Kattsov et  al. 2013; Tegegne and 
Melesse 2020; Yimer et  al. 2022). However, it’s impor-
tant to understand that the concept of ensembles doesn’t 
mandate the inclusion of all available climate models; 
instead, the focus should be on selecting the most pro-
ficient models. This notion is supported by the findings 
of Yimer et  al. (2022), indicating that the effectiveness 
of ensemble models doesn’t necessarily depend on the 
quantity of individual models used in the ensemble crea-
tion process.

Weighted average ensemble climate models employ 
various methods to assign varying weights to individual 
model simulations within the ensemble. These methods 
are designed to enhance prediction accuracy by assign-
ing greater importance to simulations considered more 
reliable, skilled, or credible. There are different types of 
weighted average ensembles, including expert-weighted 

Fig. 3 Comparison of observed and simulated monthly streamflow for a the calibration period (2002–2010) and b the validation period (2012–
2016)

Table 3 Results of the simulated evaluation of the streamflow 
during both calibration and validation periods in the Baro River 
using SWAT + 

Evaluation criteria Value during calibration Value 
during 
validation

NSE 0.83 0.74

PBIAS 0.39 8.87

R2 0.88 0.83
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ensembles, performance-based ensembles, model skill 
scores and ranking, machine learning-based weight-
ing, and hybrid approaches. In our study, we utilized 
a hybrid approach that relies on expert judgment along 
with statistical methods to assign weights. Consequently, 
we compared the simulated climate data against the 
observed data, excluding those models that significantly 
overestimated or underestimated the flow. Subsequently, 
the mean of those better-performing climate models was 
taken and showed a good representation of flow. This 
finding was supported by the result of Mengistu et  al. 
(2023), where they observed that the ensemble mean of 
the climate models exhibited a better correlation with 
observed values in the Baro River Basin (BRB). Research-
ers such as Gu et  al. (2018; Chakilu et  al. (2023); and, 
Terefe and Dibaba (2023) also used mean ensemble cli-
mate models to evaluate the impact of climate change on 
hydrological extremes, finding good performance with 
the observed data in their analysis. Based on our result, 
the mean multi-model ensemble value of four mod-
els (INM-CM5-0, INM-CM4-8, EC-Earth3-Veg, and 
NorESM2-MM) was used in the subsequent section for 
assessing the impact of climate change on hydrological 
extremes.

Projected changes in streamflow
The different projections from Global Climate Models 
(GCMs) were used as input for simulating streamflow 
using the SWAT+ model for various climate scenarios: 
baseline (1985–2014), SSP2-4.5 (2041–2070 and 2071–
2100), and SSP5-8.5 (2041–2070 and 2071–2100). The 
streamflow series showed that almost all of the models 
exhibited similar trends to the observed series across all 
time steps. During the baseline period, the annual mean 
ensemble flow varied from 447.7 to 783.7m3/s. In con-
trast, under SSP2-4.5, it ranged from 472.6 to 894.7  m3/s, 
and under SSP5-8.5, it ranged from 511.8 to 1238.7  m3/s 
(Fig. 5). Table 4 below shows the mean annual flow and 
the percentage change between the baseline period and 
the two future scenarios SSP2-4.5 and SSP5-8.5 for the 
ensemble climate models.

Impact of climate change on the magnitude 
of hydrological extremes
Climate change impact on the high flows
To comprehend future flow trends, we estimated the 
annual maximum flows for 1 day, 3 day, 7 day, and 30 day 
periods, as shown in Fig.  6. The analysis reveals that 
the 1-day maximum flow shows greater fluctuations, 

Fig. 4 Comparison of climate models with observed flow
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indicating an average percentage shift of 49.8% under 
SSP2-4.5 and 80% under the SSP5-8.5 scenario compared 
to the baseline. These findings agree with the results 
found by Yang et al. (2022), which indicate greater vari-
ability in the 1 day maximum compared to other periods.

In contrast, the annual 3  day maximum flow shows 
relatively less variability, experiencing an average rise of 
33% under SSP2-4.5 and 58.4% under SSP5-8.5 relative to 
the baseline. Similarly, the annual 7  day maximum flow 
exhibits less fluctuations, with a percentage alteration of 

22.3% under SSP2-4.5 and 40.1% under SSP5-8.5 com-
pared to the reference period. Remarkably, the annual 
30  day maximum flow presents the least variability, 
depicting a percentage shift of −  5.1% under SSP2-4.5 
and 28.7% under SSP5-8.5.

The 1  day maximum flow is more prone to greater 
fluctuations due to its sensitivity to short-term extreme 
events, such as intense rainfall, sudden storms, or rapid 
snowmelt. It reacts swiftly to immediate changes in pre-
cipitation or watershed conditions, resulting in increased 
fluctuations as it emphasizes the most extreme values 
within a very short timeframe. On the other hand, the 
longer timeframes of the 3 day, 7 day, and 30 day maxi-
mum flow tend to smooth out fluctuations, providing a 
more averaged and sustained view of the watershed’s 
hydrological behavior over extended durations.

Additionally, the annual maximum series was extracted 
and plotted using the Flow duration curve (FDC) for all 
time periods. The results displayed significant variations 

Fig. 5 Flow simulated for the three distinct periods a 1985–2014 (baseline), b 2041–2100 (SSP2-4.5), and c 2041–2100 (SSP5-8.5)

Table 4 Mean annual flow changes from mean ensemble 
models

Scenario Baseline SSP2-4.5 SSP5-8.5

Flow in Cumec 691.8 780.8 899.2

Percentage change relative 
to the baseline

– 12.8% 29.9%
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across each period. To assess alterations in the basin’s 
high flow pattern, magnitudes were classified into four 
groups based on their probability of exceedance (Q0-
Q25, Q26-Q50, Q51-Q75, and Q76-Q100). Within this 
classification, the SSP5-8.5 scenario exhibited greater 
changes in high flow across all probabilities of exceed-
ance (Fig.  7). Notably, the change in high flow is most 
noticeable in Q0-Q25, indicating higher magnitudes 
(Table 5).

Climate change impact on low flows
Just like floods, low-flow events are naturally occurring 
phenomena capable of significantly hindering various 
river applications and functions. These impacts extend 
to the environment, inland waterway navigation, hydro-
power generation, sediment control, and more (Ionita 
and Nagavciuc 2020). To assess the future hydrological 
drought conditions, we computed the annual 3  day and 
7 day low flows for all scenarios, including the baseline, 

Fig. 6 1,3,7, and 30-day annual maximum flow trend for baseline, SSP2-4.5, and SSP5-8.5
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SSP2-4.5, and SSP5-8.5, as shown in the figure below 
(Fig. 8).

Contrary to the consistently rising trend observed in 
peak flow for all time periods and scenarios, the trend 
in low flow doesn’t uniformly show an increase across all 
scenarios. However, when examining annual averages, 
the low flows demonstrate a slight increase in the future. 
According to (Terefe and Dibaba 2023), this might be due 
to a rise in precipitation magnitude in the basin under 
both the SSP2-4.5 and SSP5-8.5 scenarios.

The results from various researchers (Assefa and 
Moges 2018; Fangmann and Haberlandt 2019), as well 
as the findings in this paper, show that the magnitude of 
low flow might either increase or decrease in response 
to climate change. This is in contrast to peak flow, which 
generally experiences an increase in magnitude with the 
increase in global climate. This distinction arises because 
high flow is more responsive to climate change, while low 
flow is significantly influenced by changes in land use/
cover, as highlighted by (Gedefaw et al. 2023).

Impact of climate change on the timing of hydrological 
extremes
Climate change impact on the timing of high flows
The timing of hydrological extremes refers to their 
occurrence concerning the water cycle, such as floods, 
droughts, and another water related phenomenon, 
at specific times or seasons. Changes in hydrological 
extremes can be influenced by factors like seasonal pat-
terns, climate variability and change, geographic and top-
ographic factors, El Nino and La Nina events, and human 
activities. Therefore, an understanding of hydrological 
extremes is crucial for effective water resources manage-
ment and climate change adaptation.

In this study, the timing of peak flow was determined 
based on the annual 7  day maximum flow and annual 
30  day maximum flow under climate change. Initially, 
the occurrence of these maximum flows was extracted 
from daily hydrological data using statistical tools. Then, 
peak flow average events were estimated using a circular 
mean package in R. The timing of occurrences was esti-
mated for different periods, including historical, SSP2-4.5 
for the MT (2041–2070, and LT (2071–2100) periods, 
as well as for SSP5-8.5 for the MT (2041–2070) and LT 

(2071–2100) periods. The number of days was calculated 
starting from January 1 to December 31 for 366 days.

Based on the 7  day annual maximum, the results 
showed that the date of occurrence of peak flow varies 
between days 238 and 261. It is projected to drop by 2 
days under the mid-term SSP2-4.5 scenario (2041–2070) 
and 25 days under the long-term SSP2-4.5 scenario 
(2071–2100). On the other hand, under the SSP5-8.5 
scenario, the date of occurrence of the 7  day annual 
maximum falls within the days of 265 and 273. It is pro-
jected to shift forward by 10 days and 2 days under SSP2-
4.5(2041–2070) and (2071–2100), respectively (Table 6).

In contrast to the SSP2-4.5 scenario, there is a for-
ward shift in the date of occurrence of the annual 7 day 
maximum under the SSP5-8.5 scenario. This result cor-
responds with the outcomes presented in (Dembélé et al. 
2023), where they revealed that the annual maximum 
flow drops by 2 days under the future scenario of RCP2.6, 
RCP4.5, and RCP8.5 in their study in the Volta River 
Basin.

When comparing the effects of climate change on peak 
flow timing between the long-term (2071–2100) and 
mid-term (2041–2070) future scenarios, it was noted 
that the timing of long-term period moves towards ear-
lier dates. This finding was supported by (Robles et  al. 
2017), who identified a connection between warmer tem-
peratures and a shift towards earlier occurrence of spring 
flows.

Climate change impact on the timing of low flow
Similar to the peak flow analysis, the timing of low flow 
was also estimated both for the baseline period and 
future scenarios. This analysis was conducted based on 
the annual-7 day minimum flow and annual-30 day min-
imum flow, as presented in Table  7 below. The findings 
indicate that the timing of the annual 7-day minimum 
flow ranges from the 53rd to the 58th day, showing a 
drop in 4 days and 9 days under the SSP2-4.5 scenarios 
(2041–2070) and (2071–2100), respectively. In con-
trast, a forward shift in timing by 17  days and 5  days 
was observed for the annual-7 day minimum flow under 
the SSP5-8.5 scenarios (2041–2070) and (2071–2100), 
respectively. Moreover, it was noticed that the timing of 
the monthly minimum flow occurs around March for 

Table 5 Mean annual maximum flow based on the range of probability of exceedance

Q0-Q25 Q26-Q50 Q51-Q75 Q76-Q100

BF SSP245 SSP585 SSP245 SSP585 SSP245 SSP585 SSP245 SSP585

MT LT MT LT BF MT LT MT LT BF MT LT MT LT BF MT LT MT LT

2806 5549 5861 7044 7028 2182 3042 3838 3581 5448 2008 2162 2892 2700 4082 1830 1609 2442 1974 3176
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both the baseline period and the future scenarios (SSP2-
4.5 and SSP5-8.5) (Table 7).

In general, the impact of climate change on the timing 
of hydrological extremes has gained substantial atten-
tion among researchers, with multiple studies providing 
evidence of this phenomenon (Byun et al. 2019; Shrestha 
et al. 2021; Muñoz et al. 2023; Peters et al. 2023). These 

studies have indicated that there will be a shift in the tim-
ing of low flow and peak flow with climate change in the 
future. However, it should be noted that the amount of 
projected shift in the timing of low flow and peak flow 
can vary depending on the specific climate scenarios 
selected for the study (Francisco et  al. 2023; Ye et  al. 
2023).

Fig. 8 3-day and 7-day annual minimum flow trend for baseline, SSP2-4.5, and SSP5-8.5 periods
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Conclusion and recommendation
In this study, the impact of climate change on the 
magnitude and timing of hydrological extremes was 
investigated. The SWAT+ model performed well for 
streamflow simulation during the calibration and vali-
dation periods, achieving NSE values of 0.83 and 0.74, 
respectively. GCM climate data from CMIP6 climate 
models were downscaled and bias-corrected before 
simulating the flow for the future scenarios of SSP2-4.5 
and SSP5-8.5.

The results showed an increase in flow magnitude, 
with an annual average change of 12.8% for the SSP2-
4.5 scenario and 29.9% for the SSP5-8.5 scenario rela-
tive to the baseline. Moreover, the study assessed the 
impact of climate change on both peak and low flows. 

Peak flow displayed an increasing trend in magnitude 
under both scenarios. For instance, the annual 7  day 
maximum flow exhibited changes of 22.3% and 40.1% 
under SSP2-4.5 and SSP5-8.5, respectively, compared to 
the baseline, while the low flow did not demonstrate a 
distinct trend.

Additionally, this study examined the influence of cli-
mate change on the timing of hydrological extremes. 
The findings revealed that the annual maximum 7  day 
event occurs between days 261 and 238 under the 
SSP2-4.5 scenario and between days 273 and 265 under 
the SSP5-8.5 scenario. Similarly, the timing of low-
flow events is estimated to occur between days 53 and 
58 under SSP2-4.5 and between days 69 and 81 under 
SSP5-8.5. In general, an earlier occurrence of events 

Table 6 Annual maximum 7 day and 30 day event days under (a) SSP2-4.5 and (b) SSP5-8.5

(a)

Event days Scenario

Historical SSP2-4.5(2041–2070) SSP2-
4.5(2071–
2100)

7 day AMAX_Event Day 263.9 261.8 238.7

30-day AMAX_Event Day 275.5 280.4 268.3

(b)

Event days Scenario

Historical SSP5-8.5(2041–2070) SSP5-
8.5(2071–
2100)

7 day AMAX_Event Day 263.9 273.1 265.5

30 day AMAX_Event Day 275.5 287.8 281.6

Table 7 Annual minimum 7 day and 30 day event days under (a) SSP2-4.5 and (b) SSP5-8.5

(a)

Event days Scenario

Historical SSP2-4.5(2041–2070) SSP2-
4.5(2071–
2100)

7 day AMIN_Event Day 64.3 58.6 53.6

30 day AMIN_Event Day 65.9 64.8 61

(b)

Event days Scenario

Historical SSP5-8.5(2041–2070) SSP5-
8.5(2071–
2100)

7 day AMIN _Event Day 64.3 81.8 69.1

30 day AMIN _Event Day 65.9 89.4 77.6
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was observed for SSP2-4.5, while a later occurrence was 
noted for SSP5-8.5, for both low and peak flows com-
pared to the baseline.

Overall, this study observed shifts in both magnitude 
and timing under climate change in the BRB. Never-
theless, it is crucial to acknowledge that hydrological 
extremes could be influenced by various factors beyond 
climate change alone. Therefore, future research should 
consider incorporating additional elements such as 
anthropogenic influences and inherent landscape fea-
tures that can impact both the magnitude and timing of 
hydrological extremes.
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