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Abstract
Background  Projecting future streamflow variation or the hydrological impact of climate change plays a pivotal role 
in the sustainable implication of planning water resources management. Therefore, this study predicts the potential of 
climate change’s impact on hydrological components in the Upper Awash Basin (UAB). The study applied a statistical 
downscaling model (SDSM) to generate future high-resolution climate data from the climate model output of the 
Canadian Second Generation Earth System Model (CanESM2) and the National Centers for Environmental Prediction 
(NCEP) under the representative concentration pathways (RCP4.5 and RCP8.5) scenarios. To analyze the trend of 
future rainfall and temperature, non-parametric Mann-Kendall, Modified Mann-Kendall tests, Sen’s slope estimator, 
and changing point (Pettit) tests were used. The output of downscaled climate data is used as input to a calibrated 
and validated Soil and Water Assessment Tool (QSWAT) model to assess the impact of future climate change on UAB 
hydrology.

Results  The results show that annual rainfall and temperature are significantly increased (p < 0.05) in the UAB under 
RCP4.5 and 8.5 for the model ensemble mean for both short- and long-term scenarios. The change in the rainfall, the 
maximum and minimum temperature is mostly visible in the second period (the 2060s). Climate change is likely to 
cause persistent decreases in surface runoff (SUR_Q) and increases in actual evapotranspiration (ET) under all climate 
scenarios in the three periods. Reduction in SUR_Q despite an increase in rainfall could be due to an increment in 
both temperature and ET. The study also identified inconsistent seasonal changes in projected future precipitation 
that considerably impact overall climatic conditions.

Conclusions  This research is essential to develop an interdisciplinary approach that integrates environmental policies 
for the coherent use and management of water resources for future climate change and ecological protection in the 
basin, including other similar basins.

Keywords  Climate Change, Hydrological components, QSWAT, SDSM, Streamflow

Projection of hydrological responses 
to changing future climate of Upper Awash 
Basin using QSWAT model
Haftu Brhane Gebremichael1* , Gelana Amente Raba1, Kassahun Ture Beketie2, Gudina Legese Feyisa2  and  
Fikru Abiko Anose3

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7093-4621
http://orcid.org/0000-0002-2521-7519
http://crossmark.crossref.org/dialog/?doi=10.1186/s40068-023-00305-8&domain=pdf&date_stamp=2023-6-29


Page 2 of 16Gebremichael et al. Environmental Systems Research           (2023) 12:25 

Introduction
The Climate system results in more warmth and long-
term changes through the continued emissions of 
greenhouse gases (Kundzewicz 2008). Economic and 
population growth has significantly increased the global 
concentration of greenhouse gases such as carbon diox-
ide (CO2), methane, nitrous oxide, etc. (IPCC 2013).

Global warming poses numerous risks to ecosystems 
and human life (IPCC 2022). The risks are projected for 
short-term (2021–2040), medium-term (2041–2060), 
and long-term (2081–2100) levels of global warming, 
with a global temperature that increases by 1.5  °C over 
the decades, which is projected for pathways beyond 
global levels of warming (IPCC 2022). The impacts of 
climate alteration affect water availability, distribution, 
resource management, hydroelectricity generation, irri-
gation, agricultural planning, and water management 
(Seiller and Anctil 2014). Moreover, population growth, 
urbanization, economic development, and land use are 
non-climate drivers influencing resource sustainability, 
either by increasing demand or decreasing the supply 
(Zelalem Cherie 2013).

Climate change will likely affect future hydrological 
characteristics globally (Wanders et al. 2015). Changes in 
the water cycle and water resources are the direct con-
sequences of climate change, and predicting the water 
cycle’s components is essential for managing water 
resource potential (Gemechu et al. 2021). Overall, the 
process of the hydrological cycle is sensitive to climate 
change that will be amplified, with more evaporation and 
unreliably distribution of surface water (Loaiciga et al. 
1996). In addition, increasing water demand, population 
growth, urbanization, and poverty contribute to water 
stress globally (Matchawe et al. 2022), and uneven dis-
tribution of water resources with improper management 
of water facilities is another problem (Matchawe et al. 
2022; Ngene et al. 2021). Therefore, estimating the future 
impact of climate change on the hydrological param-
eter is vital in the basin. To do this, climate models are 
the primary tools for predicting future climate change. 
Among these, the General Circulation Model (GCM) is 
a widely used climate model for estimating future climate 
change projections.

The study done by Faramarzi et al. (2013) stated a 
decline in rainfall by 25%Gadissa et al. (2018a) also 
found that projected rainfall reduction of 9% in the 
21st century. Contrary to these two findings, Gebremi-
chael et al. (2022) studies predict a decrease in dryness 
from 2040 onwards because of rainfall increment. How-
ever, few studies previously done in the UAB including 
the impact of climate change by Daba et al. (2015) and 
Taye et al. (2018) have not fully addressed the basin’s 
hydrology response to future climate change. Therefore, 
in Ethiopia, the future projection of rainfall still needs 

more comprehensive research. Those authors used differ-
ent methods and emission scenarios, downscaling tech-
niques, and hydrological models. Moreover, the studies 
done in UAB used GCM based on the earlier generation 
Special Report on Emissions Scenarios (SRES) (Daba 
et al. 2015), data sources like CORDEX (Abdulahi et al. 
2022), and observed NMA dataset with high missing 
data (Getahun et al. 2020). The results obtained from the 
past studies were not uniform since some studies found 
decreasing streamflow (Heyi et al. 2022; Kinfe Hailemar-
iam 1999; Taye et al. 2018), while others (Abdulahi et al. 
2022; Bekele et al. 2019) found an increase in streamflow. 
The results indicate a controversial prediction of rain-
fall in the 21st century (Faramarzi et al. 2013; Gadissa 
et al. 2018b). Therefore, continuous efforts are crucial 
to understanding hydrological responses for integrating 
environmental policies and developing future water man-
agement strategies and ecological protections.

The main objective of this study was to predict cli-
mate change and to investigate the response of hydro-
logical components of future climate change in the Upper 
Awash basin. The study used SWAT hydrological model, 
SDSM, and NMA gridded /hybrid quality-controlled cli-
mate data. Two Representative Concentration Pathway 
scenarios (RCP4.5 and RCP8.5) were used to analyze 
future climate change. In this study, the relatively recent 
QSWAT was introduced for the future impact assess-
ment of climate change on hydrological parameters. 
Even though the QSWAT is similar to ArcSWAT, there 
are additional enhancements, such as the integration of 
small sub-basins and static and dynamic visualization of 
the output and open source in the QSWAT (Dile et al. 
2016a). Thus, the result of this study can provide valu-
able insight to decision-makers on the local vulnerability 
of the Upper Awash basin regarding future hydrological 
responses because of climate change. It is also vital to 
develop appropriate adaptation strategies using a mul-
tidisciplinary approach by integrating environmental 
policy for rational utilization and management of water 
resources, planning river basins, and for local ecological 
protection.

Methodology
Study area location
This study was conducted in the Upper Awash Basin, 
located between latitudes 8o6’36” and 9o17’56.4” North 
and 37o57’25.2” and 39o13’12” East. The area of the basin 
is about 11,420 square kilometers. The study of Adeba 
et al. (2015) classifies the Awash basin into three parts, 
namely upper, middle, and lower Awash basins, based on 
its climatological, physical, agricultural, socioeconomic, 
and water resource characteristics. The Upper Awash 
River Basin is situated in the western highland part of the 
basin or the North West Rift Valley of Ethiopia, including 
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the capital city, Addis Ababa. This basin has a total area 
of around 11,420 square km and lies between 8o6’36” and 
9o17’56.4” North and 37o57’25.2” to 39o13’12” East. The 
basin is bordered on its southwest by the Omo-Gibe, and 
Rift Valley Lakes Basin, on its western side by the Abbay 
(Blue Nile) River Basin, and to the southeast by the Wabi 
Shebele River Basin.

The Upper Awash basin is mainly influenced by the 
seasonal migration of the Intertropical Convergence 
Zone (ITCZ) and the associated atmospheric circula-
tions, in addition to its complex topography as it is part 
of the Ethiopian climate (Taye et al. 2018). Figure 1 dis-
plays the 34 sub-basins of the basin.

Hydro-meteorological data sources and QSWAT input
The meteorological and hydrological data used in this 
study were those of the stations indicated in Table 1. The 
1983 to 2016 station data used in this study (> 30 years) 
were the gridded/hybrid data collected from the National 
Meteorological Agency (NMA) and satellite data. The 
gridded/hybrid dataset has better data quality in Ethio-
pia’s National observation (Esayas et al. 2018) with no 
missing data.

Input data for the QSWAT model were climate time 
series and station locations, digital elevation model 
(DEM), soil and land use land cover distribution, and 
streamflow. For the hydrological impact assessment, 
Statistical Downscaling Model (SDSM) was used for the 
future simulation of temperature and rainfall using two 
scenarios, namely Representative Concentration Path-
ways (RCPs) 4.5 and 8.5. The observed historical data of 
streamflow, which for most stations was from 1983 to 
2016, was collected from the Ministry of Water Irrigation 
and Electricity of Ethiopia (MOWIE). The climate time 
series output of SDSM for the future 2020 to 2100 was 
also used as input for the QSWAT model.

The other input used for the QSWAT was the Digi-
tal Elevation Model (DEM) of 30  m spatial resolu-
tion, which was accessed from the USGS data portal 
(https://earthexplorer.usgs.gov/), the land cover of 
20  m spatial resolution of 2016 (https://www.ethio-
gis-mapserver.org/dataDownload.php) and soil map 
accessed from FAO (https://www.isric.org/projects/
soil-property-maps-africa-250-m-resolution).

The streamflow data of seven-gauge stations were gath-
ered from the Ministry of water, irrigation, and energy 

Fig. 1  Map of the study with river and sub-basin number of UAB.
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(MOWIE). However, most stations have a significant per-
centage of missing and short-time data records. There-
fore, only five stations were used to analyze historical 
streamflow variability. These gauge stations are Berga 
near Addis Alem, Awash at Melka Kuntire, Awash at 
Hombole, Mojo at Mojo Village, and Below Koka Dam, 
which has less than 5% missing data. According toKang 
(2013) report, missing data can decrease the statisti-
cal power of a study, produce biased estimates, and lead 
to invalid conclusions. In this paper, missing hydrologi-
cal data were filled according toAllison (2009) with the 
NIPALS algorithm in Microsoft Excel using XLSTAT 
2018 add-ins plugin, which is available for MCAR (write 
them in full) and MAR (write them in full) cases. The 
spatial data used for inputting the QSWAT model with 
sources are depicted in Table 2.

Data analysis
The data analysis employed climate modeling, hydrologi-
cal modeling, statistical trend analysis of projected cli-
mate change, and model performance tests.

Statistical trend analysis of future change
This study used two non-parametric methods, Mann 
Kendall and modified Mann Kendall (Kendall 1975; 
Mann 1945; Yue and Wang 2004) and Sen’s Slope (Salmi 
2002) to detect the future trend of the climate variables.

Delta statistics
The delta statistics were used to evaluate the change 
between the baseline (yb) and projected year (yp) hydro-
logical components, which is similar to the change to 
rainfall formula given as follows:

	
∆yp =

(yp − yb)

yb
× 100%� (1)

The base year is 2020, while the projected year can be 
the 2030s for the near future, 2060s for the intermedi-
ate future, and 2080s for the far future. All calculations 
were based on the mean values of the ensembles for each 
statistic.

Climate modeling
Statistical Downscaling Model (SDSM) was used for cli-
mate modeling. Classified as a hybrid model, SDSM uses 
multiple linear regression models and stochastic bias 
correction techniques to reveal statistical relationships 
between local (predictands) and large-scale climate (pre-
dictors) variables, which is used to downscale the out-
put from a GCM (Wilby and Dawson 2007, 2015). The 
software of SDSM is accessed from the website (https://
sdsm.org.uk/software.html).

A future model (2006–2100) (CanESM2) was used for 
downscaling purposes. Predictors are available under 
two representative concentration pathways (RCPs, i.e., 
RCP4.5 (Medium emission scenarios) and RCP8.5 (High 
emissions scenarios). Among the scenarios RCP2.6 
already lives in, RCP4.5 is the intermediate of RCP6.5, 
and RCP8.5 elaborates on the worst scenarios. Thus, 
we selected the intermediate RCP4.5 and the worst sce-
nario RCP8.5. The study area is registered within the 
grid BOX_015X_36Y. To generate future high-resolu-
tion climate data from the CanESM2. GCM and the 
NCEP reanalysis data (https://climate-scenarios.canada.
ca/?page=pred-canesm2), statistical downscaling model 
(SDSM) was used under the scenarios of representative 

Table 1  Climate and hydrological stations used in this study
Climate
Stations

Geographical Coordinates Hydrological Stations Geographical Coordinates Missing (%) Data
PeriodLongitude (oE) Latitude (oN) Longitude (oE) Latitude (oN)

Addis Ababa Bole 38.79 8.98 Ginchi 38.12 9.025 1993–2010

Addis Alem 38.383 9.033 Berga 38.21 9.1 3.84 1990–2012

Asgori 38.333 8.783 Bello 38.41 8.85 4.0 1990–2014

Koka Dam 39.156 8.466 Melka Kuntire 38.36 8.42 1.51 1983–2016

Ginchi 38.133 9.0167 Hombole 38.47 8.23 1.58 1983–2016

Hombole 38.766 8.366 Mojo Village 39.5 8.36 1.34 1983–2016

Kimoye 38.333 9.0 Below Koka Dam 39.16 8.47 1.73 1983–2016

Mojo 39.1 8.6

Sendafa 39.01 9.09

Tulu Bolo 38.2 8.65
The data period for the climate stations is 1983–2016.

Table 2  Data sources and main inputs data for QSWAT.
Input Data Type Resolution Format Data Source
DEM 30 m Raster MoWIE

Land Use/Cover 20 m Raster ethiogis-map*

Soil 250 m Shapefile MoWIE**

Hydrological Data observed Test MoWIE

Climate Data Observed Text NMA

4 × 4 km NetCDF NMA

SDSM output climate 
data

Projected Text Projected

*https://www.ethiogis-mapserver.org/dataDownload.php, ** https://www.
isric.org/projects/soil-property-maps-africa-250-m-resolution

https://sdsm.org.uk/software.html
https://sdsm.org.uk/software.html
https://climate-scenarios.canada.ca/?page=pred-canesm2
https://climate-scenarios.canada.ca/?page=pred-canesm2
https://www.ethiogis-mapserver.org/dataDownload.php
https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution
https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution
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concentration pathways (RCP4.5 and RCP8.5) for impact 
assessment.

Hydrological modeling
The soil and Water Assessment Tool (SWAT) is a semi-
distributed physical-based watershed-scale model that 
operates continuously and at daily time steps (Gassman 
et al. 2007; Neitsch et al. 2011). SWAT models are 
designed to predict the effects of land use, land manage-
ment practices, and climate change on water balance, 
nutrient cycling, pesticide yields, and sediment transport 
from watersheds to river basins. The model was used to 
assess the impact of climate change on the upper catch-
ment of the Awash Basin. The previous SWAT model 
was used in ArcGIS, called ArcSWAT; in this study, the 
hydrological responses to future climate change were 
evaluated using QSWAT in QGIS.

The water balance equation underpins the fundamental 
hydrology of a watershed in SWAT. (Neitsch et al. 2011), 
and it is expressed as

	
SWt = SW0+∑t

i=0 (Rday −Qsurf − Ea −Wseep −Qgw) .
� (2)

In the equation, SWt is the final soil water content (mm 
water), SWo is also the initial soil water content on a day i 
(mm water), t is the time (days), Rday is the amount of pre-
cipitation on the day i (mm water), Qsurf is the amount of 
surface runoff on the day i (mm water), Ea is the amount 
of evapotranspiration on the day i (mm water), Wseep is 
the amount of water entering the vadose (unsaturated) 
zone from the soil profile on the day i (mm water). Qgw is 
the amount of return flow on the day i (mm water). The 
equation of surface runoff can be written as (Neitsch et 
al. 2011)

	
QSurf =

(Rday − Ia)
2

(Rday − Ia + S)
=

(Rday − 0.2− S)2

(Rday + 0.8 + S)
� (3a)

where

	
S = 25.4

(
1000

CN
− 10

)
.� (3b)

Alternatively, the surface runoff can also be related to soil 
water as

	
QSurf = Smax

(
1− SW

(SW + exp (w1 − w2SW ))

)

� (3c)

where Smax  is the maximum retention parameter that 
can be achieved on any given day, w1andw2  are the CN 
curve numbers for the day,Rday  the rainfall depth for 

the day, Ia  initial abstractions include surface intercep-
tion and infiltration before the runoff, S is the retention 
parameter, and SW is the soil moisture content of the 
entire profile, excluding the amount of water at wilting 
point.

The current interface functions of QSWAT are similar 
to ArcSWAT but with additional enhancements, such 
as the integration of small sub-basins and static and 
dynamic visualization of the output (Dile et al. 2016b). 
The fact that the QSWAT model is an open source is its 
additional benefit.

In this study, QSWAT was used to simulate the stream-
flow of the upper Awash basin. For investigating the 
hydrological response to the future climate change in 
the basin, the following QSWAT model setup was done. 
First, climate, hydrological and spatial data were pre-
pared. The next step was running the model according 
to meteorological and spatial data to determine the sub-
basins. Watershed delineation was done using the digital 
elevation model (DEM) of UAB after which Hydrological 
Response Units (HRUs) were created. Thereafter, model 
calibration and validation were done and evaluated. A 
model simulation was performed in two stages, stream-
flow calibration, and validation, using a 3-year warm-
up period (1986 to 2016). Finally, the impact of climate 
change on hydrological parameters was evaluated (down-
scaling from SDSM from 2020 to 2100) under the climate 
change scenarios (RCP4.5 and RCP8.5).

This analysis used ten climate stations’ rainfall and tem-
perature data from 1983 to 2016 and outlet streamflow 
data from 1986 to 2016 (Table 1). The remaining weather 
inputs for the QSWAT model (solar radiation, relative 
humidity, wind speed, etc.) were obtained using built-in 
weather generators. The study assessed future hydro-
logical responses based on climate change while keeping 
other components like LULC constant. The performance 
of the output of the QSWAT model was evaluated using 
r, R2, NSE, and PBIAS. The number and distribution of 
non-spatial HRUs produced by QSWAT are related to the 
resolution of the input spatial data when matching (fit-
ting) between slopes, LULCs, and soils projected onto 
(WGS 1984, UTM zone 37 N). QSWAT processes these 
HRUs to extract hydrological parameters and predicts 
streamflow, evapotranspiration, groundwater flow, etc., 
occurring at the HRU level.

SWAT model setup, calibration, and validation
Streamflow data from the 1986–2005 periods were used 
for model calibration, and 2006–2015 were used for 
model validation. Before model calibration, sensitiv-
ity analysis was performed to determine the necessary 
parameters for model calibration. The model was cali-
brated using SWAT-CUP 5.1.6 version after sensitivity 
analysis was made using the more sensitive parameters 
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to the basin using streamflow data. After the calibration 
of the models at the central measurement station, the 
models were compared, and the best model was selected. 
Model performance was evaluated in basins, and future 
climate change’s effects on water balance availability in 
watersheds were assessed.

Model performance
The model performance indicators were calculated using 
Goodness-of-Fit Functions (GOF) (Zambrano-Bigiarini 
2020). During the calibration and validation of the SDSM 
and QSWAT, the performance of the time series was ver-
ified by using the coefficient of determination (R2), Pear-
son’s correlation coefficient (r), Nash-Sutcliff Efficiency 
(NSE), and percentage bias (PBIAS) (Gupta et al. 2009; 
Moriasi et al. 2007; Zehtabian et al. 2016), respectively. 
Model performance indicators used for model perfor-
mance tests are shown in Table 3.

Results
In this section, future climate change, model calibration, 
model validation, and water balance are all determined 
on an annual average basis.

Future climate change
Under the future climate change, the future annual trend 
of climate under RCP4.5 and RCP 8.5 were investigated 
(Table  4). The two trend tests’ results showed the same 
trend (increasing trend) of the Z statistic. This result 
shows that there is little autocorrelation in the predicted 
rainfall data. Statistical downscaling (SDSM) projected a 
significant mean annual precipitation increase at rates of 
1.69 mm/year and 5.18 mm/year under the RCP4.5 and 
8.5 scenarios, respectively. Future precipitation increases 
under RCP4.5 and 8.5 will be observed from 2055 to 2067 
onwards.

The projected mean annual T-max increases signifi-
cantly by 0.01  °C/y and 0.02  °C/y under both scenar-
ios (RCP4.5 and 8.5), respectively. Furthermore, from 
Table  4, we observed that the predicted annual T-max 
increases at the change points of 2059 and 2054, RCP4.5 
and 8.5, respectively. Under RCP4.5, the annual mean 
T-min and T-max projected temperatures increase sig-
nificantly by 0.01  °C per year, and the significant tran-
sition years in T-min and T-max would be likely in the 
years 2058 and 2059, respectively. The projected annual 
mean T-min and T-max of the SDSM result in increases 
by 0.023 °C/y and 0.02oC/y, respectively, and with transi-
tion years of 2059 and 2054, respectively, under the high-
est RCP8.5 scenario. From the analysis, future change 
points for precipitation and temperature will be antici-
pated during the second period (after the year the 2050s).

The results from Fig. 2 show increasing trends in future 
average rainfall and maximum and minimum tempera-
tures of UAB.

The results of the three figures are the same as those 
given in Table  4, except that the figures illustrate how 
the two scenarios reveal separation with the increase of 
years. The figures indicate how the scenarios become sig-
nificant after the transition periods of the corresponding 
meteorological parameter. In all three figures, the differ-
ences between RCP4.5 and RCP 8.5 becomes more evi-
dent as the years’ progress (a very small difference during 
the first period and a very high difference during the third 
period). The future climate change increment will reveal 
changes in the water balance hydrological components.

Model calibration and validation
There are various sources of uncertainty associated with 
model assumptions and GCM output. After finding the 
statistical performance parameters in the flow simula-
tion (Table  3), the SUFI-2 algorithm with SWAT-CUP 
was used to calculate the calibration and validation 

Table 3  Classification of statistical performance indices (Moriasi et al. 2007)
Performance rating R2 NSE RSR PBIAS

V. Good 0.75 < R2 ≤ 1.0 0.75 < NSC ≤ 1.0 0.00 ≤ RSR ≤ 0.50 PBIAS ≤ ± 10

Good 0.60 < R2 ≤ 0.75 0.65 < NSE ≤ 0.75 0.50 ≤ RSR ≤ 0.60 ± 10 ≤ PBIAS ≤ ± 15

Satisfactory 0.50 < R2 ≤ 0.60 0.50 < NSE ≤ 65 0.60 ≤ RSR ≤ 0.70 ± 15 ≤ PBIAS ≤ ± 25

Unsatisfactory R2 ≤ 0.25 NSE ≤ 0.50 RSR > 0.50 PBIAS ≥ ± 25

Table 4  Future annual trend of climate under RCP4.5 and RCP 8.5 between 2020 and 2100
Variables Scenarios *MK_Z **MMK_Z Sen’s Slope ^Changing Point (Pettit)
Precipitation (rainfall) RCP4.5 5.39 4.54 1.69 2055

RCP8.5 9.38 9.38 5.18 2067

Maximum Temperature RCP4.5 5.34 4.59 0.01 2059

RCP8.5 10.35 11.14 0.02 2054

Minimum Temperature RCP4.5 7.79 7.79 0.01 2058

RCP8.5 11.25 10.54 0.023 2059
*MK_Z = Mann Kendall Z-value, **MMK_Z = modified Mann Kendall Z-value, and ^Changing Point = the year during which the transition takes place.
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parameters. Of the station data, two-thirds were used for 
calibration, and one-third of the streamflow data were 
used for validation (Fig.  3). The calibration and valida-
tion periods were from 1986 to 2005 and 2006 to 2015, 
respectively, with three years of model warm-up.

In this study, calibration was done for QSWAT, after 
which sensitivity analysis was carried out to identify 

the most sensitive parameters. The streamflow simu-
lation was done using SWAT-CUP 2012 using SUFI-2 
as an optimization algorithm. The SUFI-2 algorithm 
gave good results in minimizing the difference between 
the observed and simulated flows in the UAB basin. 
Nine parameters were used for the sensitivity analysis 
and the nine parameters significantly affected the UAB 

Fig. 2  Future changes in (a) rainfall, (b) maximum temperature, and (c) minimum temperature of the first period (2020–2049), the second period (2050–
2079), and the third period (2080- ) of UAB. The vertical dashed lines bound the periods
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streamflow simulation. Detailed information on the 
global sensitivity output of streamflow sensitivity analy-
sis during calibration and validation at Hombole gauging 
station is given in Table 5.

Parameters such as CN2, ALPHA_BF, GW_DELAY, 
GWQMN, SOL_AWC, SOL_Z, CH_K2, ESCO, and 
REVAPMN were used in this study. Based on the p-value 
and the t-statistic (Fig. 4).

It is known that the outlet of the UAB is found below 
Koka Dam, but due to the controlling of water at Koka 
Dam, the flow rate at this station could not be taken for 
calibration and validation. Because of this reason, cali-
bration was done using the data of the upper Koka Dam 
station, which has high-quality and long-recorded data. 
Monthly QSWAT streamflow outputs were calibrated 
against the observed streamflow in outlet station data. 
The data from the Awash Hombole streamflow gaug-
ing station, next to the last gauging station, was used for 

calibration and validation. Figure 5 shows the regression 
fit of the model for simulated and measured streamflow.

The value of NS = 0.64, R2 = 0.86, and RSR = 0.60 are the 
values for the calibration. Similarly, the model validation 
results (NS = 0.58, R2 = 0.86, and RSR = 0.65) also indicate 
the model can be used for future simulation of the water 
balance components. The validation values are almost 
similar except for the slight change in NSE and RSR. The 
results show that the simulated are well correlated with 
the observed streamflow during calibration for monthly 
values of 20 years. The results from the QSWAT (Fig. 4) 
and the linear regression between the simulated and the 
observed (Fig. 6) show the model’s excellent performance 
in simulating future hydrological responses in the basin. 
Overall, the model showed good performance in captur-
ing patterns and trends in the daily flow series.

Table 5  Final sensitivity parameters used for calibration and validation with fitted values
SN. Parameter name Definition of parameter Minimum Maximum Fitted Value
1. r__CN2.mgt Initial runoff curve number SCS -0.2 0.2 -0.07

2. v__ALPHA_BF.gw Base flow alpha factor 0 1.0 0.975

3. v__GW_DELAY.gw Groundwater delay (day) 50 450 418.5

4. v__GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow (mm) 0 2.0 1.55

5. r__SOL_AWC().sol Available soil water capacity (mm) -0.2 0.4 0.115

6. r__SOL_Z().sol Depth from the soil surface to the bottom -0.8 0.8 0.68

7. r__CH_K2.rte Effective hydraulic conductivity in the main channel alluvium 5 130 101.875

8. r__ESCO.hru Soil evaporation compensation factor 0.8 1.0 0.885

9. r__REVAPMN.gw Threshold depth of water in the shallow a unifier for re-evaporation to occur (mm) 0 0.2 0.105

Fig. 3  Results of monthly streamflow during calibration and validation using observed and simulated data
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Future climate change and water balance of UAB on an 
average annual basis
QSWAT models can effectively evaluate water balance 
components in river basins. This study used QSWAT 
simulation for the 1986–2016 periods as a baseline 
period against which the climate impact was assessed. 
The baseline period values are shown in Table  6. Daily 
precipitation and minimum and maximum temperature 
of the future three periods: 2020–2049, 2050–2079, and 
2080–2100 were directly used as input for QSWAT. The 
LULC of the future was assumed to be constant through-
out the future simulation periods.

The variability of hydrological components, especially 
the future impacts of climate change on surface runoff, 
soil moisture, evapotranspiration, and groundwater flow, 
were analyzed using projected future climate data and 
hydrologic models. Flow analysis of the three periods 
includes hydrological parameters such as actual evapo-
transpiration (ET) and water content (WYLD), which 
are essential for future water resources management. In 
addition, soil water content (SW), surface runoff (SUR-
Q), groundwater flow (GW-Q), and lateral flow (LAT-
Q) were entered, and percolation (PERC) and potential 
evapotranspiration (PET) were evaluated. Compared 

Fig. 5  Regression plots of observed versus simulated monthly streamflow for calibration (1986–2005) and validation (2006–2015)

 

Fig. 4  Global sensitivity output of streamflow sensitivity analysis during calibration and validation at Hombole
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to the base period (Table  6), the future hydrological 
response shows a continuous increase due to the increase 
in temperature and precipitation in the two scenarios 
over the subsequent three periods (Table 7).

The hydrological parameters that show increment over 
time are total precipitation, groundwater, and lateral flow 
contribution to the streamflow, total water yield, percola-
tion, and soil water. All of these indicate positive future 
times to be positive. Surface runoff contribution to the 
streamflow is the only hydrologic parameter that shows 
a decline during the time step. The future percentage 
change of SUR-Q shows the highest negative (-51.82%) 
in 2030 compared to the base period and reductions over 
the consequent periods. However, the reduction of sur-
face runoff is offset by the groundwater and lateral flow 
contributions to the streamflow. The decrease in surface 
runoff may be associated with more percolation (may 
be due to land cover change) and an increase in evapo-
transpiration. The reduction of surface runoff could be 
seen as positive since there is also a reduction in soil ero-
sion. Evapotranspiration from the sub-basin is the only 
parameter with a negative impact since it also increases 
during the time step. According to the projection, based 
on the RCP8.5 scenario, out of the annual mean pre-
cipitation that shows an increase over the three periods, 

11.04–21.10% is evaporated (ET) over the basin. The 
increment of ET is associated with temperature increase 
and water availability for evaporation. In the future cli-
mate change scenario simulation, PET between the near 
and the far periods (not the base period) remains nearly 
constant since the change is considered negligible (from 
− 36.09 to -37.21 for RCP4.5 and from − 36.15 to -38.71 
for RCP8.5).

The two scenarios have different changes that will be 
seen even if they are identical in their predictions. For 
instance, in the case of precipitation and lateral flow con-
tribution, the change from the 2030s to the end of the 
time step is about two times based on RCP4.5, while it is 
about three times based on RCP8.5. For total water yield, 
the corresponding scenarios show a little over two times 
for RCP4.5 to about four times for RCP8.5. Even though 
the prediction reveals a rosy future for the basin in both 
scenarios, maximum benefit is obtained by following the 
RCP8.5 scenario.When looking into the future, it is also 
essential to see the basin stress days (Table 8) associated 
with the two scenarios.

As seen in the table, the two (water and temperature) 
stress days are more relevant to hydrology. Both tem-
perature and water stress days will decrease in the future. 
Compared to temperature, water stress days show more 

Table 6  Baseline period of water balance value (in mm) of UAB
Hydrological parameter Definition of parameter Values in mm
PRECIP Total sub-basin precp. during ts* 843.8

SUR_Q Surface RO** contrbn. to streamflow during ts* 155.36

GW_Q GW*** contribution to streamflow 107.16

TWYD Total Water yield 279.35

ET Actual ET from the sub-basin during ts* 554.1

LAT_Q LF^ contrbn. to streamflow during ts* 9.4

PERC Percolation past the root zone during ts* 148.02

GW_Q GW*** recharge to deep auafer during ts* 7.4

PET PET from the sub-basin during ts* 1756

CN Initial runoff curve number SCS 82.86
ts* = time step, RO**= runoff, GW***= groundwater and LF^= lateral flow,

Total water yield = SUR_Q + LAT_Q + GW_Q-LOSSES

Table 7  Average annual hydrological components of change in the future related to the base period
Hydrological parameter Definition of parameter ρ2030s (%) ρ2060s (%) ρ2080s (%)

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5
PRECIP Total sub-basin precp. during ts* (mm). 12.56 15.38 17.60 31.96 23.90 49.51

SUR_Q Surface RO** contrbn. to streamflow during ts* (mm) -51.82 -47.61 -45.10 -26.04 -37.97 -0.31

GW_Q GW*** contribution to streamflow (mm) 118.14 125.91 139.36 191.17 163.25 254.15

TWYD Total Water yield (mm) 19.46 25.08 32.06 64.36 45.97 105.01

ET Actual ET from the sub-basin during ts*(mm). 9.64 11.04 10.90 15.59 13.05 21.10

LAT_Q LF^ contrbn. to streamflow during ts* (mm) 26.60 30.74 35.11 57.13 44.89 83.62

PERC Percolation past the root zone during ts* (mm) 78.77 84.80 94.97 135.87 113.26 184.74

PET PET from the sub-basin during ts* (mm). -36.09 -36.15 -36.30 -37.59 -37.21 -38.71

SW Soil water content (mm) 22.19 24.19 27.85 31.15 31.42 40.48
ts* = time step, RO**= runoff, GW***= groundwater and LF^= lateral flow,

Total water yield = SUR_Q + LAT_Q + GW_Q-LOSSES
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reduction (about 70% according to RCP4.5 and 50% 
according to RCP8.5). The corresponding reductions 
for temperature are 89% and 80%, respectively. The low 
reduction in temperature stress days is due to its low-
stress days in the first place.

Hydrological parameters of the three-time steps and for 
the two scenarios
Next, the basin’s monthly average anomalies of six hydro-
logical parameters (PET, ET, SUR_Q, LAT_Q, PRECIP, 
and TWYD) are analyzed for the two scenarios in the 
three-time steps. Such analysis is essential to know the 
months of high differences, to see the jump in the transi-
tions from one time step to the next, and the differences 
between the two scenarios regarding anomalies in the 
parameters. Figure 6 shows the average anomalies of PET 
and ET in the basin during each month of the year and 
the two scenarios (RCP4.5 and RCP8.5).

PET variance displays drop in both situations from 
March to November, with June and July showing the low-
est from 2030 to 2080. During the whole month, PETs of 
the time steps show significant reductions from the base-
line. There is not much inconsistency between the two 
scenarios as far as this parameter is concerned, which 
agrees with Table  4. Every month, PET shows a reduc-
tion from November to June and an increase from July to 
October from the time steps of 2030 to 2080.

Evapotranspiration shows something contrary to that 
of PET. At the start, there is not much difference between 
the values of the time steps and the baseline except in 
March and April. High anomalies will be observed again 
(positive anomaly of the near and far periods compared 
to the baseline) between October and December. There 
will be a slight dip in June in both scenarios. ET of the 
time steps shows an increment from January to August 
and a reduction from September to November as the 
time step moves from the 2030s to the 2080s. Moreover, 

Table 8  Average annual basin stress days in the future of RCP4.5 and RCP8.5 scenarios
Variables 2030s 2060s 2080s

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5
Water stress days 11.00 11.32 9.17 7.33 7.63 5.76

Temperature stress days 4.11 3.65 3.70 3.94 3.65 2.92

Fig. 6  Water balance on each hydrological component of PET and ET (mm)
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ET could be highest in March to May and August to Sep-
tember compared to the baseline. The monthly average 
ET is generally low for ET (between 30 and 75 mm) com-
pared to PET (about 75 to 115 mm).

Figure  7 shows the average anomalies of surface and 
lateral flows in the basin during each month of the year 
and for the two scenarios (RCP4.5 and RCP8.5).

The surface flow of the basin corresponds to the main 
rainy season (June to September), with a peak in July for 
RCP4.5 and July and August for RCP8.5 scenarios. The 
2030 to 2080 s time steps have SUR_Q different from the 
baseline, especially during July for RCP4.5 and August 
for RCP8.5. There could be a reduction in SUR_Q under 
the two scenarios. The flows are also more significant and 
vivid for RCP8.5 than RCP4.5.

The lateral flow of the average monthly occurs through-
out the year, with peaks during the primary rainy sea-
son (July to September). There is not much difference 
between the baseline and the three-time step. The 
RCP4.5 anomalies show an increment from the time 
steps of 2030 to 2080 from December to August and a 
reduction during the remaining months. For RCP8.5, the 
increment is throughout the year.

Figure 8 shows the average anomalies of precipitation 
and total water yield in the basin during each month of 
the year and for the two scenarios (RCP4.5 and RCP8.5).

The precipitation baseline shows no or minimal vari-
ance from November to January. Precipitation indicates 
the rainy season of the area. Based on both scenarios, the 
main rainy season of the basin is from June to Septem-
ber. Scenario RCP4.5 shows the reduction in rainfall from 
the baseline during July and August and an increment in 
June and September. Scenario RCP8.5 does not indicate a 
substantial reduction in July and August though its pre-
diction is similar for June and September. Thus, in the 
future, there will be better moisture distributions dur-
ing the four rainy months than what is observed at pres-
ent. For RCP4.5, baseline variances are more significant 
than the time steps during July and August. In the case 
of RCP8.5, the monthly baseline average of the basin is 
comparable to those of the time steps during the two 
months mentioned. Step anomalies are more significant 
during all other months than the baseline values for both 
scenarios. From December to July, precipitation anomaly 
increases from the 2030s to the 2080s. During the other 
months, it shows a reduction for the RCP4.5 scenario. 
For RCP8.5, it shows an increment from the 2030 to 
2080 s time steps for all the months.

Fig. 7  Water balance on each hydrological component SUR_Q and LAT_Q (mm)
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The contribution of precipitation to total water yield 
manifests itself from May to December in both scenar-
ios. The yield increases from May to September during 
the 2030 to 2080  s for RCP4.5 and reduces during the 
other months. The increment is throughout the year for 
RCP8.5. More pronounced yields will be observed in the 
2060 and 2080 s from June to September.

Overall, the streamflow of the basin under the two sce-
narios in average monthly of the basin projected until 
2100 is depicted in Fig. 9. Comparing the two scenarios 
(RCP4.5 and 8.5), the highest flow could be under RCP8.5 
in the future.

Discussion
This paper collected quality-controlled data NMA areal 
gridded daily rainfall and temperature data (Dinku 2019; 
Dinku et al. 2018), streamflow from MoWIE, and digital 
elevation model (DEM), soil and land use land from dif-
ferent national and international sources.

From Figs.  2–4, the trend test results showed that 
the basin’s climate is expected to have a clear warming 
trend in the 2080s under the RCP4.5 and RCP8.5 sce-
narios. The result found in this study is in line with the 
result of (Cook et al. 2020; Shongwe et al. 2011; Spi-
noni et al. 2020), who reported a significant increase in 

precipitation is expected in East Africa in the following 
decades, especially in the 2080s. This study showed that 
the predicted annual precipitation, T-min, and T-max 
are expected to increase significantly in the 2080s more 
under RCP8.5. The increase in temperature and increase 
in the average annual evaporation shows an increasing 
trend from the short-term 2030s to the long-term 2080 in 
the area under the high emission scenario. Furthermore, 
the warming and precipitation changes are expected to 
reach maximum by the end of the 21st century under the 
RCP8.5 high emissions scenario. As a result, the aver-
age annual rainfall in East Africa is projected to increase. 
These results also agree with (Gebrechorkos et al. 2019) 
results. They found future seasonal and annual tempera-
ture and precipitation increases in Ethiopian watersheds 
during the next three periods (the 2030s, 2060s, and 
2080s).

The most obvious findings from the analysis are the 
hydrological components of groundwater flow, perco-
lation, water yield, and lateral flow, which recorded the 
highest under RCP8.5 in the 2080s as the variation in 
rainfall and temperature increases in the future three 
periods. The average annual surface runoff could have a 
decreasing tendency in the 2030s under the highest sce-
narios RCP8.5.

Fig. 8  Water balance on each hydrological component PRECIP and TWYD (mm)
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Over the next 80 years, annual surface runoff will 
likely decrease, but evapotranspiration will increase. 
The actual increase in evapotranspiration is partly due 
to surface water availability and temperature increase. 
The total water yield may increase in the coming cen-
tury due to increased precipitation. The largest increase 
in water yield (105%) was estimated from the long-term 
ensemble mean of RCP8.5 scenarios, where the highest 
increment of rainfall was projected (Table 7). The reduc-
tion of total surface runoff is, in a way, beneficial since 
it results in a reduction of soil erosion. Since there is an 
increase in lateral and groundwater flow contributions to 
the streamflow, the reduction of surface runoff is offset 
by the contributions of the two sources, which means the 
water in streams may not be affected. Soil water content 
(SW) is another water balance factor affected by pro-
jected climate change. In this study, the increase in soil 
water content is higher under the RCP8.5 (2080–2100) 
climate scenario (Table  7). That is partly the reason for 
the increased ET, but overall, it will benefit agriculture.

A high volumetric increment of total water yield is esti-
mated from May to September and a reduction in the 
other months. This may be linked to the basin’s increasing 

rainfall from May to September (Fig.  8). ET was also 
highest in March-May and August-September under 
these two scenarios. This confirms that increased evapo-
transpiration alone may further limit UABs, especially 
related to reducing surface runoff. The LULC change, the 
rapid growth of population, extensive farming, and oth-
ers may affect the response of hydrological components 
to climate change (Gedefaw et al. 2018; Hurni et al. 2005).

Conclusion
This investigation aimed to ascertain the impact of future 
climate change on the hydrological components of water 
balance in the UAB. This paper collected quality-con-
trolled data from NMA areal gridded daily rainfall and 
temperature data, streamflow from MoWIE, digital eleva-
tion model (DEM), and soil and land use land from dif-
ferent national and international sources. Of the several 
parameters used for the sensitivity analysis, nine signifi-
cantly affecting parameters of the UAB streamflow sim-
ulation used in this study using SWAT-CUP 2012 using 
SUFI-2 as an optimization algorithm. Moreover, SWAT-
CUP is an interface that was developed for the SWAT 
model. CN2, ALPHA_BF, and GW_DELAY are the most 

Fig. 9  Average monthly stream flow at the end of the 21st century under RCP4.5 and 8.5
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sensitive parameters. In this study, high-resolution DEM 
and LULC were used. In the study, the simulation of 
hydrological components considered the land cover and 
land use change as constant in the future. To generate 
future high-resolution climate data from the CanESM2 
of GCM downscaled by SDSM was used after being cali-
brated and validated for simulation of future climate.

The calibration and validation results of the QSWAT 
model had good agreement with the observed (R2 = 0.86, 
NSE = 0.64 and RSR = 0.60) and (R2 = 0.72, NSE = 0.72 and 
RSR = 0.65), respectively. This result demonstrates the 
suitability of the QSWAT model for simulating future 
changes in the water balance components in UAB. The 
main source of water yield of the UAB is rainfall, which 
means climate changes could impact the basin’s water 
resources. In addition, future temperature increases 
result in large amounts of water being lost through evap-
oration. In the UAB, except surface runoff and Potential 
evapotranspiration, most future hydrological compo-
nents increase significantly in the 2080s under both sce-
narios, with slightly higher under RCP8.5. The reduction 
of surface runoff might be related to an increase in actual 
evaporation, even if precipitation increases are related to 
the increment of temperature.

One of the significant findings from this study is that 
hydrological components will decrease the surface run-
off percentage change of the baseline period and increase 
actual evapotranspiration. This study has also identified 
a slight change in seasonal rainfall distribution between 
the current and future climate conditions. In the future, 
June and September will have better rainfall than what 
is observed at present. Overall, this study strengthens 
the idea that rainfall and temperature will increase in 
the 2080s. It is recommended that additional research 
be undertaken in the middle and lower Awash basin to 
have a complete report on the Awash basin. Furthermore, 
future hydrological responses to climate change must be 
tested using the 2022 developed socio-economic Path-
ways (SSPs) scenarios of SSP1-1.9 to SSP5-8.5.
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