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Abstract 

One of the significant sources of air pollution and greenhouse gas emissions is the road transportation sector. These 
emissions are worsened by driving behaviors and network conditions. It is common knowledge that experienced and 
inexperienced drivers behave differently when operating vehicles. Given the same vehicle in a different timeframe, 
the drivers’ reactions to similar situations vary, which has a significant influence on the emissions and fuel consump-
tion as their use of acceleration and speed differ. Because the driving patterns of automated vehicles are programma-
ble and provide a platform for smooth driving situations, it is predicted that deploying them might potentially reduce 
fuel consumption, particularly in urban areas with given traffic situations. This study’s goal is to examine how different 
degrees of automated vehicles behave when it comes to emissions and how accelerations affect that behavior. Fur-
thermore, the total aggregated emissions on the synthesized urban network are evaluated and compared to legacy 
vehicles. The emission measuring model is based on the Handbook Emission Factors for Road Transport (HBEFA)3 and 
is utilized with the Simulation of Urban Mobility (SUMO) microscopic simulation software. The results demonstrate 
that acceleration value is strongly correlated with individual vehicle emissions. Although the ability of automated 
vehicles (AVs) to swiftly achieve higher acceleration values has an adverse effect on emissions reduction, it was com-
pensated by the rate of accelerations, which decreases as the automation level increases. According to the simulation 
results, automated vehicles can reduce carbon monoxide (CO) emissions by 38.56%, carbon dioxide (CO2) emissions 
by 17.09%, hydrocarbons (HC) emissions by 36.3%, particulate matter (PMx) emissions by 28.12%, nitrogen oxides 
(NOx) emissions by 19.78% in the most optimistic scenario (that is, when all vehicles are replaced by the upper bound 
automated vehicles) in the network level.
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Background
More than 4.2  million lives are expected to have been 
lost because of ambient air pollution. The World Health 
Organization (WHO) estimates that 99% of people world-
wide reside in areas where air pollution is above WHO’s 
standard in the revised guidelines. The organization has 

never revised the air pollution rules since the initial doc-
ument was issued in 2005. Despite the fact that nearly all 
nations fell short of the previous standard, WHO is push-
ing nations to significantly cut emissions in order to meet 
the ambitious goal of 80% reduction in the number of 
fatalities brought on by air pollution (Ambient (outdoor) 
air pollution 2022; World Health Organization 2021). 
According to a study by the Swiss air quality technol-
ogy company, 97% of all countries and cities worldwide 
failed to achieve the most recent WHO PM2.5 air qual-
ity standard guidelines of 2021 (Empowering the World 
to Breathe Cleaner Air 2022). Additionally, researchers 
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at the Harvard University T.H. Chan School of Public 
Health discovered that higher concentrations of the tiny, 
dangerous airborne particles known as PM2.5 were con-
nected to higher death rates from diseases like COVID-
19 in an analysis of 3080 counties in the United States of 
America (USA) (Friedman 2020).

In addition to the common air pollutants that WHO 
has identified as being particularly dangerous to human 
health (particulate matter, ozone, nitrogen dioxide, sul-
fur dioxide, and carbon monoxide), greenhouse gases 
also have adverse effects on human health in addition to 
causing climate change and global warming. The human 
body can tolerate short-term exposure to these gases, but 
long-term exposure to high concentrations of these gases 
steadily damages several organs, including the respira-
tory, cardiovascular, central nervous, immune, digestive, 
and reproductive systems (Naiyer and Abbas 2022; Jacob-
son et al. 2019).

Road transport emissions are the principal sources of 
greenhouse gases and the leading cause of air pollution 
(Chapman 2007; Albuquerque et al. 2020). These emis-
sions are exacerbated by driving behaviors and network 
conditions. Rather than how far a vehicle has travelled, 
the driving style of a vehicle has a significant impact 
on exhaust emissions. Most literature revealed that the 
quantity of emissions per vehicle is largely determined 
by the driving style and conditions of the road, though 
vehicle design also plays a role. It is well known that 
experienced and inexperienced drivers operate vehi-
cles in different ways. The drivers’ responses to similar 
situations when operating the same vehicle at different 
timeframe varies, and this has a big impact on emis-
sions and fuel consumption because of how differently 
they use acceleration and speed (Brundell-Freij and 
Ericsson 2005; Frey et al. 2002). Similar to this, network 
conditions such as congestion and stop-and-go traffic 
have the potential to adversely affect aggregate emis-
sions (Barth and Boriboonsomsin 2008; Aminzadegan 
et  al. 2022). However, throughout the past two dec-
ades, numerous initiatives have been taken to reduce 
vehicle emissions (Shaheen and Lipman 2007). These 
attempts involve modifying vehicle designs to increase 
combustion engine efficiency (Reitz and Duraisamy 
2015), transitioning toward electric and hybrid vehicles 
(Fontaras et al. 2008), trying to raise awareness of eco-
friendly driving (Coloma et  al. 2020), encouraging the 
use of public, soft mobility, and shared transportation 
alternatives instead of private motor vehicles (Nelldal 
and Andersson 2012). Solutions for managing traffic 
networks have been worked on extensively to prevent 
congestion, which has a considerable impact on emis-
sions (Eco-Cooperative Adaptive Cruise Control at Sig-
nalized Intersections Considering Queue Effects 2022). 

Given the driving scenarios of automated vehicles, it is 
anticipated that their implementation might substan-
tially reduce fuel consumption, particularly in urban 
areas (Chen et  al. 2019). However, it is still unclear 
whether automated vehicles would result in an increase 
or decrease in the overall emissions from road traffic.

A notable assertion with respect to automated vehicles 
is the Jevons paradox, which states that automated vehi-
cles may increase travel demand, resulting in a signifi-
cant increase in vehicle kilometers travelled and vehicle 
hours travelled, as well as a decrease in public transporta-
tion mode share (Soteropoulos et  al. 2019). Despite the 
paradox, AVs have the potential to lower fuel consump-
tion and emissions by enabling vehicles to operate more 
efficiently. It may reduce the amount of fuel wasted when 
vehicles become trapped in a traffic jam by enhancing 
traffic flow and lowering accident frequency (Science-
Daily 2022). Vehicle automation may accelerate the wide-
spread adoption of eco-driving, which is a set of practices 
aimed at reducing fuel consumption without modify-
ing the vehicle architecture. Eco-driving is achieved by 
either optimizing engine performance or reducing the 
frequency of a vehicle’s recurring braking and accelera-
tion cycles. According to studies, even human drivers 
who receive real-time eco-driving instruction can lower 
their fuel use by 10–20% (Barth and Boriboonsomsin 
2009). Similarly, in congested conditions, it may lower 
fuel consumption by 35–50% (He et  al. 2012). In addi-
tion, 90% of accidents are typically linked to human error. 
Automation has the potential to significantly reduce acci-
dent rates by minimizing human intervention in driving 
tasks, so vehicle safety features will become far less rel-
evant in the future. It seems implausible to remove the 
safety features, but just doing so reduces fuel usage by 
5.5% (MacKenzie 1975; Kopelias et al. 2020). As a result, 
it is anticipated that AVs will cut down emissions from 
the road traffic sector.

Several models have been developed to evaluate the 
emissions of individual vehicles to examine the effects 
of AVs on road traffic emissions and fuel consumption. 
Previously, direct emission measurement was used, and 
extensive research was conducted in those areas (Har-
rington 1997; Frey et  al. 2003; Chen et  al. 2018). How-
ever, because of the inaccessibility of emission-measuring 
equipment, major research has been done to develop 
emission-measuring models that simply require a dis-
tance and speed profile to predict emission quantities 
(Pelkmans and Debal 2006; Rakha et  al. 2004; An et  al. 
1997; Giechaskiel et  al. 2018). Most of the models used 
to estimate emissions were developed in the laboratory 
using chassis dynamometer data from supposedly rep-
resentative vehicles. These models can estimate typical 
vehicle emissions pollutants.
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In general, emission models are divided into two cat-
egories, namely aggregate models, and microscopic mod-
els. When planning a new project, the environmental 
impact is assessed using aggregate models, which calcu-
late emissions based on inputs such as average link-level 
speed and travel distance. These models are frequently 
useful for understanding how a significant change in 
land use and transportation patterns may affect local or 
regional emissions. The most common aggregate models 
in Europe are COPERT (Computer Program to Calculate 
Emissions from Road Transport) and ARTEMIS (Assess-
ment and Reliability of Transport Emission Models and 
Inventory Systems), while MOVES (Motor Vehicle Emis-
sions Simulator) is in the USA (André et al. 2009; Euro-
pean Environment Agency 2022; O. US EPA 2016). On 
the other hand, microscopic emissions models calculate 
emissions for a specific trip using real-time data collected 
at the vehicle level. In Europe and USA, the most widely 
used microscopic emission models are PHEM/HBEFA 
and MOVES (used for both aggregate and microscopic 
models), respectively.

The HBEFA was established on behalf of environmental 
protection organizations in Germany, Austria, and Swit-
zerland. HBEFA is supported by other countries (Sweden, 
Norway, and France), as well as the JRC (Joint Research 
Centre of the European Commission). The original data 
were collected and analyzed from several research pro-
jects by the Technical University of Graz (Austria), which 
used the Passenger Car and Heavy-Duty Emission Model 
(PHEM4) to develop the emission factors. The initial ver-
sion (HBEFA 1.1) was launched in December 1995, and 
an update (HBEFA 1.2) was made publicly available in 
January 1999. The release of HBEFA 2.1 was in February 
2004. HBEFA 3.2, the most recent upgrade, was made 
available in January 2014. The ERMES group, which also 
provides the emission database for other European mod-
els like COPERT, is the source of the data employed by 
HBEFA to estimate European emissions. HBEFA provides 
pollution factors, or emissions in grams per kilometer, 
for all existing vehicle types (passenger cars, light-duty 
vehicles, heavy-duty vehicles, urban buses, coaches, and 
motorbikes), each categorized into various size categories 
and for a variety of traffic situations. Each traffic situation 
is characterized by a typical driving pattern, which is a 
sequence of data points showing the speed of a vehicle 
versus time.

The goal of this research is thus to assess the effective-
ness of automated vehicles in reducing air pollution by 
developing models of AVs with varying degrees of auto-
mation and gradually introducing them into the network 
at increasing market penetration rates. Legacy vehicles, 
in general, will be used as a baseline model for compar-
ing emission reductions achieved by the deployment of 

automated vehicles into the network. To carry out sim-
ulations and analyze the results, we modeled all legacy 
and automated vehicles using the Simulation of Urban 
Mobility software (SUMO). The article’s main objective 
is to estimate legacy vehicles’ emissions and monitor the 
emission changes that might happen due to the gradual 
deployment of automated vehicles on the road. Although, 
it is evident that weather and road conditions affect the 
vehicles’ operational behavior (Pappalardo et  al. 2022), 
it’s represented in our simulation as drivers’ imperfection 
parameter under any circumstances including weather 
condition and road characteristics. The specific objec-
tives are defining the emission behaviors across various 
types of vehicles and quantifying the overall influence of 
vehicle automation on network-level emissions.

Reviews and summaries of related studies have shown 
that there is an interconnection between driving behav-
iors and emissions. A study looked at the effects of 
smooth driving behavior on emissions reductions, which 
could be achievable by AVs. The driving profile for the 
AVs is developed by modifying the speed profile of the 
conventional vehicle by employing smoothing tech-
niques. The MOVES model from the EPA was used to 
calculate emissions for both conventional and AVs driv-
ing profiles. The findings suggested that the usage of AVs 
could potentially result in lower emissions. In contrast to 
our current work, they replaced legacy vehicles with AVs 
rather than considering how differing AVs fleet market 
penetration rates influence emissions. Furthermore, the 
levels of vehicle automation were not taken into account 
(Liu et al. 2017).

Another study looked at the traffic efficiency and envi-
ronmental implications of AVs at market penetration 
rates of 10, 20, and 30% along metropolitan motorway 
corridors. They used PTV Vissim microsimulation with 
vehicle-specific power (VSP/EPA) and emission method-
ologies (EMEP/EEA) to estimate emissions. They meas-
ured the amounts of CO2, CO, NOx, and HC as well as 
travel time and stop-and-go situations. Their findings 
revealed that the overall emission had not reduced much; 
for instance, with 30% AVs, the number of stops had 
reduced by 15% and the average emission reduction had 
been only 3%. They chose to focus on only two vehicle 
types: conventional vehicles (CV) and (AVs), excluding 
the varying levels of automation, which the current study 
considers. No measurement was done on VOCS, fuel 
consumption, or particulate matter (Tomás et al. 2020).

Furthermore, these researchers looked at how con-
nected vehicles and AVs alter the fuel consumption and 
emissions of mixed traffic flows on the expressway. The 
researchers employed three car-following models to 
properly describe car-following behaviors in the mixed 
traffic flow. A numerical simulation has been developed 
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to investigate how connected vehicles and AVs impact 
fuel consumption and emissions in mixed traffic flows. 
The results revealed that connected automated vehicles 
(CAV) can significantly reduce transportation fuel con-
sumption and emissions. At a 100% penetration rate of 
CAV, the highest reduction percentages of HC, NOx, CO, 
and fuel usage are 24.33%, 27.06%, 37.53%, and 40.58%, 
respectively (Yao et al. 2021).

Most earlier studies had the same shortcomings, fail-
ing to account for the different levels of automation in 
automated vehicles and completely precluding the reality 
that the automation of the transportation sector is a slow 
process. The novelty of the current study lies in attempt-
ing to bridge the gaps pointed out thus far by modeling 
varying levels of AVs and gradually deploying them into 
the network than considering AVs in general as most of 
the previous studies reviewed above had done. Moreover, 
according to the researchers’ knowledge and database 
investigation, this is the first study in the context of AVs 
impact on road traffic emission in the case of ZalaZone 
test track.

This paper is organized as follows: The goals and objec-
tives are introduced in the first chapter, along with a 
review of related studies that have been conducted in the 
past. “Materials and methods” section describes the car-
following model and the corresponding parameters used 
to model varying levels of AVs, network setup, market 
penetration rate, emission methods, and simulation tri-
als (including demand profile). “Results and discussions” 
section discusses the primary outcomes of the simulation 
experiments while concluding remarks are provided in 
“Conclusion” section.

Materials and methods
Description of the study area
Since the impact of road traffic emissions is less notice-
able in rural areas, this study focuses on urban networks. 
To better portray the current and future urban environ-
ment, ZalaZone has been chosen to study and assess the 
impact of road traffic.

ZalaZone is a long-term project in the Zala county 
of Zalaegerszeg, Hungary, located at 46.88947  N and 
16.83676 E. It is serving as a testing ground for conven-
tional, partially autonomous, and fully automated vehi-
cles while also aiming to accelerate the development of 
AVs as illustrated in Fig. 1.

It is a smart city-like area that includes additional envi-
ronmental, traffic, network technologies, and vehicle 
dynamics aspects to provide realistic traffic conditions 
in a constrained location. A variety of lane numbers, 
types, and configurations, as well as the road’s surface 
and geometry, have all been incorporated to represent 

the urban setting better and realistically as presented in 
Fig. 2.

Data sources and methods of analysis
The study used a microsimulation methodology to deter-
mine the impacts of AVs on road traffic emissions for 
a specific network. Eclipse SUMO is employed as the 
microsimulation program, as previously stated. DLR’s 
Eclipse SUMO open-source microsimulation software 
comes with features for measuring emissions and analyz-
ing vehicle behavior (Lopez et al. 2018). Its versatility in 
modeling driver and vehicle behavior, along with its tech-
nical computing and simulation modeling capabilities, 
make the package suited to this article. It also provides 
access to a running road traffic simulation, as well as the 
ability to retrieve values of simulated objects and manip-
ulate their behavior in real-time.

Car following model
The car-following model used by Eclipse SUMO is a 
modified version of Krauss’ original concept. The first 
Krauss car-following model was developed by Stefan 
Krauss in 1997. The concept of “safe speed” serves as the 
foundation for this model. The safe speed is determined 
as follows:

where vl(t), vf (t), gn(t),T  and b stand for the speed of 
the leading vehicle at time t, the speed of the following 
vehicle at time t, the gap between the leading and fol-
lowing vehicle at time t, the reaction time of the driver, 
and the maximum deceleration, respectively. The vsafe 
equation ensures vehicle safety. The safe speed, however, 
could exceed the posted speed limit or go higher than the 
maximum speed that a vehicle is capable of. As a result, 
the desired speed term is developed, which may be calcu-
lated as follows:

where a, t, vlimit indicate acceleration, time, and legal 
posted speed limit. The vdesired  equation addresses all 
relevant issues, including vehicle capability, law enforce-
ment, and safety. The desired speed is specified as the 
lowest of the three speed settings. SUMO has a parame-
ter for imperfection that it uses to mimic a human driver. 
But to achieve variation in spacing, this parameter is ran-
domly selected for each vehicle in a time step. As a result, 
the vehicle’s following speed becomes:

vsafe = vl(t)+
gn(t)− vl(t)T

T +
vf (t)+vl(t)

2b

vdesired = Min(vf (t)+ at, vsafe, vlimit)
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v
f
t+�t = Max{0, vdesired − a ∈ η}

where ǫ and η indicate noise amplitude and a random 
number. One can obtain vehicles that are travelling at 
varying speeds using the equation above. In this study, 
the default car following model is applied to legacy vehi-
cles. The Krauss modified model contains elements that 
can be customized to enable us to model AVs with dif-
ferent levels of automation, as will be discussed in more 
detail below.

The following longitudinal maneuvering characteristics 
were taken into consideration while modeling AVs using 
Krauss’ modified model:

•	 Mingap: the offset to the leading vehicle when stand-
ing in a jam (m)

•	 Accel: the acceleration ability of vehicles of this type 
m/s2

•	 Decel: the deceleration ability of vehicles of this type 
(m/s2)

•	 Emergency Decel: the maximum deceleration ability 
of vehicles of this type in case of emergency in m/s2.

Fig. 1  Study area  (Source: authors)

Fig. 2  An aerial view of the ZalaZone road network  (Source: CEOI)
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•	 Sigma: the driver imperfection (between 0 and 1).
•	 Tau: the driver’s desired (minimum) time headway 

(reaction time) (in s)

For legacy vehicles, all parameters were left at their 
default settings, except for the emergency deceleration, 
which was reduced from 9 to 8  m/s2. Deceleration and 
emergency deceleration values were 4.5  m/s2 and 8  m/
s2, respectively, for all automation levels, including legacy 
vehicles (Kudarauskas 2007).

Apart from deceleration and emergency deceleration, 
all the other parameters are tuned based on the data 
taken from Atkins Ltd report (Atkins 2016). The report 
has been utilized as the primary source for level 2 and 
5 AVs. Given the legacy vehicle’s parameter defined 
above, the corresponding parameters of level 1 AVs 
were taken as the averaged value of legacy and level 2 
AV’s as it lies between them. Also, the parameters for 

the remaining level 3 and 4 AVs were obtained by lin-
early modifying the respective data between level 2 and 
level 5 AVs. However, since the level 4 and 5 AVs do not 
require human drivers, the driver imperfection (sigma) 
was set to 0. Given that human interference reduces as 
automation levels rise, the sigma values for the vari-
ous levels of automation are expected to fall linearly 
from the default 0.5 for legacy vehicles to 0.2 for level 
3 AVs. The resulting sigma values for levels 1, 2, and 3 
AVs were 0.4, 0.3, and 0.2, respectively as summarized 
in Table 1.

Like the other traffic simulation software, the road 
network in SUMO is made up of nodes and edges. The 
network presented in the research has a total length of 
edges of 6.42  km. There are 354 edges and 164 nodes 
in the network. Because all the links in the networks 
are presumed to be urban roads, the speed limit was 
set at 50 km/h. The most common traffic situations in 

Table 1  The parameters for car following for varying levels of automation

Parameters Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Mingap (m) 2.5 2 1.5 1.17 0.83 0.5

Accel (m/s2) 2.6 3.05 3.5 3.6 3.7 3.8

Emergency decel (m/s2) 8 8 8 8 8 8

Sigma (driver imperfection) 0.5 0.4 0.3 0.2 0 0

Tau (s) 1 0.95 0.9 0.8 0.7 0.6

Fig. 3  Network of ZalaZone in SUMO  (Source: authors)
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an urban setting are stop-and-go, braking, and decel-
eration of vehicles during trips. These situations are 
achieved by utilizing traffic lights, roundabouts, and 
junctions that were built in ZalaZone road network as 
shown in Fig. 3.

Market penetration rates of AVs
The adoption of AVs would be hindered by a lack of tech-
nological availability and users’ lack of confidence on the 
technology’s safety and security. This will lead to a grad-
ual integration of AVs into the current road networks, 
and that paves a way for mixed traffic in which AVs share 
the road with legacy vehicles.

Since the purpose of this study is to examine the impact 
of various levels of AV fleets on road traffic emissions, a 
straightforward technique has been employed to con-
sider AVs’ capabilities and their market penetration rates. 
This technique is based on the fundamental and well-
known premise that the deployment of AV fleets should 
be a gradual process and ought to start from driver assis-
tance, even though it’s theoretically possible to leverage 
full automation.

Limiting the technical capacities to driver assistance 
would provide the ground to efficiently and effectively 
improve the systems based on users’ feedback and 
increase the levels. It’s also important to prevent the cata-
clysmic effect that results from technological uncertainty 
or full implementation of the theory. On the other hand, 

starting from driver assistance then giving full control 
of driving tasks to the system helps to gain users’ trust 
in the technology over time by providing them with the 
most demanding assistance in difficult driving condi-
tions. The assumptions mentioned along with climate 
policy and strategy create a conducive environment to 
increase the level of automation of AV fleets and their 
market penetration rates (Atkins 2016).

Figure  4 presented graphically with how the techno-
logical complexity of AVs will develop over time. The fact 
that the technology is readily available in this circum-
stance does not guarantee that users will find it accept-
able. Early adopters typically open the door to innovative 
technologies before they are broadly accepted. This is 
reflected in the market penetration rates for varying lev-
els of automation.

The ratio of AVs to legacy vehicles in the scenarios 
increases along with the level of automation. As demon-
strated in Table 2, the technological capabilities of each 
vehicle type in the AV fleets vary to match the user’s 
choices and confidence in the technology. The phrase 
“upper bound” is used to describe the fifth scenario, in 
which all vehicles are totally automated. The modeled 
situations are presented in Table 2.

Fig. 4  Future states of availability and user acceptance (Source: (Atkins 2016))
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Emission modeling
Emissions are calculated using the Eclipse SUMO 
HBEFA3-based emission model. This model was devel-
oped by collecting relevant information from the HBEFA 
database and fitting it to a continuous function. The func-
tion was obtained by simplifying the power required by 
the engine to overcome the external load (engine energy 
consumption rate) as incorporated in Eclipse SUMO:

where cn are constant parameters, a is acceleration and 
v is speed. To compute the power demand, the emission 
factors are selected from the HBEFA database, and the 
coefficients are determined based on the type of vehicle 
and engine used by the vehicles.

Simulation trials
The simulation period is 21,600  s (about 6  h), and sce-
narios with various levels of AVs penetration were used 
to simulate the network. The penetration rates for AVs 
began at 0% and increased by 25% until they hit 100% 
in the fourth scenario. The last scenario similarly has 
100% AVs; however, they are all level 5 vehicles. Six dif-
ferent types of vehicles are modeled, starting from type 
0 to type 5. All of them are Euro Norm 5 vehicles with 
gasoline engines, but they have varying levels of techni-
cal capabilities to mimic the levels of automation. Those 
vehicles are defined by specific parameters that indicate 
their unique behaviors at the respective levels. The vehi-
cles named as type 0, are legacy vehicles, and type 1 rep-
resents level 1 AVs, and similarly, all the way up to type 5, 
which stands for level 5 AVs, or fully automated vehicles.

Two demand situations are considered with the objec-
tive of understanding how vehicles’ emission behavior 
alters under different traffic conditions:

•	 A “peak” period model, in which model is character-
ized by congestion, queuing, delays and low traffic 
speeds.

P = c0 + c1va+ c2va
2
+ c3v + c4v

2
+ c5v

4

•	 A “non-peak” period model, where vehicle speeds are 
close to the allowed speed or the legal speed limits 
are predominantly maintained by vehicles.

In this study the vehicles running from 9900 to 12,800 
simulation time were considered to investigate emissions 
under the peak hour traffic situations whereas the vehi-
cles on the network from 0–900 s for non-peak hours, as 
shown in Fig. 5.

Results and discussions
This study looked at six parameters to investigate the 
impact of varying levels of AVs on road traffic emissions, 
five of which are pollution types and fuel consumption. 
They are assessed and summarized for the base model 
and five other scenarios. The scenarios were developed by 
altering the number and level of AVs on the network with 
reference to the base model. Additionally, accelerations 
for all types of vehicles were measured during congested 
“peak” demand periods and uncongested “non-peak” 
demand periods to track the emission behavior of AVs 
under various traffic conditions and study the depend-
ency of emissions on acceleration.

A vehicle’s emissions behavior
It is vital to understand the emission behavior for each 
type of vehicle separately to see their impact on the net-
work-level aggregated emissions. A 22 km (approximately 
13.67 mi) route was defined by rerouting the designated 
vehicles on the network to get attributes that can be used 
to easily distinguish their emission behaviors. While the 
designated vehicles with various levels of automation 
were running along that route, the relevant information 
was gathered and analyzed. To comprehensively observe 
and understand the emission behavior under various traf-
fic conditions, vehicles are also simulated for peak and 
non-peak hours. As acceleration is one of the key fac-
tors affecting a vehicle’s emissions behavior, a couple of 
acceleration-related data are analyzed and described as 
follows.

Table 2  AV market penetration rates

No Scenarios The ratio of legacy 
vehicles (%)

Automated vehicles

Level 1 (%) Level 2 (%) Level 3 (%) Level 4 (%) Level 5 (%)

1 Base 100 0 0 0 0 0

2 25% penetration 75 15 5 5 0 0

3 50% penetration 50 25 10 10 5 0

4 75% penetration 25 25 20 15 10 5

5 100% penetration 0 15 20 20 25 20

6 Upper bound 0 0 0 0 0 100
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Correlation between acceleration and emission
Using the Pearson correlation method, the relationship 
between acceleration and emission is computed. The 
computation was carried out for all vehicle types. The 
scatter graphs were plotted by using a vehicle type per 
scenario and CO2 emissions, which is considered repre-
sentative emission. The results were significantly positive 
and have strong linear correlations, with a range of 0.7 to 
0.90. According to Fig.  5, the correlation coefficient for 
legacy vehicles under the base model is 0.76, whereas for 
fully automated vehicles under the upper bound scenario 
is 0.93. Furthermore, as the level of automation increases 
the correlation coefficient also increases. It is 0.83, 0.87, 
0.88, and 0.92 for level 1, level 2, level 3, and level 4 vehi-
cles, respectively. The maximum acceleration value and 
its corresponding accelerating capabilities of the vehicles 
increase as the automation levels increase. So, the maxi-
mum accelerations for legacy vehicles and level 5 AVs 
were 2.6  m/s2 and 3.8  m/s2, respectively as depicted in 
Fig. 6.

A vehicle’s acceleration rate
Because of the strong relationship between accelera-
tion and emissions, the number of accelerations each 
vehicle type makes over the length of a 22-km trip must 
be counted and analyzed to estimate their influence on 
emissions. Since “on-demand” traffic situations expose 
vehicles to a more stop-and-go movement than normal 
flow, the simulation was carried out during peak and 
off-peak hours. For instance, the legacy vehicle acceler-
ated 125 times more during peak hours than it did dur-
ing non-peak hours (687 versus 562 times). As the level 
of vehicle automation rises, less acceleration is conducted 
by the respective vehicles, as shown in Fig. 7. Given the 
low penetration rate of AVs, a level 3 automated vehi-
cle accelerates 491 times during off-peak hours and 562 
times during peak hours. In the upper bound case, a level 
5 vehicle accelerated 239 and 289 times during off-peak 
hours and peak hours, respectively, which is approxi-
mately 57% fewer accelerations than the base model’s 
legacy vehicles.

Fig. 5  Demand profile  (Source: authors)
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Emissions by vehicle type
The pollutants emitted from each type of vehicle must be 
measured to better understand their emission behavior. 
Under the scenarios that have been predefined, the emis-
sions for all vehicle types were collected and summarized. 
When compared to the base model, the upper bound 
scenario’s peak hour emissions were reduced by 48%. 
However, there was no substantial variation in emissions 
between various vehicle types during off-peak hours.

Figure  8 demonstrates that, even during peak hours, 
there was no consistent reduction in emissions as vehicle 
automation increases. Given the mixed traffic, there was 
no significant reduction in emissions. For instance, with 
a 50% AV penetration rate, vehicle emissions have gotten 
worsened. The major conclusion is that in a mixed traf-
fic situation, the combined effect of flow disruption by 
legacy vehicles with AVs’ technical capabilities to quickly 
attain the top speed, which has a significant positive rela-
tionship with emissions, will likely increase the emis-
sions. According to the scatter plot in Fig. 4, the vehicles 
with significantly larger acceleration values are also the 
ones with a higher level of automation.

The difference in emissions between peak and non-
peak hours shows that the net difference in emissions 
between those traffic conditions was larger for legacy 
vehicles. On the other hand, network traffic conditions 
had no impact on fully automated vehicles.

The time it takes for a vehicle to accelerate and decel-
erate gets shorter as the vehicle’s automation level rises 
or human interference plays less of a role. As acceleration 
capability increases, emissions also increase because of 
their direct correlation. On the other hand, the rate of a 
vehicle’s acceleration drops as automation levels increase. 
Despite having a higher accelerating capability, it has 
been found that the emissions reduction of AVs was real-
ized by a lower rate of acceleration conducted during the 
trip.

Aggregated emission
To fully understand how the deployment of AVs impacts 
emissions from road traffic, it is necessary to look at net-
work-level emissions as well as emissions from individual 
vehicles. Five scenarios are developed based on the base 
model to investigate their effects. For comparison pur-
poses, the absolute values of all potential pollutants from 

Fig. 6  Carbon dioxide emissions and acceleration scatter plots  (Source: authors)
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Fig. 7  The total number of vehicle accelerations

Fig. 8  Individual vehicle emission levels
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vehicles over the simulation period are obtained, aggre-
gated, and summarized for each scenario.

Table  3 summarizes the improvements for each sce-
nario in comparison to the baseline model. The result 
shows that as AVs deployment increases, vehicle fuel 
consumption improved. This leads to positive trends in 
the reduction of other environmentally harmful pollut-
ants. At 25% AV penetration with limited capabilities, 
CO, HC, PMx, and NOx all dropped by more than 14%, 
13%, 10%, and 8%, respectively. Both fuel consumption 
and CO2 emissions fell by 8.35%. When AVs penetra-
tion reached 50%, of which 35% were level 1 and level 
2 vehicles, CO emissions decreased by 17% from the 
reference base model, while HC and PMx emissions 
decreased by 16% and 12%, respectively.

The reduction in emissions continued up to the upper 
bound scenarios, which represent 100% penetration 
of fully automated vehicles that behave “aggressively,” 
including closely following other vehicles, accepting 
narrower gaps, and with no driver imperfections. Emis-
sions of CO, HC, and PMX were reduced by 39%, 36%, 
and 28%, respectively, under the upper-bound scenario 
as presented in Fig. 9.

The main conclusion is that the widespread deploy-
ment of automated vehicles has the potential to greatly 
reduce traffic-related emissions, especially if smooth 
driving is practicable.

Table 3  The percentage reduction in emissions in comparison with the base model

Scenarios CO CO2 HC PMX NOx Fuel consumption

Base – – – – – –

25%AV − 14.17% − 8.35% − 13.38% − 10.29% − 8.54% − 8.35%

50%AV −17.26% − 10.11% − 16.31% − 12.42% − 10.33% − 10.11%

75%AV − 27.74% − 15.74% − 26.19% − 19.96% − 16.29% − 15.74%

100%AV − 35.22% − 18.55% − 33.23% − 25.41% − 19.81% − 18.55%

Upper bound − 38.56% − 17.09% − 36.30% − 28.12% − 19.78% − 17.09%

Fig. 9  Overall emissions from the network  (Source: authors)
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Conclusion
Climate change and air pollution have come to the fore-
front of our society and the government’s concerns. The 
concerns regarding rising world temperatures, increas-
ing emission levels, and over-exploitation of natural 
resources draw stakeholders’ attention and compel offi-
cials to take preventive measures to reverse humanity’s 
destructive effects on the environment. In terms of envi-
ronmental pollution caused by the transportation sec-
tor, road transport has emerged as the primary emitter. 
Numerous stakeholders (automakers, community man-
agers, municipalities, and vehicle operators etc…) are 
now involved in the process of mitigating the negative 
effects of mobility on the ecosystem through a variety of 
mechanisms. Several proposed alternatives include vehi-
cle automation, riding a bike or walking instead of driv-
ing, taking public transport, carpooling or car sharing, 
and having a fuel-efficient vehicle.

Vehicle automation is believed to play a significant role 
to resolving the catastrophe that contemporary societies 
face because of traffic problems. Most automobile manu-
facturers are engaged in fierce competition to introduce 
entirely self-driving and hybrid vehicles to the market. 
Additionally, this study examined how much automated 
vehicles are likely to contribute to mitigating air pollu-
tion, besides the other advantages that will accrue from 
them, such as reducing road accidents, avoiding conges-
tion, rising the quality of service provided by infrastruc-
tures, and fuel savings. This study is aimed at examining 
the effect of automated vehicles on pollutant emissions 
under various scenarios. Even though the emission from 
vehicles is often dependent on their geometrical and 
physical properties, for the sake of simplification, all vehi-
cles used in this simulation are completely similar except 
for their maneuvering capability. The effects evaluation 
of vehicle weight reduction along with vehicle automa-
tion on pollution reduction is being deferred for further 
studies.

The analysis was conducted using the Simulation of 
Urban Mobility (SUMO) software. The primary features 
that distinguish automated from conventional vehicles 
are car-following and lane-change behaviors. The Krauss 
modified and LC2013 were used as car-following and 
lane-changing models, respectively. The levels of automa-
tion are achieved by adjusting the car’s following param-
eters. The numerous emission models were checked, and 
although some of them have the needed emission meas-
urement kits, they are either not supported by SUMO or 
commercial packages. As a result, HBEFA v3.1 was used 
in this study to measure pollution.

Due to technical difficulties and user skepticism 
about technology in terms of safety and security, it is 

impractical to replace all existing legacy vehicles with 
AVs. Given the above information, AVs were gradually 
introduced to the network over the course of five consec-
utive scenarios. Each scenario has a unique mix of legacy 
and varying levels of automated vehicles. Additionally, 
every possible traffic condition that might occur on the 
real road network was considered.

Correlation analyses have revealed a strong linear 
relationship between vehicle acceleration and emis-
sions. It increases with the level of automation. The 
ability of AVs to swiftly accelerate makes the relation-
ship significant compared to legacy vehicles. The corre-
lation coefficient for legacy vehicles was 0.76, whereas 
level 5 AVs had 0.93. On the other hand, the vehicles’ 
automation level and acceleration rates are inversely 
proportional. The rate of acceleration conducted by the 
level 5 AVs was approximately 57% lower compared to 
legacy vehicles during the same trip. Besides automa-
tion levels, traffic conditions also influence the rate of 
acceleration. During peak hours, the legacy vehicles 
performed 125 times more acceleration than during 
non-peak hours, which was the same across various 
vehicle types. Despite having a higher acceleration 
capability, it has been found that the emissions reduc-
tion of AVs was realized by a lower rate of acceleration 
during the trip.

The modeling results showed that AVs have the 
potential to substantially cut the amount of pollution 
emitted by road traffic. In the optimistic case (i.e., when 
all vehicles are replaced by fully automated vehicles), 
AVs reduce emissions of carbon monoxide (CO) by 
38.56%, carbon dioxide (CO2) by 17.09%, hydrocarbons 
(HC) by 36.3%, particulate matter (PMx) by 28.12%, and 
nitrogen oxides (NOx) by 19.78%.
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