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Abstract 

Water sources for irrigation systems in the Red River Delta are crucial to the socioeconomic growth of the region’s 
communities. Human activities (discharge) have polluted the water source in recent years, and the water source from 
upstream is limited. Currently, the surface water quality index (WQI), which is calculated from numerous surface water 
quality parameters (physical, chemical, microbiological, heavy metals, etc.) is frequently used to evaluate the surface 
water quality of irrigation systems. However, the calculation of the WQI from water quality monitoring parameters 
remains constrained due to the need for a large number of monitoring parameters and the relative complexity of 
the calculation. To better serve the assessment of surface water quality in the study area, it is crucial and essential to 
conduct research to identify an efficient and accurate method of calculating the WQI. This study used machine learn-
ing and deep learning algorithms to calculate the WQI with minimal input data (water quality parameters) to reduce 
the cost of monitoring surface water quality. The study used the Bayes method (BMA) to select important parameters 
 (BOD5,  NH4

+,  PO4
3−, turbidity, TSS, coliform, and DO). The results indicate that the machine learning model is more 

effective than the deep learning model, with the gradient boosting model having the most accurate prediction 
results because it has the highest coefficient of determination  R2 (0.96). This is a solid scientific basis and an important 
result for the application of machine learning and deep learning algorithms to calculate WQI for the research area. 
The study also demonstrated the potential of artificial intelligence algorithms to improve water quality forecasting 
compared to traditional methods with minimal cost and time.
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Introduction
The Red River Delta is the downstream area of the Red 
River and Thai Binh Rivers in northern Vietnam. The Red 
River Delta consists of 10 provinces, including 2 cities 
directly under the central government and 9 provinces 
with 16 cities under each province. This is the region with 
the highest population density in Vietnam (1450 people/
km2, population is 21,848,913 people).

The area around the Red River Delta is split into three 
subregions. There are 14 irrigation systems that are dif-
ferent from the areas upstream and in the middle of the 
Red River Delta. Although the level of water shortage 
is not severe, tides and saltwater intrusion are factors. 
There are 2 irrigation systems in the upstream area and 
5 irrigation systems in the center of the Red River Delta 
that are greatly affected by the decline in water sources 
and are also the areas most affected by socioeconomic 
development activities, and water pollution is increasing 
daily. The research results show that the systems in the 
central delta are more polluted than the upstream and 
downstream systems. Therefore, the scope of the study 
was determined to be the irrigation systems representing 
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the central part of the Red River Delta, including the Bac 
Duong and Bac Hung Hai irrigation systems, because 
these are two typical and serious pollution systems for 
the study area due to the influence of human activities 
(discharge) and the impacts of upstream flows (water 
resources are increasingly limited). Moreover, these are 
also systems with sufficient data (for a long enough time) 
to calculate, evaluate, and forecast trends in surface water 
quality. The geographical location of the study area is 
shown in Fig. 1.

Water quality in the irrigation systems in the study 
area is monitored with a frequency of 2–6 times a year, 
arranged at the time of water supply for the spring crop 
(from February to April) and the time of irrigation water 
supply during the crop (from July to September). There-
fore, the level of pollution increase, pollution indicators, 
and causes of pollution were assessed as a basis for pro-
posing solutions to reduce pollution and minimize the 
harmful effects of water pollution on agricultural produc-
tion and aquaculture (Chinh 2019).

The general assessment of water pollution in a num-
ber of irrigation works that are being watched shows that 
both the scope and extent of water pollution have grown. 

Common pollution parameters are DO,  BOD5, COD, 
 NH4

+,  NO2
−, and coliform. Most of the monitoring 

points do not meet the standard of water supply for daily 
life (according to QCVN 08-2015), and approximately 
30–50% of monitoring points do not meet irrigation 
water standards. Companies exploiting irrigation works 
have to spend a lot of money picking up trash to clear the 
flow. The water pollution situation in some typical irriga-
tion systems in terms of pollution is as follows:

• The results of water quality monitoring from 2005 
to 2018 have assessed water pollution indicators in 
the Bac Hung Hai irrigation system, including COD, 
 BOD5,  NH4

+,  NO2
−,  PO4

3− and coliform. After 
more than 10 years, the COD content increased 8.6 
times,  NH4

+ increased 2.48 times,  PO4
3− increased 

4.15 times, and coliform increased 91.6 times. The 
results of water pollution zoning of 83 rivers and 
canals based on the criteria of the water quality index 
(WQI), field descriptions of color, smell, and degree 
of impact on the life of living species in the river and 
canal show that all rivers have been polluted to dif-
ferent degrees, in which 19/83 rivers and canals are 

Fig. 1 Geographical location of the study area
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very seriously polluted, 21/83 rivers and canals are 
severely polluted, 23/83 rivers and canals are moder-
ately polluted, and 20/83 rivers and canals are slightly 
polluted (Huong 2018).

• The water quality of the Bac Duong irrigation system 
is in a state of serious deterioration at many locations 
on the Ngu Huyen Khe River and some locations on 
the canal system. The results of monitoring the water 
quality in the Bac Duong irrigation system from 2007 
to 2018 show that the water source is polluted mainly 
by the parameters DO, COD,  BOD5,  NH4

+, and coli-
form. The number of points with dissolved oxygen 
content lower than the allowable standard accounts 
for 30–100%; the percentage of points with COD 
content exceeding the standard is from 30 to 100%; 
the number of points with BOD5 content exceed-
ing the standard through the monitoring sessions 
ranged from 30 to 90%; and the number of points 
with ammonium content exceeding the allowable 
standard is from 36.3 to 100%. Water quality in the 
dry season months, especially February, March, and 
April, is heavily polluted at all monitoring points. The 
results of calculating the water quality index (WQI) 
between the sampling periods show that at 50–94% 
of the monitoring points, the water quality is assessed 
as seriously polluted (Chinh 2019).

Currently, localities in the study area often use the 
water quality index (WQI) to assess surface water quality 
and the usability of water sources for different purposes 
and must rely on many parameters to calculate the WQI, 
and the calculation process is relatively complicated. 
According to Decision No. 1460/QD-TCMT issued by 
the Vietnam Environment Administration on technical 
guidance for the calculation and publication of Vietnam’s 
water quality index (VN_WQI), the data to calculate VN_
WQI must include at least 3/5 of the parameter groups, 
of which group IV (organic and nutritional parameters 
group) is required and there must be at least 3 parame-
ters. In fact, localities often use 3 groups of parameters: 
Group I (pH); Group IV (DO,  BOD5, COD, TOC, N-NH4, 
N-NO3, N-NO2, P-PO4), and Group V (Coliform).

For the calculation of the WQI, it is necessary to moni-
tor at least 10 of the above parameters. The monitoring 
of surface water quality in irrigation systems is still per-
formed using the traditional method of collecting water 
samples, which are then analysed in the laboratory by 
various chemical and biological tests. These methods 
are often time consuming and labor intensive and can 
be expensive, especially when a large number of water 
samples are collected from different locations. In addi-
tion, this method can only provide water quality data 

at transient points in time, making it difficult to assess 
changes over time and space.

In recent years, machine learning and deep learning 
algorithms have been increasingly applied worldwide in 
calculating and forecasting water quality indices because 
of their ability to process large amounts of data and 
make predictions with high precision. Machine learning 
and deep learning algorithms can handle nonlinear rela-
tionships between water quality parameters and handle 
missing data and multidimensional data efficiently. Addi-
tionally, these algorithms can learn from data in real time 
and continuously improve their predictions as new data 
become available. This method has been shown to have 
many outstanding advantages (compared to traditional 
methods) for modelling complex nonlinear equations.

Forecasting the quality of surface water using machine 
learning models has been used in many places around 
the world. A decade-long research review on water qual-
ity indices in the field of artificial intelligence was car-
ried out to develop the most feasible or most appropriate 
models and methods to be applied by researchers. In the 
future, in the field of water quality (Aminu 2022), the 
use of AI has increased dramatically in the last decade, 
yet there is still enough room for researchers to become 
involved and improve the calculations, projections, etc., 
of the water quality index. Some case studies, such as the 
prediction of the irrigation water quality index based on 
the machine learning and regression model of Mokhtar 
et  al. (2022), have predicted the irrigation water qual-
ity index of the Bahr El-Baqr region. Egypt’s research 
results indicate that the best model for prediction is the 
stepwise regression model, followed by principal compo-
nent regression (PCR) and partial least squares regres-
sion (PLS) (Egypt). The prediction of river water quality 
index by data mining techniques (k-nearest neighbor, 
decision tree, naive Bayes, artificial neural network, 
support vector machine) was developed by Babbar and 
Babbar (2017) The results show that decision trees and 
support vector machine classifiers are considered to be 
the best predictive models. The IoT-based water quality 
index prediction for farm irrigation by Yadav et al. (2021) 
used 5 water quality parameters to calculate the irriga-
tion water quality index (IWQI). The correlation analysis 
method was used to reduce five parameters to three. The 
results show that the random forest classification model 
is the best classification model for predicting water qual-
ity. Prediction of irrigation water quality indices based on 
machine learning algorithms in semiarid environments 
has also been applied; the study used five machine learn-
ing models to predict irrigation water quality indicators. 
which the SVM model is most suitable for all irrigation 
indicators (Dimple et al. 2022).
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Improved water quality index prediction has also been 
made; a study by Mohd Zebaral Hoque et al. (2022) used 
eight machine learning regression models based on his-
torical data from rivers in India to predict the water 
quality index. The results show that the linear and ridge 
regression models give the best performance. Improved 
prediction of water quality indices by a new hybrid 
machine learning algorithm studied by Bui et al. (2020), 
which used 4 independent machine learning algorithms 
and 12 hybrid algorithms to predict only water quality 
indicators. surface water quality in Iran. The results show 
that the best input matching models and the BA-RT 
matching algorithm outperform the others. Ibrahim et al. 
(2023) used integrated water quality indices, machine 
learning models and GIS approaches to predict ground-
water quality for irrigation, and several irrigation water 
quality indices (IWQIs) and geographic information sys-
tems (GIS) were used to assess the groundwater (GW) 
quality for agricultural land in the El Kharga Oasis, West-
ern Desert of Egypt. Two machine learning (ML) models 
(i.e., adaptive neuro-fuzzy inference system (ANFIS) and 
support vector machine (SVM)) were developed for the 
prediction of eight IWQIs. The performance of the simu-
lation models was evaluated based on several prediction 
skill criteria, which revealed that the ANFIS model and 
SVM model were capable of simulating the IWQIs with 
reasonable accuracy. Abu El-Magd et al. (2023) integrated 
a machine learning-based model and WQI for ground-
water quality assessment using support vector machines 
(SVMs) integrated with water quality indices (WQI) to 
assess groundwater quality. The SVM-WQI model shows 
a low percentage of the area for excellent class compared 
to the SVM model and WQI. Overall, the integrated ML 
model and WQI provide an understanding of water qual-
ity assessment, which may be helpful in the future devel-
opment of such areas.

In addition to the classification of the water quality 
index based on a machine learning model for the Langat 
River basin (Shamsuddin et  al. 2022), the study evalu-
ates the effectiveness of machine learning models for 
multiclass classification in water quality assessment and 
evaluation found that SVM is the best model to predict 
river water quality. Ecosystem water quality index predic-
tion and water quality classification of a heavily polluted 
river through supervised machine learning by Fernan-
dez del Castillo et  al. (2022) used supervised machine 
learning models. Monitoring can be used to predict the 
water quality index (SGR-WQI) for the ecosystem, with 
the number of water quality parameters reduced from 17 
to 12 to expand the water quality monitoring program. 
Current water volume of the Santiago-Guadalajara River 
(Mexico).

Deep learning algorithms have also been used to predict 
and sort water quality indices. The study by Tiyasha et al. 
(2021) used an artificial intelligence model to predict the 
river water quality index and showed that the H2O deep 
learning model was the most accurate (for both large-
scale watershed datasets small scale and large scale), fol-
lowed by a random forest model. Hameed et  al. (2016) 
applied artificial intelligence techniques to predict the 
water quality index. An ANN can be used to accurately 
predict the water quality index (WQI). The radial basis 
functional neural network (RBFNN) model is believed 
to be the most accurate for predicting WQI in tropical 
environments (Malaysia). The proposed method pro-
vides an efficient alternative to calculating and predicting 
the WQI, as manual calculation methods are very time-
consuming. Aldhyani et al. (2020) developed an artificial 
intelligence (AI) algorithm to predict the water quality 
index (WQI) and water quality classification (WQC). The 
results show that the proposed models can accurately 
predict the WQI and classify water quality. Artificial neu-
ral network models (NARNET and LSTM) and machine 
learning algorithms (SVM, K-NN, and Naive Bayes) can 
accurately predict the water quality index (WQI) and the 
water quality classification (WQC). The NARNET model 
performed slightly better than the LSTM for predicting 
WQI values, and the SVM algorithm achieved the high-
est accuracy (97.01%) for WQC prediction. Ahmed et al. 
(2019) also used a supervised machine learning algorithm 
to estimate the water quality index (WQI). The results 
show that gradient enhancement and polynomial regres-
sion are the most efficient algorithms (MAE is 1.9642 
and 2.7273, respectively). Multilayer perceptron (MLP) 
is the most effective for water quality grade classification 
(WQC). The proposed method achieves reasonable accu-
racy using the minimum number of parameters, making 
it suitable for real-time water quality detection systems.

In Vietnam, the use of machine learning models to pre-
dict the water quality index has been applied in the La 
Buong River (Khoi et al. 2022). This study evaluates the 
effectiveness of 12 machine learning models in predicting 
the water quality index. The results show that all 12 mod-
els have good performance in predicting the WQI, but 
the XGBoost model has the highest accuracy  (R2 = 0.989 
and RMSE = 0.107). Than et  al. (2016) applied an artifi-
cial neural network (ANN) to estimate the water quality 
index in the Dong Nai River flowing through two prov-
inces, Dong Nai and Binh Duong. The research results 
have demonstrated that the predicted water quality index 
(WQI) is very significant and has a high correlation coef-
ficient (R = 0.974 and p = 0.0) compared with the actual 
value of the WQI. Furthermore, ANN models provide 
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better predictive values than multivariate regression 
models.

In summary, previous studies on using deep learning 
in water quality forecasting have mainly focused on fore-
casting water quality parameters (physical parameters are 
the main ones) and calculating the water quality index 
(WQI). Some studies have also combined deep learning 
algorithms with real-time monitoring networks and have 
given very positive results. However, no study has applied 
the method of selecting important parameters from doz-
ens of water quality parameters (monitoring) as input 
data to calculate the surface water quality index (WQI) 
by machine learning and deep learning models. Moreo-
ver, the above studies are popular worldwide. In Viet-
nam, there are very few studies evaluating the potential of 
machine learning algorithms and deep learning in fore-
casting the surface water quality index (WQI) based on 
data input (minimum water quality parameter) to reduce 
the cost of surface water quality monitoring, which is 
essential for developing countries.

Therefore, the study and application of machine learn-
ing models to predict the surface water quality index in 
the study area are important and necessary. The study 
will contribute to providing more scientific, effective, and 
cost-effective methods of calculating the surface water 
quality index to suit the actual conditions of localities in 
the Red River Delta. The objectives of the study are as 
follows:

• Building a scientific basis for calculating the surface 
water quality index using artificial intelligence;

• Propose a method to calculate the surface water 
quality index by machine learning and deep learning 
methods suitable to the actual conditions of irriga-
tion systems in the Red River Delta.

Materials and methods
Implementation method
To achieve the stated objectives, the following research 
methods were used:

Methods of collecting documents and data
The data collection for this study will mainly focus on 
the collection of physical, chemical, and microbiological 
surface water quality data (temperature, pH, DO,  BOD5, 
COD, N-NH4, N-NO3, N-NO2, P-PO4, and coliform). 
Particularly for the WQI value at the monitoring sites, 
it is also collected together with data on water quality 
parameters in the study area from water quality monitor-
ing reports, and data from previous studies will be col-
lected and analysed to serve the construction machine 
learning and deep learning models.

Data processing methods
Data preparation and preprocessing were important 
steps in this study to ensure that the data were appro-
priate to eliminate any confounding factors or outliers 
that could affect the accuracy of the models. image. 
Includes the following steps:

• Data cleaning: collected data will be cleaned to 
address any missing or inconsistent values. Some 
commonly used methods for data cleaning include 
the following:

• Handling missing values: Addressing missing data 
by imputing values or making decisions on how to 
handle the missing entries. This can involve tech-
niques such as the mean imputation, regression 
imputation, or deletion of incomplete cases.

• Correcting inconsistencies and outliers: Identify-
ing and resolving inconsistencies, errors, or out-
liers in the data. This can involve data profiling, 
statistical methods, or domain-specific knowl-
edge to detect and correct anomalies.

• Normalize data: metrics will be normalized to ensure 
that all variables (parameters) are on the same scale 
(dimensionless), which is important for the accuracy 
of algorithms in machine learning and deep learning. 
In this study, all data were normalized to fall between 
0 and 1 to improve the convergence rate of the model 
and minimize the influence of the absolute scale. The 
normalization equation is as follows:

where the X norm is the normalized value and  X0, 
 Xmin, and  Xmax are the real value, the minimum 
value, and the maximum value of the same variable, 
respectively.

• Split data: The data will be divided into training data-
sets and test datasets. The training dataset is used to 
train the algorithms, while the test dataset is used 
to evaluate the accuracy of the prediction results. A 
commonly used ratio is 80:20, where 80% of the data 
are allocated for training and 20% for testing. This 
means that the model is trained on 80% of the data 
and evaluated on the remaining 20% (Joseph 2022).

Bayes method (BMA)
The Bayes method (BMA) exploits the Bayes factor (BF) 
and the index to measure the "compromise" between 

(1)Xnorm =
X0 − Xmin

Xmax − Xmin



Page 6 of 17Nguyen et al. Environmental Systems Research           (2023) 12:24 

the model’s complexity and predictability (BIC) and 
choose the optimal model. This is a new method to 
overcome the problem of redundancy (the variable has 
no actual impact) in a multivariable linear regression 
model (Tuan 2020; Hinne et al. 2020).

Assume that there are m possible models with a param-
eter vector of θj that can explain γ. Suppose  Pj(θj) is the 
probability of vector θj. The probability density of γ can 
be written as:

the posterior probability of θj is:

If we have two models  M1 and  M2 and assume that one 
of them is true, the posterior probability of  M1 is:

In fact, we can also compare the two models  M1 and 
 M2 through real evidence:

This ratio is called the Bayes factor (BF). In the above 
interpretation, BF gives us information that the data are 
toward  M1 or  M2. With the BMA method, each study 
does not have only one model, but there can be many 
models that can also explain γ.

According to the water quality monitoring results, 
there are many water quality parameters, such as physi-
cal, chemical, and microbiological parameters (pH, TSS, 
DO,  BOD5, COD,  NH4

−,  PO4
3−, and coliform), that 

determine pollution, that is, the quality and amount of 
water (WQI). To determine the characteristic param-
eters for the machine learning model in the study area, 
the study used the Bayes method to identify variables 
(water quality parameters) that have a great influence on 
the WQI. Statistical analysis results by the Bayes method 
(BMA) will determine the water quality parameters that 
have a great influence on the WQI value, thereby deter-
mining the main parameters affecting the WQI.

Methods of machine learning and deep learning
Machine learning algorithms Based on the results of the 
overview study, the study uses machine learning models 
to calculate (predict) WQI with reinforcement learn-
ing algorithms because this is a powerful algorithm with 
many advantages and gives high computational results. 

(2)Pj(y) =

∫

0−j

Pj
(

y
∣

∣θj)dθ j

(3)Pj(θj|y) =
Pj(γ |θj)Pj(θj)

Pj(y)

(4)Pj(M1|y) =
P(γ |M1)P(M1)

P
(

y|M1

)

P(M1)+ P
(

y|M2

)

P(M2)

(5)
P(M1|γ )

P(M2|γ )
=

P(γ |M1)

P(γ |M2)
×

P(M1)

P(M2)

algorithms with high accuracy that are easy to understand 
and easy to implement (Ahmed et al. 2019; Ni et al. 2020; 
Osman et al. 2021). Some of the main advantages of this 
algorithm are as follows:

• Interpretability: Gradient boosting easily interprets 
its predictions, as it follows a synchronous learning 
process. We can understand how the model makes a 
particular prediction by analysing the closure contri-
bution of each weak learner model.

• Low risk of overfitting: less risk of overfitting because 
the algorithm works by gradually fitting data to each 
new weak learning model, which reduces the risk of 
overfitting with noisy data;

• Hidden algorithm selection: learn the most impor-
tant features by continuously dividing the data based 
on the feature that provides the best division. This 
reduces the number of features required to make 
accurate predictions.

Gradient boosting algorithms are a set of superalgo-
rithms that make weaker algorithms better at making 
predictions by reducing bias and variation in supervised 
learning problems. The basic principle of the accelerated 
approach is that it starts by creating a model from the 
training data and then proceeds to a second model based 
on the previous model, reducing the bias error incurred 
when the first model cannot infer relevant patterns from 
the given data. Every time a new learning algorithm 
is added, the weight of the data is adjusted again, also 
known as "reweighting". These models are added sequen-
tially until the training data are reasonably predicted or 
the maximum number of learners has been added to the 
ensemble model (Schapire 2003). Full details of these 
enhancement-based algorithms can be found in Wu et al. 
(2020) and Bentéjac et al. (2021).

Boosting algorithms combine weak learners, i.e., learn-
ers slightly better than random, into a strong learner in 
an iterative way. Gradient boosting is a boosting-like 
algorithm for regression. Given a training dataset D = {xi, 
yi}N

1, the goal of gradient boosting is to find an approxi-
mation ̂F(x) of the function  F∗(x), which maps instances x 
to their output values y by minimizing the expected value 
of a given loss function L(y, F(x)). Gradient boosting 
builds an additive approximation of  F∗(x) as a weighted 
sum of functions (6):

where ρm is the weight of the mth function,  hm(x). These 
functions are the models of the ensemble (e.g., decision 
trees). The approximation is constructed iteratively.

Extreme Gradient Boosting (XGBoost) XGBoost 
is based on a model that assigns a higher weight to 

(6)Fm(x) = Fm−1(x)+ ρmhm(x)
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misclassified data using a gradient boosting method. 
Boosting algorithm–based regression analysis, wherein 
each tree is based on a decision tree that is depend-
ent on the previous tree, uses decision partitioning to 
generate step-by-step functionality. The specified loss 
function is optimized using the residuals from the pre-
vious tree (Shin et al. 2020).

When the first model is generated, the difference 
between the model predictions and observations is 
calculated (i.e., residuals or misclassifications). The 
different tree models can suitably predict the mis-
classification obtained in the first stage. The residu-
als remaining after the first two stages are matched to 
the other trees in the third stage, and the process is 
repeated several times.

The purpose of the model is simplification through 
optimizations of the training loss (l) and regulations (Ω). 
fk is the function of the K-tree. The objective function (J) 
in round t is given by Eq. (7).

In this study,  yi is the observed WQI, and ŷi is the 
obtained final prediction value.

Deep learning algorithms To predict water quality 
parameters for some irrigation systems in the Red River 
Delta, deep learning algorithms will be chosen based on 
how well they can find and process complex, nonlinear 
relationships in the data. Some commonly used algo-
rithms for forecasting are as follows:

Recurrent neural networks (RNNs) RNNs are a type of 
deep learning algorithm that works well with continu-
ous and multivariate data. RNNs are specifically designed 
to process sequence data, where each input data point 
depends on the previous data point. RNNs can handle 
input strings of different lengths. Furthermore, RNNs 
have the ability to store historical information in a hid-
den state, allowing them to make decisions based on 
past inputs. As such, RNNs are designed for sequential 
data processing and have been shown to perform well for 
water quality forecasting.

Unlike feed–forward neural networks, RNN delivers 
information in both directions, and the calculation com-
puted from the initial input is fed back to the network, 
which is critical in learning the nonlinear relationships 
between multiple water quality variables. The equation’s 
hidden state, at, is calculated using Eqs. (2–7). In the fol-
lowing equation,  W1 is the conventional weight between 
an input layer and the hidden layer, and  W2 is the matrix 
of recurrent weights between the hidden layer and itself 
at adjacent time steps. In other words, the RNN can 

(7)J (t) =

n
∑

i=1

l
(

yi, ŷi
)

+

K
∑

k=1

�(fk)

reflect the previous hidden state in the current time pro-
cess (Shin et al. 2020).

Short-long-term memory network (LSTM) An LSTM 
network is a type of RNN designed to process time series 
of data. Input values fed to the LSTM not only pass 
through several LSTM layers but also propagate over 
time in an LSTM cell, resulting in a thorough input pro-
cess in each time step. Overall, LSTM is a powerful tool 
for sequential data modelling and has several advantages 
over other RNN architectures in handling long-term 
dependencies, flexibility, and values. input efficiently, 
LSTM is also proven to be very effective in real-time 
water quality forecasting.

LSTM solves the problem using the interactions of 
three gating units and one memory cell. The input gate 
controls the degree to which a new value flows into the 
cell. The memory cell Ct can carry relevant information 
throughout the processing of the sequence. The memory 
cell reflects the old state value  Ct−1 by the ratio of the for-
gotten gate ft and the new state value Cet by the ratio of 
the input gate. LSTM stores the previous state informa-
tion in  Ct−1 and uses it to determine the current state  Ct. 
Finally, the output gate ot, through which the output is 
received, serves to adjust the output of the value stored in 
the memory cell  Ct. One disadvantage of LSTM, however, 
is that the model has three gates; therefore, the number 
of weights and deviation terms required for learning 
are approximately four times larger. This leads to a long 
learning time and produces overfitting with less training 
data (Shin et al. 2020).

Through the above analysis, it is found that recurrent 
neural networks (RNNs) and LSTM are suitable for this 
study (Abba et  al. 2020; Aldhyani et  al. 2020; Ye et  al. 
2019). Therefore, this study will use this algorithm to 
build a model to predict the surface water quality index 
of the irrigation systems in the study area.

Training and testing the model The training process uses 
the training dataset that will be used to train the algo-
rithms to recognize the parameters and their relationships 
in the dataset. The validation process involves using a test 
dataset to evaluate the accuracy of the algorithm. The fol-
lowing steps will be taken to train and validate the model:

• Data: surface water quality monitoring data from 
2018 to 2022 (72 data points) including 8 parameters: 
 BOD5,  NH4

+,  PO4
3−, turbidity, TSS, Coliform, DO 

and WQI. The training set included 7 parameters 
(independent variables):  BOD5,  NH4

+,  PO4
3−, tur-

bidity, TSS, coliform, and DO; the test set was WQI 
(dependent variable).

(8)at = f(W1xt + W2at−1)
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• Model training: machine learning and deep learning 
algorithms (RNN) will be trained using the training 
dataset to minimize the prediction error between 
actual water quality parameters and their forecast.

• Hyperparameter tuning: the parameters of machine 
learning and the deep learning algorithm will be 
adjusted to further improve accuracy.

• Gradient boosting contains five tuning param-
eters that focus on the following: the distribution 
parameter specifies the distributional assump-
tion for the response variable, which in this case 
is Gaussian or normally distributed; cv.folds indi-
cates the number of cross-validation folds to con-
duct during model fitting; cv.folds indicates the 
number of cross-validation folds to perform dur-
ing model fitting; cv.folds indicates the number 
of cross-validation folds. The shrinkage param-
eter governs the learning rate or step size at each 
boosting iteration. It calculates each tree’s con-
tribution to the overall model. A lower value, 
such as 0.01, usually results in higher model per-
formance but may necessitate more iterations; 
n.minobsinnode, tt provides the minimal number 
of observations required in each terminal node 
of the boosted trees. Nodes with fewer than this 
number of observations will not be split further. 
The number of boosting iterations or trees to grow 
is given by n.trees.

• eXtreme Gradient Boosting (XGBoost) contains 
three tuning parameters that focus on the follow-
ing: the number of trees (nround); the shrinkage 
parameter (eta in the params), a small positive 
value; and the shrinkage parameter (eta in the 
params). This determines how quickly boosting 
learns. Typical values are 0.01 or 0.001, with the 
correct decision depending on the problem. To 
obtain good performance, a very small value of B 
may be needed. The number of splits in each tree 
that determines the complexity of the boosted 
ensemble (determined by max.depth).

• RNNs and long short-term memory (LSTM) have 
four tuning parameters to focus on: epochs: the 
number of epochs during which the model should 
be trained; batch_size: the training batch size; vali-
dation_split: the proportion of training data uti-
lized for validation. In addition, verbose: this con-
trols whether or not progress updates are printed 
throughout training.

• Model testing: validated by the test dataset.
• Model selection: The best-performing algorithm 

(according to the calibrated parameters) will be 

selected based on the calibration results. The lan-
guage used to code is R with Keras packages, which 
is a high-level neural network API running on top of 
TensorFlow. It was developed with a focus on ena-
bling easy and fast design of complex deep learning 
models, as well as making them easier to train. Keras 
provides convenient methods for loading and prepar-
ing data, as well as tools to visualize and interpret 
training results.

Evaluation of  model accuracy The following model 
accuracy indicators will be used to evaluate the model’s 
accuracy in predicting the water quality index in the study 
area. The criteria for evaluating (calibrating) the models 
are presented in formulas (9)–(12):

• Mean absolute error (MAE) is the mean difference 
between the true value and the predicted value. MAE 
is a popular index to calculate error to evaluate (test) 
the model for continuous variables, determined by 
formula (9). where Pi is the predicted value and Mi is 
the actual measured value. The lower the MAE value 
is, the more accurate the calculations.

• The mean square error (MSE) of an estimator is the 
average of the squares of the errors, i.e., the difference 
between the predicted values and the actual meas-
ured values, and is calculated according to formula 
(10). The lower the MSE value is, the more accurate 
the calculations.

• RMSE is the square root of the mean of squared 
errors. The RMSE is a measure of how spread these 
residuals are; in other words, it tells you how concen-
trated the data are around the best-fit line. RMSE is 
the standard deviation of the residuals (prediction 
error) and is calculated according to formula (11). 
The lower the RMSE value is, the more accurate the 
calculation results.

• The coefficient of determination  (R2) reflects the per-
centage of variance of y that can be explained by the 
model determined by formula (12). where ESS is the 

(9)MAE =
1

n

n
∑

i=1

|Pi −Mi|.

(10)MSE =
1

n

n
∑

i=1

(Yi − Ŷi)
2

(11)RMSE =

√

√

√

√

1

N

n
∑

i=1

(Qi
A − Qi

P)
2
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sum of the squared deviations of the residuals and 
TSS is the sum of squared deviations. The  R2 value 
ranges from 0 to 1, and the closer the  R2 value is to 1, 
the more accurate the calculation results.

The flowchart of the study structure is shown in Fig. 2.

Results and discussion
Results of collecting surface water quality monitoring data
The results of collecting surface water quality monitoring 
data from 2018 to 2022 at sampling locations in the study 
area are summarized in Table  1, and the evolution of 
some key water quality parameters is shown in Figs. 3, 4, 
5, 6, 7 and 8. The surface water in the study area is mainly 
contaminated with organic matter, nutrients, and micro-
organisms. The parameters that exceed the allowable 
standards many times are DO,  BOD5, COD,  NH4

+ and 
total coliforms (these are also typical pollution param-
eters of the study area).

Feature selection for machine learning and deep learning 
models
Feature selection is the method of reducing the input 
variable to the model by using only relevant data and 
eliminating noise in the data. According to the results 
of the correlation analysis between surface water 
quality parameters, COD and  BOD5 have the highest 

(12)R
2 = 1− (ESS/TSS)

correlation (0.99); the correlation between DO and 
WQI is 0.48; and the correlation between  NH4

+ and 
 PO4

3− is 0.47. In particular, the correlation between the 
WQI and parameters is not high, ranging from 0.05 to 
0.48 (Fig. 9). Therefore, choosing (optimal) parameters 
to calculate the WQI by machine learning and deep 
learning models will be difficult.

It can be seen that the correlation between the WQI 
and parameters is nonlinear; there are many water qual-
ity parameters, such as physical, chemical, and microbi-
ological, that determine pollution, that is, water quality 
(here is the WQI value). To select the optimal param-
eters, the study applied the Bayes method (BMA). The 
results of the statistical analysis by BMA are shown in 
Table 2 and Fig. 10.

The results of selecting important water quality 
parameters by the BMA method are as follows:

• The probability of occurrence (according to the 
selected model) of each parameter affecting the 
WQI is as follows:  NH4

+, DO (100%), coliform 
(96.6%),  PO4

3− (92.5%),  BOD5 (92.1%), turbidity 
(71.9%), and TSS (62.8%);

• There are 5 optimal models selected as follows:

• Model 1: Seven parameters were selected as 
 BOD5,  NH4

+,  PO4
3−, turbidity, TSS, coliform and 

DO (posterior probability was 20.9%);
• Model 2: 6 parameters were selected as  BOD5, 

 NH4
+,  PO4

3−, turbidity, coliform and DO (poste-
rior probability was 19.3%);

• Model 3: 6 parameters were selected as  BOD5, 
 NH4

+,  PO4
3−, TSS, Coliform and DO (posterior 

probability was 19%);
• Model 4: 7 selected parameters are  BOD5,  NH4

+, 
 PO4

3−, turbidity, pH, coliform and DO (posterior 
probability is 5.4%);

• Model 5: Seven parameters were selected as 
 BOD5,  NH4

+,  PO4
3−, TSS, pH, coliform and DO 

(posterior probability was 4.7%).

Based on the above analysis, model 1 is the best 
because it has the highest posterior probability (20.9%) 
and has found water quality parameters that have a 
large effect on the WQI value are  BOD5,  NH4

+,  PO4
3−, 

turbidity, TSS, coliform and DO. Therefore, Model 1 
is chosen to calculate (predict) the WQI by machine 
learning and deep learning algorithms (which will be 
done in “Research on calculating the surface water 
quantity index by machine learning and deep learning 
methods” section).

Fig. 2 Flowchart of study structure
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Research on calculating the surface water quantity index 
by machine learning and deep learning methods
Calculation results of the surface water quality index
Based on the results, select parameters for machine 
learning model building and deep research  (BOD5, 
 NH4

+,  PO4
3−, turbidity, TSS, coliform and DO). The 

study built a model from the above parameters to fore-
cast only surface water quality (WQI) according to 4 
models, namely, gradient boosting (GB), extreme gra-
dient boosting (XGBoost), recurrent neural networks 
(RNN) and long short-term memory (LSTM). The 
results of hyperparameter tuning are shown in Table 3.

The results of the WQI report and comparison charts 
between the predicted and measured WQI values for the 
experimental dataset according to these 4 models are 
presented in Fig. 11.

Evaluation results for models
Table 4 shows the results of the evaluation of the machine 
learning and deep learning models (based on 4 criteria) 
to predict the surface water quality index in the study 
area.

According to the calculation results, machine learn-
ing models are more accurate than deep learning mod-
els. The gradient boosting model has the most accurate 

Table 1 Summary of typical values of surface water quality in the study area

Parameters Bac Duong
(N = 384)

Bac Hung Hai
(N = 395)

Overall
(N = 779)

BOD5

Mean (SD) 28.8 (31.1) 25.5 (19.1) 27.1 (25.8)

Median [Min, Max] 19.8 [4.90, 294] 21.5 [0, 183] 20.4 [0, 294]

COD

Mean (SD) 75.8 (85.6) 64.1 (48.3) 69.9 (69.4)

Median [Min, Max] 51.2 [9.60, 816] 55.1 [0, 451] 52.8 [0, 816]

NH4

Mean (SD) 4.77 (4.66) 7.78 (8.96) 6.29 (7.32)

Median [Min, Max] 3.42 [0.220, 35.5] 4.31 [0, 46.8] 3.86 [0, 46.8]

PO4

Mean (SD) 0.580 (1.04) 0.589 (1.15) 0.585 (1.09)

Median [Min, Max] 0.200 [0.010, 7.32] 0.0600 [0, 8.24] 0.140 [0, 8.24]

Turbidity

Mean (SD) 36.2 (30.9) 23.3 (13.6) 29.6 (24.6)

Median [Min, Max] 31.1 [10.1, 383] 21.2 [8.21, 99.0] 23.3 [8.21, 383]

TSS

Mean (SD) 45.6 (30.5) 30.8 (16.5) 38.1 (25.5)

Median [Min, Max] 37.7 [10.5, 409] 26.6 [2.01, 133] 32.5 [2.01, 409]

Coliform

Mean (SD) 179,000 (1,260,000) 865,000 (3,210,000) 527,000 (2,470,000)

Median [Min, Max] 14,000 [200, 16000000] 24,000 [0, 16000000] 19,000 [0, 16000000]

DO

Mean (SD) 3.46 (1.95) 2.89 (1.56) 3.17 (1.78)

Median [Min, Max] 3.30 [0.0100, 11.3] 2.70 [0, 7.36] 3.00 [0, 11.3]

Water temperature

Mean (SD) 25.3 (4.82) 24.4 (4.95) 24.9 (4.90)

Median [Min, Max] 24.8 [16.2, 35.8] 24.6 [0, 33.4] 24.7 [0, 35.8]

pH

Mean (SD) 7.32 (0.327) 7.32 (0.505) 7.32 (0.426)

Median [Min, Max] 7.30 [5.69, 8.70] 7.33 [0, 8.68] 7.30 [0, 8.70]

WQI

Mean (SD) 24.1 (21.5) 25.8 (24.7) 25.0 (23.2)

Median [Min, Max] 12.6 [0, 80.8] 13.4 [0.780, 87.5] 12.9 [0, 87.5]
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prediction results because it has the highest coefficient of 
determination  (R2 of 0.96) and the lowest values of errors 
(MAE, MSE, and RMSE) are 2.61, 19.9 and 4.46, respec-
tively. Next is the XGBoost model with an  R2 of 0.89 
and corresponding error values (3.70; 51.6; 7.18). The 

Fig. 3 Temperature chart of Bac Duong and Bac Hung Hai irrigation 
system

Fig. 4 pH chart of Bac Duong and Bac Hung Hai irrigation system

Fig. 5 DO chart of Bac Duong and Bac Hung Hai irrigation system

Fig. 6 BOD5 chart of Bac Duong and Bac Hung Hai irrigation system

Fig. 7 NH4
+chart of Bac Duong and Bac Hung Hai irrigation system

Fig. 8 WQI chart of Bac Duong and Bac Hung Hai irrigation system
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Fig. 9 Correlation chart of water quality parameters

Table 2 Summary of results of selected models by BMA method

p! = 0 EV SD Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 100.0 3.317e+01 1.404e+01 4.104e+01 3.783e+01 3.906e+01 8.806e+00 1.066e+01

BOD5 92.1 − 5.236e−01 1.822e−01 − 5.718e−01 − 5.954e−01 − 5.784e−01 − 5.986e−01 − 5.823e−01

COD 15.2 − 2.276e−02 6.155e−02

NH4 100.0 − 1.403e+00 2.596e−01 − 1.404e+00 − 1.411e+00 − 1.400e+00 − 1.368e+00 − 1.358e+00

PO4 92.5 − 6.661e+00 2.828e+00 − 7.106e+00 − 7.320e+00 − 7.047e+00 − 7.557e+00 7.288e+00

NTU 71.9 − 1.625e−01 1.212e−01 − 1.872e−01 − 2.603e−01 − 2.535e−01

TSS 62.8 − 1.255e−01 1.123e−01 − 1.712e−01 − 2.385e−01 − 2.309e−01

Coliform 96.6 − 7.360e−06 2.597e−06 − 7.576e−06 − 7.522e−06 − 7.994e−06 − 7.565e−06 − 8.025e−06

DO 100.0 4.149e+00 4.468e−01 4.101e+00 4.141e+00 4.092e+00 4.054e+00 4.009e+00

Temp 0.0 0.000e+00 0.000e+00

pH 19.3 7.896e−01 1.841e+00 3.973e+00 3.877e+00

nVar 7 6 6 7 7

r2 0.387 0.381 0.381 0.384 0.384

BIC − 3.34e+02 − 3.34e+02 − 3.34e+02 − 3.31e+02 − 3.31e+02

post prob 0.209 0.193 0.190 0.054 0.047
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RNN model has an  R2 of 0.84; the error values are 5.50, 
76.6, and 8.75. The LSTM model has an  R2 of 0.85; the 
error values are 5.30, 71.0, and 8.42. The machine learn-
ing models applied in this study can all predict the WQI 
for the study area well (very high coefficient of determi-
nation, greater than 0.8). This is a solid scientific basis 
and an important result for being able to apply machine 
learning models in calculating WQI for other regions 
with similar conditions as the study area, especially in 

difficult conditions in monitoring of water quality param-
eters for calculation of WQI according to the traditional 
method.

Discussion
According to the effectiveness evaluation of four 
machine learning and deep learning models (Table  4), 
two machine learning algorithms (gradient boosting and 
XGBoost) and two deep learning algorithms (RNN and 

Fig. 10 Graph of the selection of important water quality parameters

Table 3 Table of results of hyperparameter tuning

No Model name Hyperparameter tuning

1 Gradient boosting (GB) Distribution = “Gaussian”
cv.folds = 10:
shrinkage parameter = 0.01
Each terminal node should have at least 10 observa-
tions: n.minobsinnode = 10
n.trees = 500

2 eXtreme gradient boosting (XGBoost) The number of trees (nround = 100);
The shrinkage parameter λ (eta in the params): 0.01;
The number of splits in each tree: max.depth = 5

3 Recurrent neural networks (RNN) learning_rate = 0.001
epochs = 500
batch_size = 32
validation_split = 0.2
verbose = 1

4 Long short-term memory (LSTM) learning_rate = 0.00001
epochs = 1000,
batch_size = 32,
validation_split = 0.2,
verbose = 1
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LSTM) performed most effectively. With coefficients of 
determination ranging from 0.84 (RNN) to 0.96 (gradient 
boosting), machine learning and deep learning models 
can accurately predict the WQI for the study area. This is 
because each algorithm reacts differently to distinct input 
variables and data samples (Hussain and Khan 2020; Khoi 
et  al. 2022). According to the findings of Morton and 

Henderson (2008) and Yang and Moyer (2020), the distri-
bution of the water quality data is nonlinear (Khoi et al. 
2022). Consistent with the findings of Hussain and Khan, 
these findings indicate that the most accurate prediction 
depends on the model parameters for the given scenario 
of the input variables (Hussain and Khan 2020).

Fig. 11 Comparison chart between forecast and actual WQI for the test data

Table 4 Statistical table of evaluation results of models to predict the surface water quality index in the study area

Models Input parameters Output Evaluation criteria

MAE MSE RMSE R2

Gradient Boosting BOD5,  NH4
+,  PO4

3−, Turbidity, TSS, Coliform and DO WQI 2.61 19.9 4.46 0.96

XGBoost BOD5,  NH4
+,  PO4

3−, Turbidity, TSS, Coliform and DO WQI 3.70 51.6 7.18 0.89

RNN BOD5,  NH4
+,  PO4

3−, Turbidity, TSS, Coliform and DO WQI 5.50 76.6 8.75 0.84

LSTM BOD5,  NH4
+,  PO4

3−, Turbidity, TSS, Coliform and DO WQI 5.30 71.0 8.42 0.85
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Comparing each of the four machine learning and 
deep learning models demonstrates that the gradient 
boosting model outperforms the others in the research 
domain. Compared to other studies, XGBoost is the 
most appropriate (machine learning) algorithm for the 
La Buong River basin (Vietnam) (Khoi et al. 2022); the 
random forest model has the highest predictive accu-
racy for WQI values in the An Kim Hai irrigation sys-
tem (Vietnam) (Lap et  al. 2023). DFNN outperformed 
XGBoost, MLP, and RF in India’s Mahanadi River 
Basin (Singha et  al. 2021). Asadollah et  al. found that 
ExT performed better than DT and supported vec-
tor regression (SVR) in Hong Kong’s Lam Tseen River. 
Furthermore, DT performed better than MLP in Paki-
stan’s Rawal Dam Lake (Ahmed et al. 2021). In general, 
the performance of various machine learning and deep 
learning algorithms will vary when applied to differ-
ent regions. Consequently, finding and developing a 
generalized deep learning and machine learning model 
for water quality assessment applications is an ongoing 
challenge (Khoi et al. 2022).

The absence of consideration of the cross-effects 
between the explanatory variables, specifically the cross-
correlation between land use types and climate condi-
tions, was a significant gap in previous research affecting 
the water quality in irrigation systems (Kouadri et  al. 
2021; Kung and Wu 2021; Kung and Mu 2019;  Amanul-
lah et al. 2020). Changes in land use (Ahmad et al. 2021) 
and climate change affect hydrological components and, 
consequently, river discharge and the transport of pol-
lutants (Khoi et  al. 2019). In addition, the operation of 
irrigation facilities and the decreased quantity of water 
supply to irrigation systems both contribute to pollu-
tion (Sulaeman et al. 2018). To improve the accuracy of 
machine learning and deep learning models, it is essen-
tial to consider land use, operating modes, water deple-
tion, and climate change.

Conclusion
The findings of the research not only offered a way to 
calculate the surface water quality index using artificial 
intelligence (machine learning and deep learning) but 
also offered a scientific basis for doing so. In the parts of 
the research field where the machine learning approach 
is implemented, it performs quite admirably. In this 
work, the Bayes technique, also known as BMA, was uti-
lized to choose (optimal) parameters for the purpose of 
developing the WQI computer learning model. A total of 
seven parameters were chosen for inclusion in the model, 
including DO,  BOD5,  NH4

+,  PO4
3−, turbidity, TSS and 

coliform (fewer than with the traditional method).
The results of the WQI calculations for the two types 

of machine learning models indicate that the machine 

learning model provides more accurate predictions 
than the deep learning model. The gradient boosting 
model produces the most accurate predictions of the 
available models. After that comes the eXtreme Gradi-
ent Boosting model, also known as XGBoost, followed 
by the RNN model and the LSTM model. The accuracy 
of each of these models is very high, ranging from 84 to 
96%.

The outcomes demonstrate that applying machine 
learning and deep learning algorithms can significantly 
reduce the number of water quality parameters with-
out compromising model accuracy. Therefore, machine 
learning and deep learning models are both capable of 
calculating (predicting) the WQI for the area under study 
with a high level of precision and may be applied to other 
regions that have characteristics that are comparable 
(especially for developing countries such as Vietnam). 
This will help developing countries, which are still strug-
gling in surface water quality monitoring, improve their 
assessment and management of surface water quality.

Our study obviously suffers from some limitations 
that should be addressed in future work: there might be 
multicollinearity causing overfitting problems because 
the water quality variables used in this study are closely 
related to each other. Thus, further investigations should 
be performed to overcome these limitations. Possibly 
applicable methods are to utilize regularization tech-
niques such as ridge, lasso, and elastic net to solve over-
fitting problems.
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