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Abstract 

Effective urban planning and management rely on accurate land cover mapping, which can be achieved 
through the combination of remote sensing data and machine learning algorithms. This study aimed to explore 
and demonstrate the potential benefits of integrating Sentinel-1 SAR and Sentinel-2 MSI satellite imagery for urban 
land cover classification in Gondar city, Ethiopia. Synthetic Aperture Radar (SAR) data from Sentinel-1A and Multi-
spectral Instrument (MSI) data from Sentinel-2B for the year 2023 were utilized for this research work. Support Vector 
Machine (SVM) and Random Forest (RF) machine learning algorithms were utilized for the classification process. 
Google Earth Engine (GEE) was used for the processing, classification, and validation of the remote sensing data. The 
findings of the research provided valuable insights into the performance evaluation of the Support Vector Machine 
(SVM) and Random Forest (RF) algorithms for image classification using different datasets, namely Sentinel 2B Mul-
tispectral Instrument (MSI) and Sentinel 1A Synthetic Aperture Radar (SAR) data. When applied to the Sentinel 2B 
MSI dataset, both SVM and RF achieved an overall accuracy (OA) of 0.69, with a moderate level of agreement indi-
cated by the Kappa score of 0.357. For the Sentinel 1A SAR data, SVM maintained the same OA of 0.69 but showed 
an improved Kappa score of 0.67, indicating its suitability for SAR image classification. In contrast, RF achieved 
a slightly lower OA of 0.66 with Sentinel 1A SAR data. However, when the datasets of Sentinel 2B MSI and Sentinel 
1A SAR were combined, SVM achieved an impressive OA of 0.91 with a high Kappa score of 0.80, while RF achieved 
an OA of 0.81 with a Kappa score of 0.809. These findings highlight the potential of fusing satellite data from multiple 
sources to enhance the accuracy and effectiveness of image classification algorithms, making them valuable tools 
for various applications, including land use mapping and environmental monitoring.
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Introduction
Sentinel-2 and Sentinel-1 data have found extensive 
applications across various scientific disciplines. The 
uses of Sentinel-2 MultiSpectral Instrument (MSI) data 
encompass tasks such as distinguishing burned areas, 
mapping hydrothermally altered minerals, assessing land-
slide susceptibility, and mapping the extent of mangroves 
(Huang et  al. 2016; Roteta et  al. 2019; Hu et  al. 2018; 
Wang et al. 2018). Additionally, Sentinel-2 MSI data have 
proven valuable for land cover mapping in urban areas. 
However, a notable challenge arises when classifying dark 
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impervious surfaces and water, as the visual differences 
between them are not distinct. Consequently, accurate 
classification using solely Sentinel-2 MSI data becomes 
problematic, as dark impervious surfaces may be errone-
ously identified as water, causing confusion (Zhang et al. 
2018).

Sentinel-1 Synthetic Aperture Radar (SAR) imagery has 
been widely employed in various applications, includ-
ing land cover mapping, flood monitoring, soil moisture 
retrieval, and rice production estimation (Balzter et  al. 
2015; Ruzza et al. 2019; Bao et al. 2018). Notably, when 
the image quality of Sentinel-2 MSI is affected by cloud 
cover or fog, Sentinel-1 SAR data can serve as a suitable 
replacement. The timely production of land cover maps 
using Sentinel-1 SAR images is particularly valuable for 
effective urban management. However, due to the intri-
cate material distributions in urban areas, generating 
accurate land cover classifications from Sentinel-1 SAR 
data remains a challenge. To address this challenge and 
enhance the classification outcomes, researchers have 
explored the combination of Sentinel-2 MSI and Senti-
nel-1 SAR data. This fusion approach has proven useful 
for vegetation type classification, biomass estimation of 
mangrove forests, and mapping of burned areas (Erin-
jery et al. 2018; Castillo et al. 2017; Colson et al. 2018). By 
leveraging the complementary strengths of both sensors, 
the integration of Sentinel-2 MSI and Sentinel-1 SAR 
data offers improved insights and more robust results for 
these specific applications (Mahdianpari et al. 2019).

Numerous studies have demonstrated that the inte-
gration of SAR data with optical data can enhance land 
cover classifications (Walker et al. 2010; Weng 2012). To 
achieve higher accuracy in land cover classification, it is 
essential to synergistically combine Sentinel-1 SAR data 
with Sentinel-2 MSI data. However, there is a lack of 
comprehensive research focusing on the fusion of Senti-
nel-2 MSI and Sentinel-1 SAR data specifically for urban 
land cover classification. As a result, the effectiveness of 
fusing these two types of satellite images for urban land 
cover classification remains an area that requires further 
assessment and investigation. By evaluating the fusion 
approach, researchers can gain valuable insights into its 
potential benefits and limitations, ultimately advancing 
the capabilities of remote sensing techniques for urban 
land cover mapping.

Now a days, Google Earth Engine (GEE) is becoming 
a powerful platform that offers image processing, data 
fusion, classification, and interactive visualization capa-
bilities for Sentinel-2 MSI and Sentinel-1 SAR data (Viz-
zari M, 2022). It enables users to perform various image 
processing tasks, including filtering, geometric correc-
tions, and radiometric adjustments on vast archives of 
satellite imagery. GEE’s ability to fuse optical and radar 

data from different sources like Sentinel-2 and Senti-
nel-1 provides users with a comprehensive view of the 
Earth’s surface, overcoming the limitations of individual 
sensors (Tassi and Vizzari 2020). Moreover, it supports 
the implementation of classification algorithms for land 
cover mapping, change detection, and time-series analy-
sis, making it a valuable tool for monitoring environ-
mental changes and urban development. The platform’s 
cloud-based architecture simplifies data access, process-
ing, and interactive visualization, making it an essential 
resource for researchers, scientists, and developers in the 
remote sensing community (Gomes et al. 2020).

Support Vector Machine (SVM) and Random Forest 
(RF) are popular machine learning algorithms utilized 
extensively in desktop software for image classification 
(Pal et  al. 2013). The integration of these algorithms 
into the Google Earth Engine (GEE) platform offers the 
advantage of processing big remote sensing datasets effi-
ciently, eliminating the time-consuming nature of stan-
dalone computer software. However, the performance 
of the machine learning algorithms, specifically Support 
Vector Machine (SVM) and Random Forest (RF), has not 
been evaluated yet in producing urban land cover clas-
sifications using Sentinel-2 MSI and Sentinel-1 SAR sat-
ellite imagery in the study area of Gondar city, Ethiopia. 
Thus, this research aimed to assess the performance of 
SVM and RF in generating urban land cover classifica-
tions using Sentinel-2 MSI and Sentinel-1 SAR satel-
lite imagery, presenting a novel approach to exploit the 
capabilities of GEE for large-scale image analysis. The 
objectives of this research are; (i) to independently clas-
sify Sentinel-2 Multispectral Instrument (MSI) data using 
both Random Forest (RF) and Support Vector Machine 
(SVM) algorithms; (ii) to independently classify Sentinel-
1A Synthetic Aperture Radar (SAR) data using RF and 
SVM algorithms; (iii) to fuse the classified results from 
the Sentinel-2 MSI and Sentinel-1 SAR datasets; (iv) to 
evaluate the performance of the SVM and RF classifiers 
individually and in combination for the specific urban 
land cover classification task.

Methodology
Study area
Gondar city is situated in the northwestern part of Ethi-
opia, with location ranging from 12°10′0" to 12°40′0" 
North latitude and 37°21′0" to 37°47′30" East longitude. 
It serves as the capital of the Central Gondar admin-
istrative Zone in the Amhara National Regional State 
(Fig.  1). Founded in 1636 A.D. by Emperor Fasiledes, it 
once served as the capital of Ethiopia for more than two 
centuries, featuring numerous historical sites that attract 
tourists and stimulate the local economy. The landscape 
of Gondar, characterized by rugged hills and plateaus, 
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contributes to its variable temperatures. Additionally, 
the town is strategically located on the southern shore of 
Lake Tana, the source of the Blue Nile (Abay) River, and 
serves as a promising center for transit of goods and ser-
vices between Ethiopia and Sudan (Wubneh 2021).

Satellite data
For the study, data from two satellite missions were used: 
Sentinel-2 (MSI) and Sentinel-1 (SAR). Both satellite 
images were acquired on February 12, 2023. The deci-
sion to opt for data acquisition on February 12, 2023, 
in Gondar city is intricately tied to the region’s seasonal 
nuances. Given that January witnesses the culmination 
of crop harvesting in neighboring areas, the subsequent 
month of February experiences a decrease in vegetation 
density. The Sentinel-2 MSI sensor was equipped with a 
sophisticated optical system that captured data in multi-
ple spectral bands (Pahlevan et al. 2019). The satellite had 
a spatial resolution of 10 m for bands 2, 3, 4, and 8, which 
represented the visible and near-infrared wavelengths. 
These particular bands corresponded to the visible and 
near-infrared wavelengths were selected for image classi-
fication in the study. For the other bands, which captured 
red edge, short-wave infrared, and atmospheric data, the 
spatial resolution is 20 m (Drusch et al. 2012).

On the other hand, the Sentinel-1 SAR mission 
employed an active radar sensor operating in the C-band. 
The SAR data provided all-weather and day-and-night 
imaging capabilities. The spatial resolution of Sentinel-1 
SAR varied depending on the operational mode. For 
the Interferometric Wide Swath (IW) mode, the resolu-
tion was approximately 20 m in both range and azimuth 
directions. In the Strip map mode, the resolution was 
approximately 5 m in range and 20 m in azimuth (Bauer-
Marschallinger et  al. 2021). In this study, the Interfero-
metric Wide Swath (IW) mode was used, providing a 
spatial resolution of 20 m.

Reference data acquisition and accuracy assessment
The study performed a validation of remote sensing 
data using 169 Ground Control Points (GCP) collected 
between January 20, 2023, and February 28, 2023. These 
GCPs were distributed among six land use land cover 
types. For the “built-up” category, GCPs were obtained 
from impervious surfaces and roads. Urban forest areas 
were selected as GCPs for the “forest” category. Barren 
lands provided reference points for “bare soil” GCPs, 
while the Angereb Dam was used for “water body” ref-
erence points. GCPs for “shrubland” were collected from 
outskirts with short trees, and urban green areas cov-
ered with grasses served as GCPs for “grassland.” The 

Fig. 1  Location map of the study area
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utilization of GCPs from representative locations aimed 
to validate the remote sensing data and enhance the 
accuracy of land use land cover classification (Fallati et al. 
2017).

Table 1 outlines the number of Ground Control Points 
(GCPs) collected for validation and Region of Inter-
est (ROI) selection for each LULC class. The “Training 
ROI” column represents the number of ROI gathered 
from diverse representative regions, with a total of 300 
ROI used as training data for the classification algo-
rithm. Similarly, the “Validation GCP” column indicates 
that 169 GCPs were set aside solely for validation pur-
poses, independent of the training data. These validation 
GCPs were used to assess the accuracy of the classifica-
tion results. The “Training Pixels” column specifies the 
number of pixels within the training ROIs, with a total 
of 14,300 pixels used for training the classification model 
and capturing the spectral signatures of different land 
cover classes. By utilizing these GCPs and pixels in the 
GEE platform, the classification algorithm can be trained, 
and the accuracy of the land cover maps produced from 
Sentinel-2 MSI and Sentinel-1 SAR data can be evaluated 
and improved iteratively using the validation GCPs.

The rationale for determining the number of Ground 
Control Points (GCPs) per land use land cover class and 
the ratio between training and validation GCPs is based 
on practical considerations to ensure a reliable valida-
tion of land use land cover classification. The study uti-
lized 169 GCPs distributed among six land use land cover 
classes. The selection of GCPs from representative loca-
tions (Roads, buildings, urban forest areas, barren lands, 
the Angereb Dam, outskirts with short trees, and urban 
green areas) aimed to cover the spectral and spatial diver-
sity within each class, enhancing the accuracy of land use 
land cover classification (Fig.  2). The specific number 
of GCPs per class and the training-validation split were 
likely determined based on a combination of the factors 
mentioned above to ensure a reliable and accurate valida-
tion of the classified image.

Method of data analysis
Figure 3 outlines the general methodological flow of the 
research work. The Sentinel 2 MSI and Sentinel 1 SAR 
data for the year 2023 are first preprocessed in GEE. 
Radiometric calibration and atmospheric corrections 
are applied to the MSI data, while terrain corrections are 
performed on the SAR data. This ensures the data is in 
a consistent and usable format for subsequent analysis. 
The two satellite datasets are fused in the GEE platform. 
Fusion techniques are applied to combine the optical 
(MSI) and radar (SAR) data, exploiting the complemen-
tary information from both sensors to enhance the land 
cover classification.

Training samples representing different urban land 
use land cover classes are collected within the study area 
using GEE tools. These training samples are essential for 
training the machine learning algorithms and building 
the land cover classification model. GEE provides access 
to machine learning algorithms such as Random Forest 
(RF) and Support Vector Machine (SVM) in its catalog. 
These algorithms are imported into the GEE environ-
ment for use in the land cover classification. Using the 
training samples, the RF and SVM algorithms are applied 
to perform the land cover classification. The classifiers 
are trained on the training samples, and the entire study 
area is classified based on the derived models.

Validation points, collected separately from the train-
ing samples, are imported into the GEE platform. These 
validation points serve as ground truth data for accuracy 
assessment. The classified land cover map is compared to 
the validation points to evaluate the accuracy of the clas-
sification. The accuracy of the land cover classification is 
assessed by comparing the classified results to the valida-
tion points. Metrics such as overall accuracy and kappa 
coefficient are calculated to quantify the classification 
performance.

After validation and accuracy assessment, the final 
urban land use land cover map is produced. The classi-
fied land cover map is refined based on the accuracy 

Table 1  Description of training ROI, validation ROI, and training pixels used for the study

S. N Class name Training ROI Validation GCP Training pixels Class description

1 Built-up 40 25 2000 pixels Urban areas with dense human-made structures, roads, etc

2 Forest 60 35 3000 pixels Dense wooded areas with a high density of trees

3 Shrubland 35 15 1800 pixels Areas dominated by shrubs and short trees on urban outskirts

4 Grassland 50 27 2500 pixels Open areas covered predominantly with grass, e.g., parks

5 Water body 40 22 1800 pixels Bodies of water, such as rivers, lakes, and reservoirs

6 Bare land 75 45 3200 pixels Unvegetated or sparsely vegetated areas, like deserts

Total 300 169 14,300 pixels
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Fig. 2  Picture of each LULC class; (a) Shrubland, (b) Forest, (c) Agriculture, (d) Grassland, (Water body i.e., Angereb Dam), (Impervious Surface i.e., 
asphalt road), (g) Building, (h) Bare land

Fig. 3  Methodological flowchart
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assessment results, and the final output is generated for 
the entire study area.

Sentinel (sentinel 2 MSI and sentinel 1 SAR) image processing 
in GEE platform
The image processing workflow for Sentinel-2 MSI and 
Sentinel-1 SAR data in the Google Earth Engine (GEE) 
platform involves several key steps. Initially, the relevant 
satellite imagery is acquired from the GEE data catalog. 
Preprocessing procedures, such as radiometric calibra-
tion for MSI and backscatter values for SAR, are applied 
to ensure accurate and consistent data. Additionally, 
atmospheric corrections are performed for Sentinel-2 
MSI data, while terrain corrections are conducted for 
Sentinel-1 SAR data (Filipponi 2019). The images are 
registered to a common geographic coordinate system 
for seamless integration. Subsequently, land cover clas-
sification is carried out using machine learning algo-
rithms on the processed Sentinel-2 MSI data, while the 
Sentinel-1 SAR data is analyzed for backscatter intensi-
ties and change detection. Results from both analyses 
are integrated for a comprehensive understanding of the 
study area. Visualization tools in GEE are utilized to cre-
ate maps and visual representations.

Classification algorithms
Random forest (RF)  Random Forest (RF) is a widely used 
ensemble learning algorithm that combines the predic-
tions of multiple decision trees to achieve more robust 
and accurate results. In the GEE platform, RF is available 
for both classification and regression tasks (Shelestov 
et al. 2017). The algorithm starts by creating a diverse set 
of decision trees through bootstrapping, where random 
subsets of the dataset are sampled with replacement. For 
each tree, a random subset of features is considered at 
each node for splitting, reducing the risk of overfitting 
and increasing the model’s stability. The final prediction 
in classification tasks is determined by majority voting 
among the individual trees (Eq. 1).

The mathematical formula for Random Forest can be 
described as follows:

where; D is bootstrapped dataset, xi is a vector of M fea-
ture values for the ith sample, and yi is the corresponding 
class label for classification.

In the Google Earth Engine (GEE) platform, Random 
Forest (RF) for classification tasks is implemented using 
the ee.Classifier.randomForest() function(Mahdianpari 

(1)D = {
(

x1, y1
)

,
(

x2, y2
)

, . . . .,
(

xn, yn
)

}

et  al. 2019, 2020). This function allows users to create 
an ensemble of decision trees, where each tree contrib-
utes to the final classification. Users can customize the 
RF model by specifying parameters such as the number 
of trees, variables considered for splitting, and the size of 
bootstrapped samples. Once the RF classifier is defined, 
it can be applied to Earth Engine Images or ImageCol-
lections using the classify() method, producing accurate 
land cover classification results. With its seamless inte-
gration with Earth Engine’s extensive data processing 
capabilities and cloud-based infrastructure, ee.Classifier.
randomForest() simplifies the implementation of RF for 
large-scale remote sensing applications, providing an 
efficient tool for generating reliable land cover maps and 
supporting various environmental monitoring and land 
management tasks.

Support vector machine (SVM)  Support Vector Machine 
(SVM) is a powerful machine learning algorithm avail-
able in the Google Earth Engine (GEE) platform for clas-
sification tasks (Tassi and Vizzari 2020). SVM is designed 
to find the optimal hyperplane that separates different 
classes in the feature space. Mathematically, SVM aims to 
solve the following optimization problem (Eq. 2):

(2)
D = 1

/

2�W�2 + C ∗
∑

(

max
(

0, 1 − yi(W · Xi + b)
))

where, w is the weight vector and b is the bias term, 
which together define the hyperplane. xi represents the 
feature vector of the ith data point, and yi is its corre-
sponding class label (+ 1 or -1). C is the regularization 
parameter that controls the trade-off between maximiz-
ing the margin and minimizing the classification error.

In the case of non-linearly separable data, SVM 
employs a kernel trick to map the original feature space 
into a higher-dimensional space, where the data may 
become linearly separable. The kernel function K (xi, xj) 
computes the inner product of the mapped feature vec-
tors in the higher-dimensional space without explicitly 
calculating the transformation. Common kernel func-
tions include the linear kernel (K(xi, xj) = xi xj), polyno-
mial kernel (K(xi, xj) = (γxi xj + r)d), radial basis function 
(RBF) kernel (K(xi, xj) = exp(-γ||xi–xj||^2)), and sigmoid 
kernel (K(xi, xj) = tanh (γxi xj + r)).

In GEE, the SVM classifier is implemented through 
the ee.Classifier.svm() function, allowing users to create 
an SVM classifier and specify the kernel type, C param-
eter, and kernel parameters (Bayable et  al. 2023). The 
SVM classifier can be applied to Earth Engine Images or 
Image collections using the classify () method to perform 
land cover classification, producing accurate and reliable 
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results for various environmental and land management 
applications.

Accuracy assessments
Overall accuracy (OA)  The Overall Accuracy (OA) is a 
fundamental metric in image classification that assesses 
the performance of a classification model. It represents 
the percentage of correctly classified instances, both posi-
tive (True Positives) and negative (True Negatives), out of 
the total instances in the dataset.

where: TP represents True Positives (correctly classified 
positive instances); TN represents True Negatives (cor-
rectly classified negative instances); FP represents False 
Positives (negative instances incorrectly classified as pos-
itive); FN represents False Negatives (positive instances 
incorrectly classified as negative).

Kappa coefficient (K)  The Kappa coefficient (often 
referred to as Cohen’s Kappa) is a statistical measure used 
to assess the level of agreement between the observed 
classification results and the expected results when clas-
sifying data, such as in image classification. The formula 
for calculating the Kappa coefficient is as follows:

where; κ represents the Kappa coefficient; Po is the rela-
tive observed agreement, which is the proportion of 
actual agreement (the sum of the diagonal elements of 

(3)OA =
TP + TN

TP + TN + FP + FN
∗ 100

(4)K =
Po − Pe

1− Pe

the confusion matrix) to the total number of observa-
tions; Pe is the expected agreement by chance, which is 
calculated based on the marginal frequencies of the con-
fusion matrix.

F‑score  The F-score, often referred to as the F1-score, 
is a widely used metric in image classification and other 
classification tasks. It is a measure of a model’s accuracy 
that balances both precision and recall. The formula for 
calculating the F-score is as follows:

where: F1 represents the F1-score; Precision (also known 
as Positive Predictive Value) is the ratio of true positive 
predictions to the total number of instances predicted as 
positive. It measures the accuracy of positive predictions; 
Recall (also known as Sensitivity or True Positive Rate) is 
the ratio of true positive predictions to the total number 
of actual positive instances. It measures the model’s abil-
ity to identify all positive instances.

Result
Spectral signatures of LULC classes using sentinel‑2 MSI 
bands
Figure  4 delineates the specific spectral signatures of 
various land use and land cover categories in the visible, 
near-infrared, and short-wave infrared regions of the 
electromagnetic spectrum. Forests manifest high reflec-
tance in the near-infrared (NIR) range (1200–1400 nm), 
while built-up areas exhibit heightened reflectance in 
both the visible (400–500 nm) and NIR (800–900 nm) 
bands. Agriculture displays moderate reflectance in the 

(5)Fscore =
2(Precision ∗ Recall)

Precision+ Recall

Fig. 4  Spectral Signature of different LULC classes from Sentinel 2 MSI bands
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visible (600–700  nm) and NIR (900–1000  nm) ranges, 
while shrubland has moderate reflectance in the vis-
ible (550–650  nm) and NIR (1000–1200  nm) regions. 
Grasslands feature moderate reflectance in the visible 
(576–625  nm) and NIR (1100–1200  nm) ranges, and 
water bodies show low reflectance across the entire 
spectrum, with specific notations in the visible (450–
500  nm), NIR (720–800  nm), and short-wave infrared 
(1900–2000 nm) bands.

SAR backscattering coefficient
SAR backscattering coefficients were generated in GEE 
platform. Following the preprocessing of SAR data 
within the GEE platform, SAR backscattering coef-
ficients were computed for the entire city of Gondar. 
To enhance visualization, the backscattering coeffi-
cient values in decibels (dB) were extracted at specific 
Ground Control Points (GCPs) corresponding to dif-
ferent Land Use and Land Cover (LULC) classes. The 
bar graph (Fig.  5) displays the SAR (Synthetic Aper-
ture Radar) backscattering coefficients in decibels (dB) 
for distinct land use and land cover (LULC) classes. 
Built-up areas exhibit a strong radar reflection with a 
coefficient of 14.03  dB, while water bodies have a low 
coefficient of 2.65 dB, indicating minimal radar reflec-
tion due to signal absorption. Agricultural areas show 
a moderate SAR coefficient of 9.88  dB, reflecting an 
intermediate radar response. Forested regions have a 
moderate coefficient of 10.91 dB, suggesting a balanced 
radar reflection due to the scattering of radar signals. 

Grasslands and shrublands exhibit similar moderate 
coefficients of 8.64 and 8.39  dB, respectively, indicat-
ing their comparable radar response characteristics. 
These coefficients are essential for applications such as 
land use classification, environmental monitoring, and 
disaster assessment, enabling a deeper understanding 
of radar interactions with different land cover types 
(Fig. 6).

RF and SVM performance evaluation in sentinel 2 MSI 
classification
Table 3 presents the performance evaluation of the Sup-
port Vector Machine (SVM) and Random Forest (RF) 
algorithms in classifying Sentinel 2B MSI data for dif-
ferent land use land cover (LULC) types. The evaluation 
metrics used to assess the performance of each algorithm 
include Producer’s Accuracy (PA), User’s Accuracy (UA), 
and F-score. PA measures the percentage of correctly 
classified pixels for each land use type, while UA indi-
cates the accuracy of correctly identifying a specific land 
use class. The F-score is the harmonic mean of precision 
and recall and provides a balanced measure of classifica-
tion accuracy. For the Forest land use type, both SVM 
and RF achieved high accuracy with PA and UA scores 
of 1.00, resulting in an F-score of 1.00, indicating perfect 
classification for this category.

In the Built-up land use type, SVM attained perfect 
classification with a PA of 1.00 and a UA of 0.40, leading 
to an F-score of 0.57. However, RF showed lower perfor-
mance with a PA of 0.38, a UA of 0.38, and an F-score 
of 0.45. For Agriculture, Shrubland, and Water body land 

Fig. 5  SAR Backscattering coefficient for different LULC classes
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use types, SVM demonstrated good accuracy, with PA 
values ranging from 0.89 to 0.93 and UA scores between 
0.81 and 0.87. The F-scores for these classes were also 
high, ranging from 0.85 to 0.90. On the other hand, RF’s 
performance for these classes was slightly lower, with 
PA values ranging from 0.65 to 0.80, UA scores between 
0.65 and 0.80, and F-scores from 0.69 to 0.85. For Grass-
land, SVM achieved perfect classification with PA, UA, 
and F-score of 1.00. RF, however, showed a lower perfor-
mance with a PA of 0.84, a UA of 0.72, and an F-score of 
0.61.

The Overall Accuracy (OA) for SVM was 0.87, indi-
cating a high level of overall accuracy in the classi-
fication results. The Kappa coefficient, a measure of 
agreement between observed and predicted classifica-
tions, was 0.80, indicating substantial agreement. In 
contrast, RF’s OA was 0.69, suggesting a slightly lower 
overall accuracy compared to SVM. The Kappa coef-
ficient for RF was 0.357, indicating fair agreement 
between observed and predicted classifications. This 
accuracy assessment table (Table  2) provides valuable 
information about the performance of SVM and RF 

Fig. 6  (a) LULC classification from Sentinel 2B MSI using Random Forest (RF) algorithm; (b) LULC classification from Sentinel 2B MSI using Support 
Vector Machine (SVM) algorithm

Table 2  Performance evaluation of SVM and RF in classifying Sentinel 2B MSI data

SVM RF

LULC type PA UA F-score PA UA F-score

Forest 0.87 1.00 0.93 1.00 1.00 1.00

Built-up 1.00 0.40 0.57 0.38 0.38 0.45

Agriculture 0.89 0.81 0.85 0.65 0.65 0.69

Shrubland 0.92 0.82 0.87 0.73 0.73 0.85

Grassland 1.00 1.00 1.00 0.84 0.72 0.61

Water body 0.93 0.87 0.90 0.80 0.80 0.79

OA = 0.87 Kappa:0.80 OA = 0.69 Kappa: 0.357
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algorithms in classifying different land use types, which 
can help in selecting the most suitable algorithm for 
accurate land use land cover mapping in the study area 
using Sentinel 2B MSI data (Talukdar et al. 2020).

RF and SVM performance evaluation in sentinel 1A SAR 
classification
Table 3 presents the performance evaluation of the Sup-
port Vector Machine (SVM) and Random Forest (RF) 
algorithms in classifying Sentinel 1A Synthetic Aper-
ture Radar (SAR) data for different land use land cover 
(LULC) types.

For the Forest land use type, SVM achieved a PA of 
0.40, a UA of 1.00, and an F-score of 0.571. RF performed 
slightly better, with a PA of 0.62, a UA of 0.67, and an 
F-score of 0.65. In the Built-up land use type, both algo-
rithms achieved a high UA of 1.00, indicating accurate 
identification of this class. However, SVM outperformed 
RF with a higher PA of 0.79 and an F-score of 0.882, while 
RF showed a PA of 0.80 and an F-score of 0.67.

For Agriculture, Shrubland, and Grassland land use 
types, both algorithms showed varying levels of accuracy. 

SVM achieved PAs ranging from 0.41 to 0.63, UAs from 
0.78 to 0.92, and F-scores from 0.542 to 0.743. RF’s per-
formance for these classes was also mixed, with PAs 
ranging from 0.56 to 0.80, UAs from 0.47 to 0.80, and 
F-scores from 0.50 to 0.80. For the Water body land use 
type, both algorithms demonstrated similar performance, 
with SVM achieving a PA of 0.74, a UA of 0.69, and an 
F-score of 0.71, while RF achieved a PA of 0.74, a UA of 
0.69, and an F-score of 0.71.

The Overall Accuracy (OA) for SVM was 0.69, indicat-
ing a relatively high level of overall accuracy in the clas-
sification results. The Kappa coefficient, a measure of 
agreement between observed and predicted classifica-
tions, was 0.67, indicating substantial agreement. For RF, 
the OA was slightly lower at 0.66, suggesting a slightly 
lower overall accuracy compared to SVM. The Kappa 
coefficient for RF was 0.55, indicating moderate agree-
ment between observed and predicted classifications.

In the comparison of classification results between 
Sentinel 2B MSI and Sentinel 1A SAR satellites using 
RF and SVM algorithms, the performance based on 
the Kappa statistics and Overall accuracy metrics were 

Table 3  Performance evaluation of SVM and RF in classifying Sentinel 1A SAR data

SVM RF

LULC type PA UA F-score PA UA F-score

Forest 0.40 1.00 0.571 0.62 0.67 0.65

Built-up 0.79 1.00 0.882 0.80 0.57 0.67

Agriculture 0.41 0.78 0.542 0.56 0.47 0.50

Shrubland 0.63 0.92 0.743 0.80 0.80 0.80

Grassland 0.57 0.80 0.667 0.67 0.57 0.62

Water body 0.74 0.69 0.71 0.74 0.69 0.71

OA = 0.69 Kappa: 0.67 OA = 0.66 Kappa: 0.55

Fig. 7  Random Forest (RF) and Support Vector Machine (SVM) algorithms performance in classifying Sentinel 2B MSI
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assessed. These metrics provide insights into the agree-
ment between the predicted and reference classifications 
and the overall accuracy of the classification. Sentinel 2B 
MSI RF achieved an Overall accuracy of 0.69, indicating 
that approximately 69% of the pixels were correctly clas-
sified. The Kappa statistic for Sentinel 2B MSI RF was 

0.35, suggesting a fair but relatively low level of agree-
ment between the predicted and reference classifications 
(Fig. 7). This indicates that the classification results may 
have some inconsistencies and may not fully capture the 
true distribution of land use classes (Vasilakos et al. 2020) 
(Figs. 8, 9).

Fig. 8  (a) LULC classification from Sentinel 1A SAR using Random Forest (RF) algorithm; (b) LULC classification from Sentinel 1A SAR using Support 
Vector Machine (SVM) algorithm

Fig. 9  Random Forest (RF) and Support Vector Machine (SVM) algorithms performance in classifying Sentinel 1A SAR data
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Fig. 10  Whisker plot for overall accuracy comparisons of Sentinel 2B MSI and Sentinel 1A SAR using RF and SVM

Fig. 11  (a) LULC classification from Combined Satellites (Sentinel 2B MSI and Sentinel 1A SAR) using Random Forest (RF) algorithm; (b) LULC 
classification from Combined Satellites (Sentinel 2B MSI and Sentinel 1A SAR) using Support Vector Machine (SVM) algorithm
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RF and SVM performance evaluation in combined 
(sentine‑2MSI and sentinel SAR) classification result
The SVM algorithm achieved an overall accuracy (OA) 
of 0.69 for image classification using the Sentinel 2B 
MSI dataset. The Kappa score, a measure of agree-
ment between predicted and actual classes, was 0.357 
(Fig. 10). This indicates a moderate level of agreement. 
However, it’s important to consider other factors, such 
as the specific application and the desired level of accu-
racy, when evaluating the performance of SVM with 
Sentinel 2B MSI data (Figs. 11, 12).

Similar to SVM, the RF algorithm also achieved an 
overall accuracy of 0.69 when applied to the Sentinel 2B 
MSI dataset. The Kappa score was 0.357, suggesting a 
moderate level of agreement. RF is known for its ability 
to handle high-dimensional data and capture complex 
relationships between features. These results indicate 

that RF performs comparably to SVM for image clas-
sification using Sentinel 2B MSI data.

When using the Sentinel 1A SAR dataset, the SVM 
algorithm achieved an OA of 0.69, which is the same 
as the performance with Sentinel 2B MSI data. How-
ever, the Kappa score increased to 0.67, indicating a 
higher level of agreement between predicted and actual 
classes. This suggests that SVM might be more suita-
ble for image classification using Sentinel 1A SAR data 
compared to Sentinel 2B MSI data.

Unlike SVM, the RF algorithm showed a slightly 
lower OA of 0.66 when applied to the Sentinel 1A SAR 
dataset. The Kappa score was 0.55, indicating a mod-
erate level of agreement. While RF performed slightly 
worse than SVM in terms of accuracy, it’s worth noting 
that RF can still provide valuable insights and capture 

Fig. 12  Comparisons of machine learning algorithm in performing Sentinel Image classification
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complex patterns in the Sentinel 1A SAR data for image 
classification tasks.

When the SVM algorithm was applied to the com-
bined dataset of Sentinel 2B MSI and Sentinel 1A SAR, 
a significantly higher OA of 0.91 was achieved. The 
Kappa score also increased substantially to 0.80, indi-
cating a high level of agreement. These results suggest 
that combining the information from both satellites 
can greatly improve the performance of SVM for image 
classification tasks.

Similar to SVM, RF also benefited from the combina-
tion of Sentinel 2B MSI and Sentinel 1A SAR datasets. 
RF achieved an OA of 0.81, higher than the individual 
performance with either Sentinel 2B MSI or Sentinel 1A 
SAR data. The Kappa score also increased to 0.809, indi-
cating a high level of agreement. These findings highlight 
the potential of combining satellite data from multiple 
sources to enhance the accuracy of RF-based image clas-
sification algorithms.

In summary, the performance evaluation of the SVM 
and RF algorithms for image classification using different 
datasets (Sentinel 2B MSI and Sentinel 1A SAR) was con-
ducted, and the results revealed interesting insights. Both 
SVM and RF achieved an overall accuracy (OA) of 0.69 
when applied to the Sentinel 2B MSI dataset, with a mod-
erate level of agreement indicated by the Kappa score of 
0.357. For Sentinel 1A SAR data, SVM maintained the 
same OA of 0.69 but showed an improved Kappa score 
of 0.67, suggesting its suitability for SAR image classifi-
cation. RF, on the other hand, achieved a slightly lower 
OA of 0.66 with Sentinel 1A SAR data. However, when 
combining the datasets of Sentinel 2B MSI and Sentinel 
1A SAR, both SVM and RF showed significant improve-
ments in performance. SVM achieved an impressive OA 
of 0.91 with a high Kappa score of 0.80, while RF achieved 
an OA of 0.81 with a Kappa score of 0.809. These find-
ings emphasize the potential of combining satellite data 
from multiple sources to enhance the accuracy and effec-
tiveness of image classification algorithms, making them 

valuable tools for various applications, such as land use 
mapping and environmental monitoring.

Confusion matrix for combined sentinel 1 A SAR and sentinel 
2 MSI datasets
As indicated in Table  4, Water Body stands out as the 
best-performing class, with a high User Accuracy of 
0.71, indicating that a significant proportion of actual 
water bodies were correctly classified as such. On the 
other hand, Built-up demonstrates the highest Producer 
Accuracy (0.68), meaning that a substantial portion of 
instances classified as Built-up by the model were indeed 
Built-up areas. Conversely, Shrubland appears to be the 
poorest-performing class with a User Accuracy of 0.56, 
suggesting that the model struggled to correctly clas-
sify instances within this land use category. Addition-
ally, Grassland has the lowest Producer Accuracy (0.63), 
indicating a suboptimal overall accuracy in classify-
ing instances for this class. These results indicated that, 
Water Body and Built-up are the top-performing classes 
in this combined dataset, while Shrubland and Grassland 
exhibit comparatively lower classification.

Discussion
(Hu et  al. 2021) conducted a study on improving urban 
land cover classification using the combined data of Sen-
tinel-2B Multispectral Instrument (MSI) and Sentinel-1A 
Synthetic Aperture Radar (SAR) imagery over Wuhan 
Metropolis, China. They introduced the concept of the 
Support Vector Machine with Composite Kernels (SVM-
CK) approach, which effectively integrates spatial infor-
mation from the fusion of Sentinel-2B and Sentinel-1A 
data. The classification results obtained from the fused 
data showed superior performance, with an overall accu-
racy (OA) of 92.12% and a kappa coefficient (K) of 0.89, 
surpassing the results achieved using individual Sentinel-
2B MSI and Sentinel-1A SAR imagery.

Similarly, our study highlights the benefits of combin-
ing Sentinel-2B MSI and Sentinel-1A SAR data for land 

Table 4  Confusion matrix for the combined datasets

Forest Built-up Agriculture Shrubland Grassland Water body Row total User accuracy

Forest 18 2 1 2 3 2 28 0.64

Built-up 3 19 2 1 2 1 28 0.68

Agriculture 1 1 20 2 2 3 29 0.69

Shrubland 2 3 2 15 3 2 27 0.56

Grassland 1 2 5 3 20 2 33 0.61

Water body 2 1 1 1 2 17 24 0.71

Column total 27 28 31 24 32 27

Producer accuracy 0.67 0.68 0.65 0.63 0.63 0.63
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use and land cover (LULC) classification in the case 
of Gondar city, Ethiopia. The SVM algorithm with the 
combined data exhibited high accuracy in classifying 
various LULC types in Gondar city, achieving impres-
sive producer accuracy for multiple classes. While the 
RF algorithm performed well in forest classification, the 
SVM algorithm outperformed RF in other categories, 
showing higher user accuracy and comparable F-scores. 
These findings underscore the potential of combining 
Sentinel-2B MSI and Sentinel-1A SAR data and utiliz-
ing SVM for accurate and comprehensive urban land 
cover classification. In addition, (Steinhausen et  al. 
2018) conducted a study on land use and land cover 
mapping in the cloud-prone monsoon region of the 
Chennai Basin in India during the Rabi 2015/16 crop-
ping season. The study achieved the highest overall 
accuracy of 91.53% when combining one Sentinel-2 
scene with eight Sentinel-1 scenes, representing a sig-
nificant improvement of 5.68% compared to using 
Sentinel-2 data alone. Their findings demonstrate the 
value of fusing Sentinel-1 and Sentinel-2 data for land 
use classification in cloud-prone monsoon regions and 
have important implications for environmental mod-
eling and water resource management in the area.

Studies, conducted by Hu et  al. (2018)  in Wuhan 
Metropolis, China, and by Steinhausen et al. (2018) in 
the Chennai Basin, India, explored the benefits of com-
bining Sentinel-2B Multispectral Instrument (MSI) and 
Sentinel-1A Synthetic Aperture Radar (SAR) data for 
land use and land cover classification. (Hu et al. 2018) 
introduced the Support Vector Machine with Compos-
ite Kernels (SVM-CK) approach, achieving superior 
performance with an OA of 92.12% and a KA of 0.89. In 
the Chennai Basin, (32) demonstrated the effectiveness 
of combining Sentinel-1 and Sentinel-2 data, achiev-
ing an OA of 91.53% with RF-based classification. Both 
studies highlight the potential of combining radar and 
optical data for accurate and comprehensive land use 
classification in complex environments, providing valu-
able insights for environmental modeling and resource 
management.

The novelty of our study lies in its investigation of the 
combined use of Sentinel-2B MSI and Sentinel-1A SAR 
datasets for image classification. While previous stud-
ies, such as those conducted by (Hu et  al. (2018); Hu 
et  al. 2021; Steinhausen et  al. 2018), have explored the 
benefits of fusing these satellite data in specific contexts, 
this research evaluates the performance of two popular 
machine learning algorithms, SVM and RF, for image 
classification using both datasets separately and in com-
bination. The results reveal that SVM and RF achieved 
moderate accuracies when applied to individual data-
sets, but a significant improvement in performance was 

observed when combining the Sentinel-2B MSI and 
Sentinel-1A SAR data. SVM achieved an impressive OA 
of 0.91 with high agreement (Kappa score of 0.80), while 
RF achieved an OA of 0.81 with a slightly lower, yet still 
considerable, Kappa score of 0.809. Our research paper 
highlights the potential of leveraging multiple satellite 
data sources to enhance the accuracy and effectiveness 
of image classification algorithms, contributing valuable 
insights for land use mapping and environmental moni-
toring applications.

Conclusion
In conclusion, the study successfully demonstrated the 
potential of integrating Sentinel-1A SAR and Sentinel-
2B MSI data for improved urban LULC classification 
in Gondar city, Ethiopia. By combining these datasets 
and employing machine learning algorithms, namely 
SVM and RF, the research achieved higher accuracy 
and agreement in identifying various land cover types 
compared to using individual datasets. The SVM algo-
rithm showed superior performance in classifying dif-
ferent LULC classes, while RF excelled in accurately 
identifying forested regions. The results emphasize the 
importance of leveraging the complementary infor-
mation provided by optical and radar satellite data to 
enhance the accuracy and effectiveness of land cover 
classification in urban areas. The findings have signifi-
cant implications for urban planning, environmental 
management, and sustainable development initiatives 
in Gondar city and other similar regions worldwide.

Moving forward, we recommend further explora-
tion of fusion techniques for combining data from dif-
ferent satellite sources. The study employed a specific 
fusion technique for integrating Sentinel-1A SAR and 
Sentinel-2B MSI data, which yielded promising results. 
However, future research should explore and compare 
different fusion methods to identify the most suitable 
approach for specific urban environments. This could 
include investigating other machine learning-based 
fusion techniques. Advancements in fusion techniques 
lead to even more accurate and robust land cover clas-
sification results, especially in areas with complex and 
diverse land cover patterns.
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