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Abstract 

Haphazard and opportunistic species occurrence (PO) data are widely used in species distribution models (SDMs) 
instead of high-quality species data gathered using appropriate and structured sampling methods, which is expen-
sive and often spatially limited. Despite their widespread use in ecology, PO data are prone to errors and uncer-
tainties, such as imperfect detectability, positional imprecision, and spatial niche truncation, which make their use 
analytically challenging for effective and adaptive biodiversity management and conservation. Using simulated 
data, this study investigates the effects of these uncertainties on the performance of spatial point process based 
presence-only and integrated SDMs. We investigated three SDMs in this study, one that ignores imperfect detect-
ability: the presence-only model (PO model), and two that account for it: the thinned presence-only model (THINPO 
model) and the integrated model (PBPC model). The ability of these SDMs to produce accurate maximum likelihood 
estimates of intensity model coefficients and reliable predictions of species distributions under different data qual-
ity scenarios was investigated. The results show that SDMs that account for imperfect detectability (THINPO or PBPC 
models) are not applicable in situations of high detectability. In this situation, the PO model produces the most accu-
rate maximum likelihood estimates of the models’ coefficients ( β̂k ), and consequently the most accurate predictions 
of species distributions ( ̂�(s) ). The effects of positional uncertainty and spatial niche truncation on this SDM output 
are minimal. However, in situations of low detectability, it is preferable to use the PBPC model. Positional uncertainty 
and spatial niche truncation have negligible effects on the output of this SDM, except when positionally uncertain 
PO data are analyzed along with truncated PC data. These minimal effects of spatial niche truncation on SDM outputs 
demonstrate the transferability of SDMs. However, the effects of all these uncertainties may depend on the charac-
teristics of the species. Prior to modeling species distributions, a multivariate environmental similarity surface analysis 
should be performed to test the similarity between data from the restricted region to be used for model calibration 
and data from the entire range. If this analysis reveals dissimilarities, larger spatial and ecological scales should be con-
sidered to address the issue of spatial niche truncation. Further efforts could address the effects of species characteris-
tics on SDMs performance and assess the effects of species-specific uncertainties.
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Introduction
In recent decades, biodiversity and ecosystems have 
come under intense pressure from global changes that 
are significantly altering species composition and dis-
tribution (Dawson et al. 2011). Thus, understanding the 
spatial distribution of species and the underlying envi-
ronmental factors is a fundamental question for a wide 
range of ecological, evolutionary and conservation appli-
cations (Guillera-Arroita 2017; Inman et al. 2021). Then, 
tools that quantify changes in species distributions are 
of great importance (Rosenberg et al. 2019; Inman et al. 
2021).

Species distribution models (SDMs) are quantita-
tive tools and statistical modeling approaches widely 
used in ecology to map out suitable habitat for species 
and to assess the potential impact of climate change on 
their ecological niche (Guisan et  al. 2013; Inman et  al. 
2021). SDMs are widely used to delineate priority areas 
for effective management and conservation of species 
(Franklin 2013). Accurate species distribution maps are 
essential for the implementation of sustainable conser-
vation plans (Jarnevich et  al. 2015). This requires using 
high quality species data collected using appropriate sur-
vey methods and structured sampling methods and tools 
(Osborne and Leitão 2009; Duputié et al. 2014; Moudrý 
et al. 2017).

Unfortunately, high quality data are very costly and 
often spatially limited (truncated) (Osborne and Leitão 
2009; Duputié et  al. 2014; Moudrý et  al. 2017; Inman 
et al. 2021). This precludes their use, resulting in reliance 
on the widely available presence-only (PO) data that are 
collected haphazardly and opportunistically (Inman et al. 
2021; Suhaimi et al. 2021). Although PO data are widely 
available, the way they are collected introduces errors 
and uncertainties that make their use analytically chal-
lenging (Graham et al. 2008; Inman et al. 2021; Suhaimi 
et al. 2021). Consequently, they rarely meet the assump-
tions of SDMs.

First, while SDMs assume that sampling effort is uni-
form across the landscape, and that the species niche is 
sampled across the full range of environmental condi-
tions in which it occurs (Phillips et al. 2009; Hastie and 
Fithian 2013). PO data are susceptible to sampling bias 
resulting from unsystematic field surveys, biased data 
collection from relatively accessible areas, or biased sam-
pling effort (Graham et al. 2004; Hortal et al. 2007; Syfert 
et  al. 2013). Even in areas where occurrence data are 
collected, individuals of the species may be present but 
undetected introducing the bias of imperfect detection 
(Yoccoz et al. 2001; Dorazio 2012; Chen et al. 2013).

Second, SDMs assume that the species data encom-
pass the entire realized niche of the species (covering 
broad environmental gradients) (Elith and Leathwick 

2009; Phillips et  al. 2009; Chevalier et  al. 2021). In 
many ecological applications, this assumption is vio-
lated because study areas are primarily defined by geo-
graphic or political boundaries that cover only a subset 
of a species’ realized niche (Hannemann et al. 2016; El-
Gabbas and Dormann 2018). Thus, the realized niche is 
said to be truncated, and this can significantly degrade 
SDM predictions (Thuiller et  al. 2004; Chevalier et  al. 
2021). Surprisingly, only a handful of studies have 
examined the effects of spatial niche truncation (see, 
Pearson et al. 2004; Thuiller et al. 2004; Barbet-Massin 
et al. 2010; Mateo et al. 2019).

Third, positional measurement inaccuracies, digiti-
zation errors, georeferencing problems, and operator 
error all contribute to high positional uncertainty in PO 
data (Graham et al. 2004, 2008; Naimi et al. 2011; Roc-
chini et  al. 2011). While some studies have concluded 
that SDMs are generally insensitive to variations in the 
level of positional uncertainty (Graham et al. 2008; Fer-
nandez et  al. 2009; Mitchell et  al. 2017), others have 
reached the opposite conclusion (Visscher 2006; John-
son and Gillingham 2008; Naimi et al. 2011, 2014). As 
a result, there is no consensus on its impact on SDM 
predictions.

Despite widespread criticism of the use of PO data in 
SDM, they are still widely used in ecology. This makes 
the use of integrated SDMs to be on the rise (Suhaimi 
et  al. 2021). Integrated SDMs are a recent innovation 
that combine the spatial point process model approach 
(which includes inhomogeneous Poisson point pro-
cess models, see Warton and Shepherd (2010) and Ren-
ner et al. (2015) for further details) with the hierarchical 
model approaches. They incorporate PO data and higher 
quality data (point count data or site occupancy data) 
into the same model (Dorazio 2014; Koshkina et al. 2017) 
to model species distributions, taking advantage of each 
data source while accounting for their respective limita-
tions (Koshkina et al. 2017). However, another challenge 
lies in the appropriate use of these modeling approaches 
(Schank et al. 2019).

To assist ecologists in appropriately modeling species 
distribution based on the PO data, we must examine the 
performance of existing modeling approaches under a 
variety of scenarios of data quality (Suhaimi et al. 2021). 
Mugumaarhahama et al. (2022) show that in the context 
of sampling bias and imperfect detection in PO data, the 
best results are obtained by analysing PO data in con-
junction with point count (PC) data using the approach 
introduced by Dorazio (2014). However, the extent to 
which the PO data used, which are susceptible to the 
aforementioned uncertainties, may affect the effective-
ness of PO models and the integrated SDM is not yet well 
understood.
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The focus of this study is on the use of PO data in SDM 
through the use of spatial point process models. This 
research aims to assess the impacts of aforementioned 
uncertainties in data on performance of SDMs. We use 
a virtual ecologist approach (Zurell et  al. 2010; Suhaimi 
et  al. 2021), in which we simulate the distribution of a 
virtual species and sample it under different conditions 
of data quality. In our simulations, we consider different 
scenarios in which a modeler has both PO data of varying 
quality and PC data that fully or partially cover the range 
of the virtual species, and must decide whether or not to 
use the two datasets. Specifically, we assess the marginal 
and combined effects of both positional uncertainty in 
PO data and data truncation in PO and/or PC data on the 
performance of PO and integrated SDMs under condi-
tions of low and high species detectability.

Methods
To assess SDMs for factors that might influence their 
performance, the use of real data could lead to errone-
ous conclusions (Meynard and Kaplan 2013; Miller 2014; 
Leroy et al. 2016). However, the use of simulated virtual 
species has the advantage that the “true” distribution of 
the species is completely known and the variables that 
influence this distribution are all known (Hirzel et  al. 
2001; Zurell et al. 2010; Meynard and Kaplan 2013; Leroy 
et  al. 2016). The main strength of this approach is the 
ability to compare the model output to a known (virtual) 
“truth”.

Simulation study
This study assesses the performance of PO models and 
integrated models under different scenarios of data qual-
ity. We explored the performance of these SDMs by 
examining their ability to estimate key parameters from 
simulated data whose characteristics are known. The 
use of virtual species, whose distributions are uniquely 
determined by a set of simulated environmental factors, 
ensures that the suitability of all species at each site is 
strictly determined by these factors, without additional 
biotic or dispersal restrictions. By simulating the dis-
tribution of the virtual species and introducing various 
biases into the data, and then refitting the models with 
these data, the resulting parameter estimates can be com-
pared with the initial parameters of the “true” distribu-
tion and thus determine the effects of the factors under 
study (Hirzel et al. 2001; Zurell et al. 2010; Meynard and 
Kaplan 2013; Leroy et al. 2016). Figure 1 depicts the sim-
ulation framework.

Generating virtual species range
For the data generation process, the simulation design 
was similar to that described in Dorazio (2014) and 

Koshkina et  al. (2017). We assumed that individuals of 
the virtual species reside within a 2D grid B which is 
assumed to be a square divided into 1000 × 1000 grid 
cells.

Two environmental covariates, x(s) and w(s), were gen-
erated using bivariate distributions that vary spatially and 
being independent of each other. The bivariate distribu-
tions were chosen so that both environmental covariates 
are defined at every point s of B [(Dorazio (2014) and 
Koshkina et  al. (2017) are recommended reading for a 
more in-depth understanding].

Considering that n individuals of the virtual species 
reside within B, PO data are a set s = s1, s2, s3, . . . , sn 
of point locations in B, where these individuals are 
recorded. It is assumed that the activity centers of 
observed individuals are a realization of a Poisson point 
process parameterized by a first-order intensity function 
�(s) (Dorazio 2014). The process that characterizes the 
presence-only data is inhomogeneous because the inten-
sity �(s) varies with location depending on environmental 
covariates hypothesized to influence or define potential 
habitat of species (Franklin 2010). In this study, we used a 
log-linear function that depends on a single covariate x(s) 
to generate the intensity surface over B, which represents 
the “true” spatial patterns of the virtual species distribu-
tions as follows:

We considered β0 = log(1000) ≈ 6.91 and β1 = 0.5 . With 
these arbitrarily chosen values, the lower the values of 
x(s), the lower the virtual species intensity and vice-versa.

Sampling PO data of the virtual species with different 
scenarios of uncertainty
To simulate different scenarios of data quality, we intro-
duced errors and uncertainties in simulated PO data. As 
species occurrence data are prone to imperfect detect-
ability that includes sampling bias and imperfect detec-
tion, only m of the n individuals are observed. Due to 
imperfect detectability, PO data are s = s1, s2, s3, . . . , sm 
of point locations of observed individuals in B ( m < n ). 
m, the number of observed individuals depends on the 
thinned intensity �(s)b(s) (Dorazio 2014; Koshkina et al. 
2017). b(s) was simulated depending on covariate w(s) 
using the following equation:

In this study, we considered arbitrarily α1 = −1.5 and 
α0 = −1.1 for the low detectability scenario and α0 = 4.6 
for the high detectability scenario. With these arbitrarily 
chosen values, the mean detectability, b̄(s) ≈ 0.33 for the 
low detectability scenario while the mean detectability, 

(1)log(�(s)) = β0 + β1x(s)

(2)logit (b(s)) = α0 + α1w(s)
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b̄(s) ≈ 0.98 for the high detectability scenario. Note that 
b(s) includes both, sampling bias and imperfect detec-
tion. As a result, observed individuals were simulated 
following �(s)b(s) , the thinned intensity (Dorazio 2014; 
Koshkina et  al. 2017). Figure  2 illustrates the simulated 
intensity �(s) and the thinned intensity �(s)b(s).

In addition to issues of detectability, PO data do not 
cover the full extent of species ranges. These PO data 
are said to be spatially truncated because they cover 

only a subset of the realized niche of species that follow 
geographic or political boundaries, such as country or 
continental borders (Thuiller et  al. 2004; Hannemann 
et al. 2016; El-Gabbas and Dormann 2018; Mateo et al. 
2019). In this study, we arbitrarily considered B′ , a sub-
set of B, a rectangle area divided in 320 × 600 grid cells, 
to simulate the spatial niche truncation of the virtual 
species (see Fig. 2). To assess the effects of niche trun-
cation on SDMs, two cases were considered for PO data 
in this study: the case where occurrence data cover the 
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Fig. 1 General framework of the simulation process
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entire B (no truncation), and the case where occurrence 
data cover only B′ (truncated niche).

Furthermore, among uncertainties associated with 
PO data is the uncertainty about where the occurrence 
was located. Positional uncertainty in PO data leads to 
a shift in point’s position in the longitudinal and latitu-
dinal directions (Heuvelink et  al. 2007; Graham et  al. 
2008; Naimi et al. 2011; Osborne and Leitão 2009; Hefley 
et al. 2014). Let’s denote Ei and Ni the coordinates (east-
ing and northing) of where each individual species i was 
observed and recorded. In this study, we introduced posi-
tional error in PO data by introducing a positional error, 
ε in Ei and Ni using a probabilistic approach. The same 

approach was used in Hamm et  al. (2004) and Naimi 
et al. (2011). This resulted in shifting the sampled species 
occurrences in random directions. We introduced the 
positional error, ε , in PO data as follows:

With k, the resolution of �(s) . Taking ε ∼ N (0,ϑ) gives 
a normally distributed unbiased error with the stand-
ard deviation ϑ that defines the positional uncertainty. 
The lower the ϑ , the higher the positional accuracy and 
vice versa. In this study, three levels of positional uncer-
tainty were introduced by varying the values of ϑ . The 
values of ϑ were chosen so that the corresponding posi-
tional accuracy was high (uncertainty = no pixel shift), 
medium (uncertainty = shift of 4 pixels), and low (uncer-
tainty = shift of 8 pixels).

Point‑count data
To fit the integrated SDMs, additional point count (PC) 
are required. Collection of PC data i s expensive. Thus, 
these data are often collected in a small contiguous sub-
region of the study area (Koshkina et  al. 2017). In this 
situation, PC data do not cover the full extent of the spe-
cies’ ranges. They are said to be spatially truncated. In 
this study, we examine how gathering PC data from B′ , a 
subset of B, could impact the performance of integrated 
SDM (PBPC Model). Two situations were considered in 
the process of simulating PC data: full range data and 
truncated data. Thus, we simulated the PC data by first 
dividing B into 50 × 50 square quadrats of equal size. 
Each quadrat corresponds to 20 × 20 grid cells of B. Usu-
ally, the PO observations far exceed the number of sites 
visited in the PC surveys (Dorazio 2014). In this study, 
the quadrats sampled in the planned surveys represent 
4% of the total number of quadrats. Therefore, 100 quad-
rats were randomly selected from B for the full PC data, 
while 19 quadrats were randomly selected from B′ for the 
truncated PC data. For each quadrat, the corresponding 
intensity values �(s) or the “true” number of individuals 
present in it was equal to the sum of the intensities cor-
responding to the grid cells that fall in it.

PC data are not prone to sampling bias because they are 
collected following structured sampling methods. How-
ever, imperfect detection can occur even during planned 
surveys. Hence, in contrast with PO data, detectability 
(detection probability) in PC data include only imperfec-
tion detection. In this study, we simulated each quadrat 

ε ∼ N (0,ϑ)

(3)Ei = Ei + kεEi

(4)Ni = Ni + kεNi
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being visited by J repeated surveys, and as in Dorazio 
(2014) and (Koshkina et  al. 2017), we assumed that the 
detectability, p(s) and b(s) at any site s are influenced by 
the same covariate w(s). For repeated planned surveys, 
the detection probability was simulated depending only 
on a single covariate w(s) as follows:

For J repeated planned surveys, the detectability was 
assumed to be the same for all j surveys. In other words, 
for any site s in B, p1(s) = p2(s) = · · · = pj(s) . In this 
study, we arbitrarily considered γ0 = 2.5 and γ1 = −1.0.

Simulated PC data were obtained by conducting J = 4 
independent binomial draws from individuals of each 
quadrat. In other words, each simulated set of PC was 
computed by aggregating the realized locations of indi-
viduals in the study area into quadrats, by selecting a 
random sample of these quadrats, and by taking J = 4 
independent binomial draws from the individuals present 
in each sampled quadrat (see Dorazio 2014).

With all simulated data used to fit integrated SDMs, 
three cases of niche truncation were obtained: (i) no 
truncation: all data (PO and PC data) cover the whole B, 
(ii) partial truncation: PO data cover the whole B while 
PC data cover only B′ , (iii) full truncation: all data cover 
only B′.

Data analysis
Three SDMs were tested in this work: 

1. PO Model: The spatial point process model that ana-
lyzes PO data ignoring the effect of b(s). This model 
was fitted using simulated PO data sets solely (see 
Warton and Shepherd 2010);

2. THINPO Model: The spatial point process model 
that analyzes PO data as a thinned point process. 
This model account for b(s) based on PO data solely 
(see Dorazio 2014);

3. PBPC Model: The integrated SDM that accounts for 
b(s) by analyzing PO data in conjunction with PC 
data. This model was fitted using simulated PO data 
sets and PC data sets (see Dorazio 2014).

In the first stage, we tested the ability of these SDMs to 
estimate β0 and β1 parameters that determine the inten-
sity �(s) in Eq.  1. The estimates of fitted models were 
compared to the “true” values used in the simulation 
process.

In all experiments, a total of 500 data sets contain-
ing PO observations and PC were simulated, with the 
SDMs then fitted to each realization of the data. β0 and 
β1 parameters were estimated using the BFGS (Broyden–
Fletcher–Goldfarb–Shanno) optimization algorithm 

(5)logit (pj(s)) = γ0 + γ1w(s)

implemented in the optim function in R software (ver-
sion 4.0.5) from the likelihood of the SDMs (Schank et al. 
2019). Sometimes, the optim function failed to return 
an optimized set of parameters. If estimated param-
eters were returned from this function, we determined 
whether they were identifiable using the reciprocal of the 
condition number which is the ratio of the smallest to 
the largest eigenvalues of the Fisher information matrix 
(Dorazio 2014). The parameters of the species distribu-
tion models were considered identifiable if the reciprocal 
of the condition number had a value greater than 10−6 . 
Indeed, values of the reciprocal of the condition number 
close to 0 indicate poor conditioning (poor optimization) 
while values close to 1 indicate good conditioning (good 
optimization) (Golub and Loan 2013; Schank et al. 2019). 
Only estimates from models with identifiable parameters 
were considered for further analysis.

Performance assessment
Model evaluation is an essential step in model selection 
and determining the accuracy of the prediction. In gen-
eral, model precision is measured primarily via evalua-
tion and agreement metrics (Liu et al. 2011; Soultan and 
Safi 2017). In this study, the performance of each SDM 
was assessed at two levels: the ability of models to pro-
duce accurate operating characteristics of maximum 
likelihood estimates of βk (namely β̂k , k = 0, 1 ), and their 
ability to predict accurately the species distribution �(s).

Measuring performance in estimating βk
The utilized performance measures to assess the perfor-
mance of SDMs in estimating βk are presented in Table 1.

For β̂k , the relative bias (%Bias) was calculated for 
each replication while the standard deviation of β̂k and 
the root mean squared error (RMSE) of β̂k were calcu-
lated over N = 500 replications (runs) of the simulation 
process.

Measuring performance in predicting �(s)
The Root mean squared error (RMSE) and two agree-
ment metrics, namely the Schoener’s D index and the 
overall concordance correlation coefficient (OCCC), 

Table 1 Measures used to assess the performance of SDMs in 
estimating βk  

With β̂k (k = 0, 1) the maximum likelihood estimates of the coefficients of 
log(�(s)) (see Eq. 1); N is the number of the replications (runs) of the simulation 
process. In this study, N = 500

Measure Formula Role

Relative bias in β̂ki β̂ki−βki
βki

× 100
Unbiasedness 
of β̂ki

Standard deviation of β̂k
√

1

N−1

∑

N

i=1
(β̂ki −

¯̂
βk)

2 Precision of β̂k

RMSE of β̂k
√

1

N

∑

N

i=1
(β̂ki − βk)

2 Accuracy of β̂k
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were used to assess respectively the statistical perfor-
mance (accuracy) of SDMs in predicting �(s) and the 
reliability of their predictions. The RMSE measures the 
unbiasedness (accuracy) of �̂(s) , whereas agreement met-
rics assess the spatial agreement between the “true” and 
the predicted ranges to determine prediction reliability. 
In other words, reliability can be used to determine the 
distance between predicted ranges and the “true” ranges 
(Soultan and Safi 2017). In this study, we determined the 
degree of agreement between “true” and predicted ranges 
by calculating the overlap of their geographical niches. 
We determined Schoener’s D index using the “nicheO-
verlap” function from the “dismo” R package. The niche 
overlap value ranges from 0 to 1, where 0 denotes no 
overlap and 1 denotes complete overlap (Warren et  al. 
2008; Soultan and Safi 2017). In addition, we measured 
the absolute agreement between the “true” and modeled 
ranges via a pixel-by-pixel comparison using the OCCC, 
a measure of agreement between two continuous data-
sets generated using two distinct methodologies (Warren 
et  al. 2008). The OCCC was calculated using the “epiR” 
R package. The OCCC value ranges from 0 to 1, with 0 
indicating 100% disagreement and 1 indicating 100% 
agreement between the “true” and predicted ranges. 
These metrics were computed for each replication (run). 
M = 1000 random points were selected over B and used 
to extract �(s1), �(s2), �(s3) . . . �(s1000) , the “true” values 
of �(s) and �̂(s1), �̂(s2), �̂(s3) . . . �̂(s1000) . The extracted 
values of �(s) and �̂(s) were then used to calculate the 
RMSE, the Schoener’s D and the OCCC.

Results
Obtained β̂0 and β̂1 with different SDMs using PO data 
prone to different sources of uncertainty
Figure 3 shows the 95% confidence ellipses for the inten-
sity coefficients ( β0 and β1 ) obtained by fitting differ-
ent SDMs under different types of uncertainty in data 
(PO and PC data). The plot illustrates the precision and 
accuracy with which the coefficients are estimated by 
each SDM. To highlight the marginal effects of each type 
of uncertainty, the confidence ellipses are determined 
using data that are not prone to the other two types of 
uncertainty. First, the results in Fig. 3A show that failure 
to account for imperfect detectability can lead to highly 
biased coefficients estimates ( β̂0 and β̂1 ), altering the esti-
mated geographic distribution of species ( ̂�(s) ). The β̂0 
coefficient is the most affected by the imperfect detect-
ability. In that case, we are effectively estimating the 
presence-only intensity ( �(s)b(s) ) instead of the species 
intensity ( �(s) ) (see Fig. 3A). On the other hand, alterna-
tives that attempt to account for imperfect detectability 
(THINPO and PBPC) give results that are more or less 
close to reality. In fact, the real values of the β0 and β1 

coefficients fall within the confidence ellipses resulting 
from the THINPO and PBPC models, regardless of the 
detectability scenario. However, it is worth noting the 
widening of the confidence ellipses in low detectability 
situations. Second, Fig.  3B also shows a weak effect of 
positional uncertainty on the β̂0 and β̂1 coefficients for 
all three studied SDMs. We can see that the confidence 
ellipses contain the real values of the β0 and β1 coeffi-
cients despite the increase in positional uncertainty. With 
the variation of this factor, the accuracy and precision of 
β̂0 and β̂1 vary only slightly. However, with higher levels of 
imprecision than those considered in this study, it is not 
guaranteed that the effects will remain as small. Finally, 
regarding the spatial niche truncation, the same trend 
is observed for the effects of data truncation. For this 
source of uncertainty, the obtained confidence ellipses 
also contain points that represent the real values of the β0 
and β1 coefficients, regardless of the SDM (see Fig. 3C). 
However, it is worth noting the widening of the confi-
dence ellipses in the situation of full truncation (all data 
do not cover the full range of the species). It is mainly the 
loss of precision of β̂1 . The results presented in the rest 
of this section illustrate the performance of the SDMs 
under different combinations of these three factors.

Effects of uncertainties on maximum likelihood of β0 and β1
In situation of low detectability, β̂0 obtained with PO 
Model are strongly biased. In doing so based on PO data 
solely, the THINPO Model has shown to improve β̂0 . 
This approach alleviate bias in β̂0 but with high variance, 
which reflects a low precision. To obtain much better 
estimates (with low bias and high precision), the inte-
grated SDMs are the best alternatives. The use PC data in 
conjunction with PO data through the PBPC Model did 
improve β̂0 over the THINPO Model by increasing their 
precision. Regarding niche truncation, the precision of 
β̂0 decreases slightly in the situation of full spatial niche 
truncation. Partial truncation becomes challenging for 
β̂0 when in addition the PO data are subject to position 
imprecision (low and medium precision). This behavior 
is observed for all detectability scenarios except that the 
higher the detectability, the higher the precision of β̂0 . In 
the situation of high detectability, the PO model outper-
formed the others by giving unbiased and the most pre-
cise β̂0 , whatever the positional uncertainty or the spatial 
niche truncation (see Fig. 4 and Table 2).

We notice that globally for all SDMs β̂1 are rela-
tively unbiased whatever the detectability scenario 
and niche truncation. The only exception is for the PO 
Model under low detectability when PO data are trun-
cated. However, the precision of β̂1 is impaired by the 
decrease in detectability and the spatial niche trunca-
tion. For this parameter, the low the detectability, the 
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lower the precision. With partial or full niche trun-
cation, the precision β̂1 is lower. As for β̂1 , the partial 
niche truncation becomes challenging for β̂1 when PO 
data are prone to positional imprecision (see Fig. 5 and 
Table 2).

Effects of uncertainties on the accuracy and reliability 
of SDMs’ predictions ( ̂�(s))
All the effects of the uncertainties under study on β̂0 
and β̂1 are expected to affect the estimates of the spe-
cies distribution (intensity) and thus �̂(s) obtained 
of the used SDMs. In this study we have assessed the 
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statistical performance of SDMs through RMSE which 
measures the accuracy of �̂(s) . In addition, we meas-
ured the reliability of �̂(s) through the Schoener’s D 
index and the OCCC which measure the spatial agree-
ment between “true” and predicted species distribu-
tion. The Schoener’s D measures the relative agreement 
while the OCCC measures the absolute agreement. By 
doing so, we consider that a model is well performing 
when the its corresponding RMSE is low (near zero) 
and high Schoener’s D and OCCC (near 1). The results 
obtained are summarized in Figs. 6, 7 and 8.

Imperfect detection leads to a significant loss of accu-
racy (significant increase of RMSE) in species distribu-
tion estimates ( ̂�(s) ) when not accounted for (see Fig. 6A). 
The THINPO Model and PBPC Model were able to esti-
mate the distribution of species ( ̂�(s) ) with high accuracy 
(lower RMSE) compared to the PO Model. For integrated 
SDM (PBPC Model), in addition to being less sensitive to 
imperfect detectability, the positional uncertainty does 
not induce considerable effects on the accuracy of this 
model (it induces less variation in RMSE). Furthermore, 
the spatial niche truncation does not induce significant 
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loss of accuracy in �̂(s) , except when it occurs together 
with the issues of positional uncertainty in PO data. In 
this situation, the PBPC model shows a non-negligi-
ble loss of accuracy, as expressed by RMSE values (see 
Fig.  6B). For the THINPO model, the effects of spatial 
truncation are not as negligible as for the PBPC model. 
And the behavior of this model becomes erratic in situa-
tions of near perfect detectability (see Fig. 6A). It should 
be noted that when there is no problem of imperfect 
detectability in the PO data, the PO model outperforms 
the other SDMs. In fact, under these circumstances, this 
model gives the best accuracy (low RMSE) (see Fig. 6).

The results of Schoener’s D index show that none of 
the factors studied (imperfect detectability, positional 
uncertainty and spatial niche truncation) induce signifi-
cant effects on the spatial niche overlap of the predictions 
( ̂�(s) ) with the real distribution of the species of interest 
( �(s) ), except in the case of low detectability and spatial 
truncation for the PO model. It should be noted that 
obtained Schoener’s D index values seem to minimize 
the effects of the studied uncertainties in data on the reli-
ability of SDMs. Surprisingly, the results of Schoener’s D 
index show that, despite the effects observed in the previ-
ous results, the predictions obtained remain reliable.

On the other hand, the OCCC results are more or less 
in line with those of the RMSE. Imperfect detection leads 
to a significant loss of spatial agreement between �̂(s) and 
�(s) when not accounted for (see Fig. 8). The integrated 
SDM (PBPC Model), in addition to being less sensitive to 
imperfect detectability, the positional uncertainty does 
not induce considerable effects on the spatial agreement 

between �(s) and �̂(s) it gives. Furthermore, the spatial 
niche truncation does not induce significant loss of spa-
tial agreement, except when it occurs together with the 
issues of positional uncertainty in PO data as shown in 
Fig. 6B. As for results of RMSE, it should be noted that 
when there is no problem of imperfect detectability in 
the PO data, the PO model outperforms the other SDMs, 
even in situation spatial niche truncation. In fact, under 
these circumstances, this model gives OCCC almost 
equal to 1.

Discussion
SDMs are based on a number of assumptions to guaran-
tee their performance and the reliability of their predic-
tions. However, it is not readily available to find PO data 
that meet these assumptions, which raises doubts about 
the reliability of the conclusions drawn. This study illus-
trates the effect of multi-source uncertainties in species 
PO data on SDMs performance. The aim is to assess the 
(marginal and combined) effects of these uncertainties 
on the ability of the SDMs to estimate the parameters of 
the species distribution model (intensity, �(s) ) and on the 
predictive performance of these models.

In this study, the poor performance of the PO model 
is evidence that imperfect detectability leads to a seri-
ous loss of predictive performance in SDMs, leading 
to erroneous conclusions about species ranges. SDMs 
predictions obtained without accounting for imperfect 
detectability, instead of estimating �(s) , the “true” species 
distribution, they reflect �(s)b(s) , the sampling efforts 
(Phillips et al. 2009; Fithian et al. 2015). In this context, 

Table 2 Standard deviation (and RMSE) of maximum likelihood estimates of β0 and β1 under varying positional uncertainty in the 
situation of low and high detectability

SDM Truncation Detectability β̂0 β̂1

Low Medium High Low Medium High

PO False Low 0.06 (1.14) 0.06 (1.12) 0.05 (1.10) 0.06 (0.07) 0.06 (0.06) 0.06 (0.04)

PO False High 0.03 (0.05) 0.04 (0.04) 0.04 (0.03) 0.03 (0.02) 0.03 (0.02) 0.03 (0.02)

PO True Low 0.13 (0.99) 0.13 (0.96) 0.13 (0.93) 0.18 (0.55) 0.18 (0.55) 0.18 (0.55)

PO True High 0.08 (0.08) 0.07 (0.05) 0.07 (0.04) 0.11 (0.06) 0.11 (0.06) 0.11 (0.06)

THINPO False Low 0.36 (0.18) 0.36 (0.18) 0.36 (0.18) 0.07 (0.05) 0.07 (0.04) 0.07 (0.03)

THINPO False High 0.38 (0.28) 0.36 (0.26) 0.30 (0.22) 0.03 (0.02) 0.03 (0.02) 0.03 (0.02)

THINPO True Low 1.46 (0.73) 1.87 (0.95) 2.09 (1.09) 0.24 (0.12) 0.24 (0.12) 0.26 (0.13)

THINPO True High 0.23 (0.11) 0.52 (0.28) 0.68 (0.37) 0.17 (0.08) 0.16 (0.08) 0.14 (0.07)

PBPC False Low 0.18 (0.09) 0.18 (0.09) 0.16 (0.08) 0.06 (0.04) 0.06 (0.03) 0.07 (0.03)

PBPC False High 0.14 (0.08) 0.16 (0.09) 0.12 (0.07) 0.04 (0.02) 0.03 (0.02) 0.03 (0.02)

PBPC Partial Low 1.43 (0.75) 1.54 (0.84) 0.15 (0.07) 0.25 (0.13) 0.26 (0.13) 0.07 (0.03)

PBPC Partial High 0.80 (0.48) 0.60 (0.41) 0.12 (0.07) 0.18 (0.10) 0.18 (0.10) 0.03 (0.02)

PBPC All Low 0.17 (0.09) 0.20 (0.10) 0.19 (0.09) 0.18 (0.09) 0.17 (0.08) 0.18 (0.09)

PBPC All High 0.12 (0.06) 0.11 (0.05) 0.09 (0.05) 0.12 (0.06) 0.11 (0.06) 0.09 (0.05)
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it is challenging to distinguish between predictions that 
accurately reflect ecological processes that influence the 
spatial distribution of a species and those that are linked 
to detectability effects or sampling effect (Dorazio 2012; 
Fithian et  al. 2015; Guillera-Arroita 2017). Therefore, 
our findings emphasize on the importance of accounting 
for imperfect detectability in SDMs. They corroborate 
findings of other works that insist on the risk of ignor-
ing this type of bias in species occurrence data. As for 
our study, Phillips et al. (2009), Yackulic et al. (2013) and 

Guillera-Arroita (2017) showed that ignoring imper-
fect detectability is not inconsequential to the reliability 
of SDMs predictions. It leads to erroneous conclusions 
regarding the distribution of species, erroneous infer-
ences regarding the determinants of species distribution, 
incorrect quantifications of biodiversity, and incorrect 
conclusions regarding environmental change (Guillera-
Arroita 2017). However, our findings are not in line with 
some studies that recommend ignoring the effects of 
imperfect detectability. Indeed, there are differing 

Truncation = False Truncation = True

Low
 detectability

H
igh detectability

PO THINPO PO THINPO

−40

0

40

80

−40

0

40

80

Model

%
Bi

as
 in

 β̂
1

A Truncation = False Truncation = Partial Truncation = All
Low

 detectability
H

igh detectability

PBPC PBPC PBPC

−50

0

50

−50

0

50

Model

B

Positional accuracy: Low precision Medium precision High precision

Fig. 5 Relative bias in maximum likelihood estimates of β1 obtained by fitting PO SDMs (A) and Integrated SDM (B). The dashed red line indicates 
the ideal situation where the bias in β1 is equal to 0



Page 12 of 18Mugumaarhahama et al. Environmental Systems Research           (2023) 12:27 

opinions regarding the effects of imperfect detectability 
on SDMs performance (Guélat and Kéry 2018). Some 
studies concluded that the effects of imperfect detectabil-
ity are negligible and recommended ignoring them (e.g., 
Banks-Leite et  al. 2014; Johnson and Gillingham 2008; 
Stephens et  al. 2015). We believe that this difference of 
opinion may be explained by the fact that the effects of 
imperfect detectability may vary according to the species 
eco-geographic characteristics. For example, for gener-
alist species, although the data are prone to geographic 

sampling bias, they may be sufficiently representative 
of the environmental conditions across the full species 
range and then allow the SDMs to capture the favorable 
environmental conditions for the species. In contrast, 
this is not necessarily true for specialized species. The 
effects of imperfect detectability would also vary with the 
variance and importance of the underlying factors. For 
example, Fithian et al. (2015); Thibaud et al. (2014), and 
Fletcher et al. (2016) and other more recent studies such 
as Chevalier et al. (2021) suggested using covariates such 
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as the distance to a roads or distance to cities as predic-
tors of imperfect detectability. If distance to roads and/
or distance to large cities are the main factors underlying 
imperfect detectability, then if the road network is suf-
ficiently developed and the cities sufficiently numerous 
and scattered, thus covering a large part of the environ-
mental conditions of the species, the effects of this factor 
may be sufficiently reduced and thus induce minor losses 
in model performance.

Findings of this study show that in the context of low 
detectability all studied SDMs produce unbiased esti-
mates of β0 and β1 , but they differ mainly in the precision 
of these estimates. The best accuracy is obtained with the 
PBPC Model. However, in the context of high detectabil-
ity, PO Model outperformed the SDMs that account for 
imperfect detectability (THINPO and PBPC Models). It 
is therefore important to make a careful selection of the 
model to be used, taking into account the characteristics 
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of the data. To account for imperfect detectability in PO 
data, several authors have proposed modeling species 
distribution as a thinned Poisson point process (THINPO 
Model) (Chakraborty et al. 2011; Fithian and Hastie 2013; 
Hefley et al. 2013; Warton et al. 2013; Dorazio 2014; Fith-
ian et  al. 2015). The results of this study show that this 
may not be enough depending on data characteristics. 
It may be necessary to use additional data in some con-
text as demonstrated in this study. The results of this 

study are in accordance with those of some authors that 
argue that it is impossible to accurately estimate species 
distribution using PO data alone because PO data are 
not informative about species detectability. Additional 
data that are informative about species detectability are 
required to improve the estimation of the parameters of 
species distribution models (Fithian et al. 2015; Dorazio 
2014; Koshkina et  al. 2017). Although the use of these 
additional data is crucial, it is also necessary to make a 
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reasoned choice of the covariates to be included in the 
model, especially the detectability variables. This choice 
is not trivial. It must be done as thoroughly as possible 
(Koshkina et al. 2017). A poor choice of these covariates 
could also have negative effects on the performance of 
the SDMs. However, our results are silent on this issue. 
What would be the bias in the parameter estimates if 
the key determinants of detectability are omitted? Nolan 
et al. (2022) proposed an approach to identify sources of 
sampling bias in PO data through the use of zero-inflated 
models. We must therefore try to list all the potential 
sampling bias drivers and then use the approach pro-
posed by Nolan et al. (2022) to identify those that should 
be retained for use in the THINPO Model or integrated 
SDM.

In addition, the assumption regarding the data repre-
sentativeness of the environmental conditions across the 
full species range is often violated because in most of the 
SDMs’ studies, PO data are typically collected in areas 
defined by geographical or political borders (e.g., national 
monitoring programs) that only encompass a subset 
of a species’ realized niche (Hannemann et al. 2016; El-
Gabbas and Dormann 2018; Chevalier et al. 2021). These 
data are therefore not necessarily representative of the 
species range (Chevalier et  al. 2021). Surprisingly, the 
results obtained in this study show little effect of spatial 
niche truncation on the maximum likelihood estimates 
of β0 and β1 , and thus fail to induce strong effects on the 
predicted species distribution ( ̂�(s) ), especially for the 
integrated SDM. Indeed, in this study, β̂0 and β̂1 of the 
integrated SDM (PBPC model) are unbiased regardless of 
the spatial niche truncation scenario. Furthermore, small 
effects of spatial niche truncation on the precision of β̂0 
and β̂1 are observed, which do not significantly affect the 
predictions ( ̂�(s) ) of this model, except when PO data are 
positionally imprecise in addition to being truncated. 
Consequently, this study suggests that the use of spatially 
constrained data, has little effect on the results of SDMs. 
And since high quality data are often very spatially con-
strained, there is no reason to fear that this will affect the 
results of integrated models. In terms of transferability, if 
the data used to calibrate the models are sufficiently rep-
resentative of the full range of the species, the results of 
SDMs can be generalized to other geographic areas and 
time periods without concern. This is not consistent with 
a number of previous studies that have found evidence 
of severe effects of spatial niche truncation on the qual-
ity of SDM outputs. Indeed, these research stated that 
if species occurrence data fail to capture the full species 
realized niche, they can not adequately characterize the 
environmental conditions tolerated by species. Thus, 
it may not be possible to obtain reliable outputs from 
models built using such data (Pearson and Dawson 2003; 

Thuiller et al. 2004; Titeux et al. 2017). Consequently, it is 
difficult to estimate the function linking species distribu-
tions and environmental variables, leading to inaccurate 
predictions of species distributions (Chevalier et al. 2021; 
Thuiller et al. 2004), which can result in wasting resources 
on ineffective and expensive restoration plans or losing 
populations of conservation concern (Guisan et al. 2013; 
Araújo et al. 2019; Chevalier et al. 2021). We suspect that 
the discrepancy between our results and those of previ-
ous research may be explained by the fact that the eco-
logical conditions of the area chosen for our spatial niche 
truncation simulations may have been sufficiently rep-
resentative of the environmental tolerance of the virtual 
species. Elith et  al. (2010) recommend that the similar-
ity between the restricted data used for model calibration 
and the full range data (extrapolation data or projection 
data) be tested by multivariate environmental similarity 
surface analysis. If this analysis shows dissimilarities, one 
should pay attention to spatial niche truncation effects 
(Barbet-Massin et al. 2010; Bálint et al. 2011; Edman et al. 
2011; Keenan et al. 2011; Bertrand et al. 2012; Raes 2012; 
Chevalier et al. 2021). An alternative to address this issue 
is to consider data from larger spatial and (especially) 
ecological scales (Hannemann et al. 2016; Chevalier et al. 
2021). It is then preferable to use the full range of species 
and environmental data to calibrate SDMs rather than 
considering only a subset of them (Araújo and Guisan 
2006). However, this alternative may not be satisfactory if 
SDMs are to be fitted at fine spatial scales using local pre-
dictors such as land cover and fine environmental details 
such as local microclimate (Pearson et al. 2004; Zellweger 
et al. 2019; Chevalier et al. 2021). Furthermore, we sug-
gest that the effects of spatial niche truncation are likely 
to vary with respect to the eco-geographic characteristics 
of the species. Spatial niche truncation may have stronger 
effects on specialized (narrowly distributed) species than 
on generalist species. Since our virtual species is not 
highly specialized, we expect it to be less sensitive to spa-
tial niche truncation.

In addition to the aforementioned uncertainties, the 
positional uncertainty of PO data is an additional con-
cern (Naimi et  al. 2011; Rocchini et  al. 2011; Soultan 
and Safi 2017). The use of such prone-to-uncertainty PO 
data is hypothesized to result in inaccurate predictions 
of species distributions, and then misguide biodiversity 
management and conservation efforts. The results of this 
study indicate that the effects of positional uncertainty 
on maximum likelihood estimates of the β0 and β1 coeffi-
cients are not as severe as one might expect. These results 
are consistent with previous research indicating that the 
effect of positional uncertainty of species occurrences 
on the performance of SDM is relatively small (Graham 
et  al. 2008; Osborne and Leitão 2009; Soultan and Safi 
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2017; Hayes et  al. 2015; Fernandez et  al. 2009; Mitchell 
et  al. 2017). However, there are other studies that con-
tradict our findings. They found that positional precision 
can lead to inaccurate predictions of species distributions 
(Visscher 2006; Johnson and Gillingham 2008; Naimi 
et al. 2011, 2014). We suspect that this disagreement may 
be related to the fact that positional uncertainty effects 
would vary with species characteristics, which may vary 
with responses to environmental covariates (Soultan and 
Safi 2017). Indeed, Soultan and Safi (2017) found that 
species specialization affects the sensitivity of SDMs to 
the positional uncertainty in species occurrence data. 
For generalist species, positional precision has a rela-
tively small effect, whereas specialist species are more 
sensitive to positional uncertainty. The sensitivity of spe-
cialist species may be due to an increased probability of 
assigning imprecise species occurrences to inappropriate 
areas, whereas this probability is inherently reduced for 
generalist species. Species characteristics are also likely 
to influence the effectiveness of SDMs. The results of 
this study may not be applicable to all species. Therefore, 
future research should assess the effects of species char-
acteristics on the performance of SDMs and the uncer-
tainty in PO data as a function of species characteristics 
to determine if these SDMs continue to exhibit the same 
performance.

Conclusion
In this study, we used simulated data to investigate the 
effects of positional uncertainty and spatial niche trun-
cation on the performance of species distribution mod-
els (SDMs) under low and high species detectability. We 
show that SDMs that account for imperfect detectabil-
ity (THINPO or PBPC models) are not applicable in high 
detectability situations. In this situation, PO model pro-
duces the most accurate maximum likelihood estimates 
of β0 and β1 , and consequently the most accurate predic-
tions of species distributions ( ̂�(s) ). The effects of positional 
uncertainty and spatial niche truncation on this SDM out-
put are minimal. However, in situations of low detectability, 
it is preferable to analyze PO data alongside PC data. It has 
been demonstrated that positional uncertainty and spatial 
niche truncation have negligible effects on the output of 
this SDM, except when positionally uncertain PO data are 
analyzed alongside truncated PC data. However, depending 
on species characteristics, the effects of positional uncer-
tainty and spatial niche truncation may vary. They can have 
a significant impact on the outputs of SDMs for specialized 
species. Multivariate environmental similarity surface anal-
ysis is proposed to test the similarity between data from the 
restricted region to be used for model calibration and data 
from the entire range. If this analysis reveals dissimilarities, 
spatial niche truncation effects should be considered. Data 

from larger spatial and ecological scales should be consid-
ered as an alternative to address this issue. It is therefore 
preferable to use the full range of species and environ-
mental data to calibrate SDMs, rather than just a subset 
of them. Assessing the effects of species characteristics 
on model performance and the effects of uncertainties on 
model performance as a function of species characteristics 
could be the subject of future research.
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