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Abstract 

Background  Hydrological extremes such as floods generally have multidimensional attributes with complex 
dependence structures. This leads to the urgent demand of hydrological risk analysis within a multivariate context. In 
this study, the bivariate hydrologic risk framework is proposed based on the bivariate copula method. In the proposed 
risk analysis framework, bivariate flood frequency would be analyzed for different flood variable pairs (i.e., flood peak-
volume, flood peak-duration, flood volume-duration), and the bivariate hydrologic risk is then derived based on the 
joint return period of a flood variable pair. The distribution of one flood variable conditional on another flood variable 
can also be obtained through the copula method.

Results  The proposed method is applied to the risk analysis for the Xiangxi River in the Three Gorges Reservoir area, 
China, based on 50 years streamflow measurements. The results indicate that the bivariate risk for flood peak flow-
duration would keep constant for some time and then decrease as the increase of the flood duration. The bivariate 
risk for flood peak-volume holds a similar trend with the bivariate risk of flood peak-duration. The probability density 
functions (PDFs) of the flood volume and duration conditional on flood peak can also be generated through the best 
fitted copula function.

Conclusion  The results indicate that the distributions of flood volume would be highly influenced by the flood peak 
flows, in which the flood volume would be expected to increase as the increase of flood return period. Conversely, the 
distribution of the flood duration would not change significantly with the variation in the flood peak return period. 
The obtained conclusions from the bivariate hydrologic analysis can provide decision support for flood control and 
mitigation.
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Introduction
Extreme hydrological events such as floods, droughts 
and storms may lead to significant economic and social 
consequences and pose increasing risks on human beings 
and environment (Fan et  al. 2012; Hu et  al. 2021; Lyu 

and Fan 2021). Hydrological frequency analysis proce-
dures are essential and widely applied for analyzing and 
predicting such extreme hydrologic events, which pose 
direct impact on reservoir management and dam design 
(Li et al. 2008; Chebana et al. 2012; Huang and Fan 2021). 
At the drainage basin scale, consideration of flood risk 
plays a necessary role in planning of water infrastructure 
projects, for example in design of hydraulic structures 
(e.g., dam spillways, diversion canals, dikes and river 
channels), urban drainage systems, cross drainage struc-
tures (e.g., culverts and bridges), reservoir management, 
flood hazard mapping etc., (Ganguli and Reddy 2013; 
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Mei et  al. 2021). However, hydrological processes often 
involve multidimensional characteristics. Consequently, 
flood frequency analysis with considering more than one 
flood variable would be more effective in investigating 
the probabilistic flooding risk.

In recent years, copulas have been widely used for 
multivariate hydrologic studies, such as multivariate 
flood frequency analysis (Zhang and Singh 2006; Sraj 
et al. 2015; Fan et al. 2020a, b; 2021a), compound floods 
consisting of river discharges and seal level rise (e.g., 
Moftakhari et  al. 2017; Sadegh et  al. 2018; Fan et  al. 
2021b), drought assessment (Song and Singh 2010; Kao 
and Govindaraju 2010; Ma et al. 2013; Zhang et al. 2013), 
storm or rainfall dependence analysis (Zhang and Singh 
2007; Vandenberghe et  al. 2010), and streamflow simu-
lation (Lee and Salas 2011; Kong et  al. 2015). The main 
advantage of copula functions over classical bivariate 
frequency analyses is that the selection of marginal dis-
tributions and multivariate dependence modelling are 
two separate processes, giving additional flexibility to 
the practitioner in choosing different marginal and joint 
probability functions (Zhang and Singh 2006; Genest and 
Favre 2007; Karmakar and Simonovic 2009; Huang et al. 
2017). Thus, in flood frequency analysis, the distributions 
of flooding peak, volume and duration can be quantified 
through various parametric or non-parametric distribu-
tion formulations. For example, Karmakar and Simonovic 
(2009) investigated the impacts of selection of marginal 
distributions on the performance of copulas. Besides, 
many other papers were proposed for copula analysis, 
such as unknown parameter estimation (Salvadoriet al. 
2007), goodness-of-fit testing (Genest et  al. 2009) and 
multivariate return period calculation (Salvadoriet al. 
2011; Vandenberghe et al. 2010; Graler et al. 2013).

The Three Gorges Dam (TGM) is the largest hydraulic 
project in terms of design capacity over the world. The 
TGM project has produced dramatic benefits in flood 
control, power generation and navigation. Recently, the 
impacts of the TGM project on hydrology and environ-
ment have been attracting the world’s attention. The 
Xiangxi River is the largest tributary of Yangtze River 
in the Hubei part of the Three Gorges Reservoir (TGR) 
area. Amounts of research studies have been conducted 
in this area, mainly focusing on hydrological model-
ling, water quality management and ecological studies 
(Ye et  al. 2009; Xu et  al. 2010; Han et  al. 2014a, b). For 
instance, Han et al. (2014b) analyzed heterogeneous pre-
cipitation and streamflow trends in the Xiangxi River 
watershed, 1961–2010. Li et  al. (2015) revealed hydro-
logic risk analysis for nonstationary streamflow records 
under uncertainty. However, extreme hydrologic events, 
especially flooding are one of the major natural disasters 
encountered by local people, due to the temporal-spatial 

variations of precipitation and the complex terrain and 
geographical conditions in this area. For example, the 
peak flow of Xiangxi River reached 1590  m3/s on July 2, 
1998; the mountain flash flood happened on August 9, 
2000, leading to property losses more than three million 
RMB (Water Conservancy Bureau of Xingshan 2004). 
Consequently, robust approaches are desired for evaluat-
ing the flooding risk in Xiangxi River. Such approaches 
are expected to be able to reflect interactions among 
flood peak, volume and duration. Nevertheless, few 
research was conducted on flooding risk analysis in the 
Xiangxi River.

The objective of this research is to develop an inte-
grated risk indicator based on interactive analysis of mul-
tiple flood variables in the Xiangxi River, China. Such an 
analysis will be based on provision of bivariate copulas. 
Notably, systematic evaluation of bivariate hydrologic 
risks will be undertaken, aiming at revealing significance 
of effects from persisting high risk levels due to impacts 
from multiple interactive flood variables. Moreover, 
the conditional probability density distributions (PDFs) 
under peak flows with different return periods will be 
characterized, intending to explore potential control 
and management practices once a flood has occurred. 
The aims of this paper are as follows: (i) establishing the 
bivariate copulas for the three pairs of flooding variables 
[i.e., flooding peak and volume (P–V), flooding peak and 
duration (P-D), flooding volume and duration (V-D)] 
in the Xiangxi River; (ii) choosing the most appropriate 
copulas for the three pairs of flooding variables based 
on the RMSE and AIC criteria; (iii) comparing primary, 
bivariate and secondary return periods; (iv) evaluating 
the bivariate hydrologic risks; and (v) characterizing the 
PDFs of flood volume and duration conditional on flood 
peak flows with different return periods.

Overview of the studied watershed
Site description and data collection
The Xiangxi River is located between 30.96–31.67° N and 
110.47–111.13°  E in Hubei part of China TGR region, 
draining an area of about 3200  km2, as shown in Fig. 1. 
The Xiangxi River originates in the Shennongjia Nature 
Reserve with a main stream length of 94 km, and a catch-
ment area of 3099 km2, which is one of the main tribu-
taries of the YangtzeRiver (Han et  al. 2014a).  The river 
experiences  a northern subtropics climate. Annual pre-
cipitation is 1100 mm and ranges from 670 to 1700 mm 
with considerable spatial and temporal variability (Xu 
et al. 2010). The main rainfall season is May–September, 
with a flooding season from July to August. The annual 
average temperature in this region is 15.6 °C and ranges 
from 12 to 20  °C. The Xingshan Hydrologic Station 
(110°45′0″ E, 31°13′0″ N) is located on the main stem of 
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Xiangxi River, with a drainage area of 1900 km2. In this 
study, total fifty years’ daily discharge data (1961–2010) 
from Xingshan Hydrologic Station would be used for 
probabilistic assessment of flood risks in Xiangxi River.

Historical flooding characteristics in Xiangxi River
Based on the daily stream flow data, the annual maxi-
mum peak discharge corresponding hydrograph volume 
and duration values can be obtained. Hence, although 
the peak discharges are definitely annual maxima, the 
hydrograph volumes and durations are not necessarily 
also annual maximums (Sraj et al. 2015). The flood peak 
applied in this study is defined as the maximum daily flow 
during the flood event, with flood duration being defined 
as the total number of days for the flood event, and flood 
volume being considered as the cumulative flow volume 
during the flood period. Such flood characteristics are 
obtained based on the annual scale, meaning in each year 
one flood would occur. This single-peaked flood hydro-
graph is shown in Fig. 2. Flood duration (D) can be deter-
mined by identifying the time of rise (point “s” in Fig. 2) 
and fall (point “e” in Fig. 2) of the flood hydrograph. The 
start of the flood is marked by the sharp rise of the hydro-
graph and end of the flood runoff is identified by the 
inflection point on the receding limb of the hydrograph. 
Between these two points, the total flood volume is esti-
mated. If the rise time of the flood hydrograph is denoted 

by SD (day) and fall by ED (day), the flood volume (V) 
of each flood event is determined using following expres-
sion (Yue 2000, 2001; Fan et al. 2018):

where Qij is the jth day observed stream flow value for 
ith year, Qis and Qie is the observed daily stream flow 
value on start and end day of the flood hydrograph for ith 
year, respectively. SDi and EDi is the start and end day of 
a flood event in the ith year, respectively. Di is the flood 

(1)

Vi = (V total
i − V

baseflow
i ) =

EDi
∑

j=SDi

Qij −
1

2
(Qis + Qie)(1+ Di)

Fig. 1  The location of the studied watershed

Fig. 2  Typical flood hydrograph showing flood flow characteristics 
(adapted from Ganguli and Reddy 2013)
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duration in the ith year. The annual flood peak is obtained 
by (Fan et al. 2018):

The flood duration can be given by:

Once the flood characteristics are obtained from daily 
stream flow data, then flood frequency analysis can be 
analyzed. Table 1 shows some descriptive statistics values 
of the considered variables (peak discharge, Q; hydro-
graph volume, V; and hydrograph duration, D). The 
positive values of kurtosis and skewness suggest that the 
flood variables can be modeled by sharp and right tailed 
distributions.

Methods
Concept of copula
Copula functions connect univariate marginal dis-
tribution functions with the multivariate probability 
distribution:

where FX1(x1), FX2(x2), ..., FXn(xn) are marginal distri-
butions of random vector (X1, X2, …, Xn). If these mar-
ginal distributions are continuous, then single copula 
function C exists, which can be written as (Sraj et  al. 
2015):

(2)
Qi = max

{

Qij , j = SDi, SDi+1, . . . , EDi

}

, i = 1, 2, . . . , n.

(3)Di = EDi−SDi, i = 1, 2, . . . , n.

(4)
F(x1, x2, ..., xn) = C

(

FX1(x1), FX2(x2), ..., FXn(xn)
)

(5)
C(u1, u2, ..., un) = F

(

F−1
X1

(u1), F
−1
X2

(u2), ..., F
−1
Xn

(un)
)

More details on theoretical background and properties 
of various copula families can be found in Nelsen (2006). 
In the following section, brief details of copulas used in 
the present study are presented.

One parameter archimedean copulas
A number of copula functions are widely used in practice, 
mainly including the Archimedean, elliptical, extreme 
value copulas. Among them, the Archimedean copu-
las are quite attractive in hydrologic frequency analysis, 
because they can be easily generated, and are capable of 
capturing wide range of dependence structure with sev-
eral desirable properties, such as, symmetry and asso-
ciativity (Ganguli and Reddy 2013). In the present study, 
Ali-Mikhail-Haq, Cook-Johnson and Gumbel-Hougaard 
and Frank copulas are considered for probabilistic assess-
ment of flood risk, which belong to the class of Archime-
dean copula. In general, a bivariate Archimedean copula 
can be defined as (Nelsen 2006):

where u1 and u2 is a specific value of U1 and U2, respec-
tively; U1 = FX1(x1) and U2 = FX2(x2) ; FX1 and FX2 is the 
cumulative distribution function (CDF) of random vari-
able X1 and X2, respectively; φ is the copula generator 
that is a convex decreasing function with φ(1) = 0 and 
φ−1(.) = 0 when u2 ≥ φ(0); the subscript θ of copula C is 
the parameter hidden in the generating function. For one 
parameter copula, the unknown parameter (i.e., θ) can 
be estimated using the method of moments with the use 
of Kendall correlation coefficient (Nelsen 2006). For the 
copulas with two or more unknown parameters, the max-
imum likelihood method or maximum pseudo-likelihood 
method can be selected (Zhang and Singh 2007; Sraj et al. 
2015). Table 2 presents some basic characteristics of the 
applied single-parameter bivariate Archimedean copulas.

Evaluation of copulas
Since there is a family of copulas, the question is: 
which copula should be used to obtain joint distribu-
tions of flood variables (Zhang and Singh 2006). Vari-
ous approaches have been proposed for identification of 
appropriate copulas (Genest and Rivest 1993; Ganguli 
and Reddy 2013; Sraj et al. 2015). In this study, the pro-
cedure for identification of copulas described by Genest 
and Rivest (1993) would be applied, the detailed steps 
of such a procedure can be found in Zhang and Singh 
(2006).

Moreover, the goodness-of-fit statistic tests would to 
be performed for both marginal and joint distributions 
through root mean square error (RMSE) and Akaike 
Information Criterion (AIC). RMSE can be expressed as:

(6)Cθ (u1, u2) = φ−1(φ(u1)+ φ(u2))

Table 1  Statistical characteristics of flood variables

No. Flood characteristics

Peak (m3/s) Volume (m3/s 
day)

Duration (day)

1 Percentile

 Minimum 91 72 3

 25% 324 530.8 5

 50% 451.5 713.3 6

 75% 684 1189.5 8

 Maximum 1050 2430.8 13

2 Range 959 2358.8 10

3 Mean 510 920.5 6.56

4 Std 243.8 531.9 2.31

5 Skewness 0.74 0.959 2.72

6 Kurtosis 2.61 3.20 0.68
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where E(.) is the expectation of the random variable; 
xc(i) denotes the ith computed value; xo(i) denotes the 
ith observed value; k is the number of parameters used 
in obtaining the computed value; N is the number of 
observations. The AIC, developed by Akaike (1974), is 
also employed to identify the appropriate probability dis-
tribution. AIC can be obtained either by calculating the 
maximum likelihood or by calculating the mean square 
error of the model, which can be formulated as (Zhang 
and Singh 2006):

or,

where,

In the process of the identification of marginal distri-
butions of flood variables, the values of xo are presented 
as the empirical nonexceedance probabilities of the flood 
variables, and the values of xc are presented as the calcu-
lated probabilities obtained from the generated marginal 
distributions. The empirical nonexceedance probabilities 
for observed values of the flood variables are estimated 
through the following equation (Gringorten 1963; Cun-
nane 1978; Adamowski 1985; Zhang and Singh 2006):

(7)

RMSE =
√

E(xc − xo)2 =

√

√

√

√

1

N − k

N
∑

i=1

[xc(i)− xo(i)]2

(8)

AIC = − 2× log
(

maximum likelihood for model
)

+ 2×
(

no. of fitted parameters
)

,

(9)
AIC = N × log(MSE) + 2×

(

no. of fitted parameters
)

,

(10)

MSE = E(xc − xo)
2 =

1

N − k

N
∑

i=1

[xc(i)− xo(i)]
2.

(11)Pm =
m− 0.44

N + 0.12

where m is the index of the mth smallest observation 
in the data set arranged in ascending order; Pm is the 
probability of the mth value; N is the number of the 
observations.

Meanwhile, in the process of appropriate copula iden-
tification, the values of xo are presented as the empirical 
joint frequency (nonexceedance joint probabilities) of the 
flood variables, and the values of xc are presented as the 
calculated joint probabilities obtained from the gener-
ated copula distributions. The joint cumulative frequency 
can be obtain through the following equation (Zhang and 
Singh 2006):

N is the number of the observations, and i, j = 1, 2,…,N.

Conditional distributions
If an appropriate copula function is selected, the condi-
tional joint distribution can then be obtained. Follow-
ing Zhang and Singh (2006), the conditional distribution 
function of U1 given U2 = u2 can be expressed as:

Similar conditional cumulative distribution for U2 
given U1 = u1 can be obtained. Moreover, the conditional 
cumulative distribution function of U1 given U2 ≤ u2 can 
be expressed as:

Likewise, an equivalent formula for the conditional dis-
tribution function for U2 given U1 ≤ u1 can be obtained.

The probability density function (pdf) of a copula func-
tion can be expressed as:

(12)

F(xi, yi) = P(X ≤ xi, Y ≤ yi)

=
No. of (xj ≤ xi and yj ≤ yi)− 0.44

N + 0.12
,

(13)

CU1|U2=u2(u1) = C(U1 ≤ u1|U2 = u2) =
∂

∂u2
C(u1,u2)|U2 = u2.

(14)

CU1|U2≤u2(u1) = C(U1 ≤ u1|U2 ≤ u2) =
C(u1,u2)

u2
.

Table 2  Basic properties of applied copulas

a D1 is the first order Debye function, and for any positive integer k, Dk (x) =
k

xk

∫

k

0

t
k

et−1
dt

Copula Name Function[Cθ (u1, u2)] θ ∈ Generating 
functions [ φ(t)]

τ = 1+ 4
∫ 1

0

φ(t)
φ′(t)

dt

Ali-Mikhail-Haq u1u2
[1−θ(1−u1)(1−u2)]

[− 1, 1) ln( [1−θ(1−t)]
t

)
3θ−2
θ

− [ 2
3
(1− θ−1)2 ln(1− θ)]

Cook-Johnson [u−θ
1 + u−θ

2 − 1]−1/θ [− 1, ∞)\{0} t−θ − 1 θ
θ+2

Gumbel-Hougaard exp{−[(− ln u1)
θ + (− ln u2)

θ ]1/θ } [1, ∞) (− ln t)θ 1− θ−1

Frank − 1
θ
ln{1+ (e−θu−1)(e−θv−1)

e−θ−1
} [− ∞, ∞)\{0} ln[ e

−θ t−1
e−θ−1

] 1− 4
θ
[D1(−θ)− 1] a
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and the joint pdf of the two random variables can be 
obtained as:

Consequently, the conditional pdf of X1, given the value 
of X2, can be formulated as:

And the conditional pdf of X2, given the value of X1, can 
be expressed as:

Primary and secondary return period
If appropriate copula functions are specified to reflect the 
joint probabilistic characteristics among peak, duration 
and volume of the flood, some conditional, primary and 
secondary return periods can be obtained. Specifically, 
Joint (primary) return periods called OR and AND can be 
formulated as (Salvadoriet al. 2007; Graler et al. 2013; Sraj 
et al. 2015):

where μ is the mean inter arrival time of the two consec-
utive flooding events.

The secondary return period, called Kendall’s return 
period, is defined as follows (Salvadoriet al. 2011; Sraj et al. 
2015):

where KC is the Kendall’s distribution, associated with 
theoretical Copula function Cθ. For Archimedean copu-
las, KC can be expressed as (Nelsen 2006):

where φ′(t+) is the right derivative of the copula genera-
tor function φ(t).

(15)c(u1,u2) =
∂2C(u1,u2)

∂u1∂u2
,

(16)

f (x1, x2) =
∂2C(u1,u2)

∂x1∂x2
=

∂2C(u1,u2)

∂u1∂u2

∂u1

∂x1

∂u2

∂x2

= fX1
(x1)fX2

(x2)c(u1,u2).

(17)f (x1|x2) =
f (x1, x2)

fX2(x2)
= fX1(x1)c(u1,u2).

(18)f (x2|x1) =
f (x1, x2)

fX1(x1)
= fX2(x2)c(u1,u2).

(19)TOR
u1,u2

=
µ

1− CU1U2(u1,u2)
,

(20)TAND
u1,u2

=
µ

1− u1 − u2 + CU1U2(u1,u2)
,

(21)Tu1,u2 =
µ

1− KC(t)
,

(22)KC(t) = t −
φ(t)

φ′(t+)
,

Bivariate hydrologic risk analysis
Risk is the probability of occurrence of an extreme, 
dangerous, hazardous, or (more generally) undesirable 
event (Kite 1988). In engineering design of hydrologic 
infrastructures, risk can be explained as the chance of 
downstream flooding attributable to uncontrolled water 
release from upstream flooding facilities (e.g., a reser-
voir), leading to life and property losses (Gebregiorgis 
and Hossain 2012). Yen (1970) proposed a formulation 
for the risk of failure associated with the return period of 
a flooding event, which can be expressed as:

where R is the risk of failure; p and q is the exceedance 
and nonexceedance probability, respectively; T is the 
return period of a flooding event; n is the design life of 
the hydraulic structure.

In practical flooding control practice, it is necessary to 
characterize the flooding event through multiple aspects 
(e.g., peak and duration) rather than only one flood-
ing variable (e.g., peak). For example, a flood event with 
high peak flow and long duration may result in serious 
loss in property, while a short-duration event with high 
peak may only cause a flash flood. Consequently, bivari-
ate hydrologic risk would be much helpful in taking 
nonstructural safety measures and developing flood miti-
gation strategies. In this study, the joint return period in 
“AND” case is applied to define the bivariate risk analysis 
as follows:

Results
Marginal probability distribution functions of flood 
variables
First, the univariate flood frequency analyses would be 
performed based on the historical flooding records. Many 
parametric distributions have been used to estimate 
flood frequencies from observed annual flood series, 
such as the general extreme value distribution in the 
United Kingdom, Log-Pearson Type-III in the U.S. and 
Pearson III in China (Adamowski 1989; Kidson and Rich-
ards 2005; Wu et al. 2013). In this study, three parametric 
distribution functions, including Gamma, GEV and Log-
normal were used to fit the observed flooding data. The 
parameters in these three distributions were estimated 
through maximum likelihood estimation (MLE) method. 
The expressions for probability functions (PDFs) and the 
values of their associated unknown parameter estimated 
through MLE are presented in Table 3.

(23)R = 1−(1− p)n = 1− qn = 1−(1−1/T )n,

(24)Ru1,u2 = 1− (1−
1

TAND
u1,u2

)n.



Page 7 of 22Fan ﻿Environmental Systems Research  2022, 11(1):18	

Figure 3 illustrates the fitted marginal distributions for 
the three flood variables through Gamma, GEV and Log-
normal distribution functions. For empirical CDF of the 
observations was calculated through Eq.  (9). The CDFs 
for the marginal distributions of flood variables (in Fig. 3) 
show good agreement between theoretical distributions 
and the empirical distributions. In detail, all three CDFs 
(i.e., Gamma, GEV, Lognormal) fit the flood peak and 
volume better than duration.

The performance of each marginal distribution is eval-
uated against the empirical nonexceedance probability, 
which is calculated through Eq.  (11), using root mean 
square error (RMSE) and Akaike Information Criterion 
(AIC) criteria. The results are presented in Table 4, which 
provides a comparison of performances for various mar-
ginal distributions. From Table 4, the model results indi-
cate that, based on the historical flooding records from 
1961 to 2010, the log-normal distribution is the best fit 
model for peak flow, volume and duration. Although 
the differences among relative performances of Gamma, 
GEV and Lognormal are very small on fitting the flood 
duration (i.e., the RMSE values of Gamma, GEV and Log-
normal is 0.0663, 0.0673, and 0.0655, respectively), the 
Lognormal distribution would be chosen due to its low-
est RMSE and AIC values.

Dependence of flood variables
The dependence of flood variables was evaluated through 
the Pearson’s linear correlation (r), and one non-paramet-
ric dependence measure, Kendall’s tau. The Pearson’s lin-
ear correlation, measures the linear dependence between 
two random variables, but assumes that the underly-
ing distribution is normal, and it is not invariant under 
monotonic non-linear transformation (Reddy and Gan-
guli 2012). The Kendall’s tau is calculated using ranking 
of variable values rather than actual values. Therefore, the 
value of Kendall’s tau is invariant under monotonic non-
linear transformations and no distributional assumption 

is required. Hence, Kendall’s tau is more preferred to 
evaluate the dependence between two random variables 
with nonlinear relationship in hydrology.

Table  5 presents the values of Pearson’s linear cor-
relation coefficient and Kendall’s tau among flood vari-
ables—flood peak, volume and duration. It can be seen 
that the values of Pearson’s r and Kendall’s tau between 
peak and volume are highest, followed by those between 
volume and duration, and then flood peak and duration. 
In detail, the Pearson, Kendall correlation coefficient val-
ues were 0.75 and 0.63 for peak-volume, 0.46 and 0.52 for 
volume-duration, and − 0.06 and 0.15 for peak and dura-
tion. These results indicate that the correlation between 
the flooding components of peak and volume would be 
higher than that for volume and duration. In our case, 
the correlation coefficient for peak and duration is much 
smaller than for the other two pairs (i.e., peak-volume 
and volume-duration), which is consistent with conclu-
sion from previous studies (Grimaldi and Serinaldi 2006; 
Karmakar and Simonovic 2009; Reddy and Ganguli 2012; 
Sraj et al. 2015).

Joint distributions based on copula method
Four Archimedean families of copulas, including 
Ali-Mikhail-Haq, Cook-Johnson (Clayton), Gumbel-
Hougaard and Frank copulas are applied to model the 
dependence among flood variables. Since all the three 
copulas are single-parameter Archimedean copula, the 
unknown parameter can be estimated by method-of-
moments-like (MOM) estimator based on inversion of 
Kendall’s tau. For our current study, the values of Ken-
dall’s tau for flood peak-volume and volume-duration 
are 0.63 and 0.52, respectively. Consequently, the Ali-
Mikhail-Haq could not be applied for the pairs of peak-
volume and volume-duration since it can only be used 
with the Kendall’s tau value varied between −  0.18 and 
0.33 (Nelsen 2006). Therefore, the Ali-Mikhail-Haq cop-
ula may not be applicable for dependence analysis of 

Table 3  Parameters of marginal distribution functions of flood variables

Name Probability density function Parameters

Peak Volume Duration

Gamma 1
baŴ(a)

xa−1e−
x
b , Ŵ(a) =

∫∞

0 ua−1e−udu a 4.50 3.06 8.62

b 113.26 301.24 0.76

GEV ( 1
σ
) exp(−(1+ k (x−µ)

σ
)−

1
k )(1+ k (x−µ)

σ
)−1− 1

k k 0.032 0.099 0.073

μ 185.0 373.16 1.73

σ 396.15 664.96 5.43

Lognormal 1

x
√

2πσy
exp(−

(y−µy )

2σ 2
y

)

y = log(x), x > 0, – ∞ < μy < ∞, σy > 0

μy 6.12 6.65 1.82

σy 0.50 0.63 0.34
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peak-volume and volume-duration. The joint distribution 
functions for flood peak and volume, obtained through 
the four above-mentioned copulas, are shown in Fig.  4; 
the joint distributions for volume-duration, and peak-
duration are shown in Figs. 5 and 6, respectively.

Since there is a class of copulas, investigating the differ-
ences among the four chosen copulas and identifying the 

most appropriate copulas for further analysis are neces-
sary. In this study, the method for copula identification 
is based on the process provided by Zhang and Singh 
(2006). Figures 7, 8, 9 show the comparison of joint cumu-
lative probabilities obtained through empirical equation 
and copula for flood peak-volume, volume-duration and 
peak-duration, in which the empirical probabilities were 
obtained through Eq.  (12). For flood peak-volume, all 
three copulas (excluding Ali-Mikhail-Haq copula) pro-
duced a good graphical fit to the empirical probabilities, 
as shown in Fig. 7. However, the Gumbel-Hougaard and 
Frank copulas showed better results for plotting the joint 
probability of flooding peak and volume. As can be seen 
from Fig.  8, the Gumbel-Hougaard and Frank copulas 
produced better fits to the empirical probabilities than 
that of Cook-Johnson copula (Ali-Mikhail-Haq copula 
was excluded). For flood peak and duration, all the four 
copulas can be applied. As shown in Fig.  9, Gumbel-
Hougaard, Frank and Ali-Mikhail-Haq copulas produced 
good results, while the Cook-Johnson resulted in under-
estimation for the joint probabilities.

To further identify the best copula, the root mean 
square error (RMSE) (expressed by Eq.  (7)), and Akaike 
information criterion (AIC) (expressed by Eq.  (9)) are 
used to test the goodness of fit of sample data to the theo-
retical joint distribution obtained using copula functions. 
Table 6 shows the comparison of RMSE and AIC values 
for joint distributions obtained through different cop-
ula functions for flood peak-volume, peak-duration and 
volume-duration. The results indicate that the Gumbel-
Hougaard and Frank copulas performed better for mod-
elling the joint distributions for flood peak-volume and 
volume-duration than Cook-Johnson copula. The differ-
ences between Gumbel-Hougaard and Frank copulas in 
quantifying the joint probabilities of flood peak-volume 
and volume-duration are rarely small. For example, the 
RMSE value for the Gumbel-Hougaard and Frank copula 
of peak-volume is 0.0312 and 0.0304, respectively, while 
the AIC value is −  344.8576 and −  347.4879, respec-
tively. Based on the values of RMSE and AIC, it can be 
concluded that the Frank copula would be best for quan-
tifying the joint distributions of flood peak-volume and 
volume-duration, while the Ali-Mikhail-Haq copula per-
forms better in modelling the joint distribution of flood 
peak-duration than the other three copulas.

Conditional cumulative distribution functions and return 
periods of flood characteristics
Based on the results presented in Table 6, the conditional 
cumulative distribution functions (CDFs) for peak-vol-
ume, and volume-duration can be obtained through the 
Frank copula, while the conditional CDFs for peak-dura-
tion can be quantified by the Ali-Mikhail-Haq copula. 

Fig. 3  Comparison of different probability density estimates with 
observed frequency
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Figure  10 shows the conditional CDFs of flooding vari-
ables for the Xiangxi River at Xingshan Station. It can 
be seen that, among the flooding pairs peak-volume, 
peak-duration and volume-duration, the values of condi-
tional CDF for one flooding variable would decrease as 
the value of other flooding variable increase. This indi-
cates positive correlation structures between peak-vol-
ume, peak-duration, and volume-duration. Besides, the 
decreasing trend of conditional CDFs for peak-duration 
is less than the other two pairs, indicating less correlation 
structures between peak and duration. This is consistent 
with the results presented in Table 5.

The multivariate flooding frequency analysis is help-
ful in understanding critical hydrologic behavior of flood 
through analyzing the concurrence probabilities of vari-
ous combinations of flooding characteristics. The joint 
return period and second return period are calculated 
based on Eqs. (19)–(21) to reflect the historical flooding 
characteristics. Table 7 presents the primary return peri-
ods of peak, volume, and duration obtained by univari-
ate marginal distributions, and joint return periods for 
“AND” and “OR” cases for bivariate distributions. In gen-
eral, the joint return period in “AND” case is longer than 
the joint return period in “OR” case when same univari-
ate return period is assumed. For three pairs of flooding 
variables (i.e., peak-volume, peak-duration, volume-dura-
tion), the joint period in “OR” case do not vary signifi-
cantly with the same primary joint periods. Conversely, 
the joint period in “AND” case for peak-volume is much 
longer than the other two flooding pairs. For example, 
consider the primary return periods of peak, volume, 
duration are 100 years. The joint return period TAND

PV  and 
TAND
DV  is 1255.64 and 1710.98  years, respectively, while 

the joint return period TAND
DV  is 5532.43 years. This is due 

to the less correlation between flooding peak and dura-
tion, as shown in Table  4. Also, the secondary return 
periods are also presented in Table  7. The secondary 
return period can be useful for analyzing risk of super-
critical flood events, which is defined as the average time 
between the occurrence of two supercritical flooding 
events. As the primary return period increases, the prob-
ability of supercritical flooding events decreases, leading 
to increase of the secondary return period. Furthermore, 
the secondary return period is always higher than that of 
the primary return period and the join return periods of 
TOR and TAND.

Bivariate hydrologic risk analysis for Xiangxi River
For one flooding event, the failure of hydraulic structures 
is mainly due to high peak flow. Therefore, the flooding 
peak flow would be the essential factor to be considered 
for analyzing hydrologic risks. However, other flooding 
variables (i.e., flooding duration and volume) are also 
quite critical for actual flooding control and mitigation. 
In detail, the flooding duration is the vital factor for deci-
sion maker in characterizing the flooding control pres-
sure, while the flooding volume is related to the diversion 
of flooding. Consequently, an integrated risk analysis 
framework to consider more flooding variables, can be 
more helpful for actual flood control than the traditional 
risk analysis in which only the flooding peak is consid-
ered. Therefore, in this study, bivariate hydrologic risk 
analysis method in considering peak-duration and peak-
volume would be proposed to identify the inherent flood-
ing characteristics in the Xiangxi river basin.

There are no reservoirs in the Xiangxi River near 
Xingshan station. Consequently, we mainly analyze 
the failure risk for river levee around Xingshan Station. 
Three designed flows are considered for the river levee 
of Xiangxi River near Xingshan station, which are 1000, 
1200 and 1500  m3/s with the return period being about 
20, 50, and 100 years, respectively. Four service time sce-
narios are also assumed for the river levee, namely 10, 20, 
50 and 100 years.

Bivariate risk analysis for flooding peak flow and duration
Figure 11 shows the variations in the failure risk of river 
levee around Xingshan Station under different flooding 

Table 4  Comparison of RMSE and AIC values of flood variables for different statistical distributions

PDF RSME AIC

Peak Volume Duration Peak Volume Duration

Gamma 0.0378 0.0445 0.0663 − 323.5512 − 307.1904 − 267.3406

GEV 0.0340 0.0428 0.0673 − 332.2144 − 309.1165 − 263.8541

Lognormal 0.0265 0.0361 0.0655 − 358.8192 − 328.2335 − 268.6465

Table 5  Values of correlation coefficients for flooding 
characteristics

No. Flood characteristics Kendall’s tau Pearson’s r

1 Peak-volume 0.63 0.75

2 Volume-duration 0.52 0.46

3 Peak-duration 0.15 − 0.06
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peak-duration scenarios. From this figure, it can be seen 
that for the same service time, the risk would decrease 
as the increase of the designed flow. Similarly, for the 
same designed flow, the failure risk of river levee would 
increase as the increase of service time. For example, as 
presented in Table 8, if the service time of the river levee 
is designed to be 10  years, the failure risk of the river 
levee for the designed flow 1000, 1200 and 1500  m3/s 
would be 43.6, 22.34 and 10.97%, respectively. Mean-
while, the potential risk of designed flow 1000, 1200, 
1500  m3/s under 10-year service time would be 43.6, 
22.34, 10.97%, respectively.

For bivariate hydrologic risk analysis, one of the major 
characteristics is that the variation of the hydrologic 
risk can be reflected with respect to flooding duration 
or volume. Figure  11 also shows the changing trends of 
the flooding risk with respect to flooding duration under 
different designed flows and service time. In this figure, 
the initial risk values (points on the y-coordinate) are 
obtained through Eq. (23) without considering the flood-
ing duration scenarios, while the points on the solid, 

dashed and asterisk lines are derived based on Eq.  (24). 
The solid, dashed and asterisk lines in Fig.  11 indicate 
that, the bivariate risk of flooding peak flow and duration 
would keep constant for some time and then decrease 
with the increase of flooding duration for all designed 
flows and service time. However, the detailed decreas-
ing points for different designed flow under different ser-
vice time are also different. As presented in Table 8, for a 
designed flow of 1000 m3/s and a service time of 10 years, 
the failure risk of the river levee would keep at about 40% 
and then decrease significantly if the flooding duration is 
larger than 6 days. Conversely, the risk for the designed 
flow of 1000 m3/s and service time of 100 years would not 
change significantly until the duration larger than 8 days.

The bivariate risk of the flooding peak flow and dura-
tion is much meaningful for actual hydrologic facil-
ity design and potential flooding control. In practical 
engineering hydrologic facility construction, the return 
period of peak flow would be the key factor to be consid-
ered. Moreover, in addition to the hydrologic facility con-
struction, materials for flood defense such sand, wood, 

Fig. 7  Comparison of joint cumulative probabilities obtained through empirical equation and copula for flood peak and volume
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bags and so on, usually need to be prepared for flood-
ing control at some important spots (e.g., near cities) of 
the river levee. In the preparation of those flood defense 
materials, the flood risk with respect to the flooding 
duration can be a useful reference. For example, as pre-
sented in Fig.  11 and Table  8, if the river levee is con-
structed with a designed flow of 1000  m3/s and 10-year 
service time, the flooding risk with the flooding duration 
of 2, 4, 6, 8, 10-day would be 43.6, 42.67, 34.08, 18.52, 
7.45%, respectively. Such risk values can be considered as 
references for decision makers to determine how much 
materials would be prepared for flood defense.

Bivariate risk analysis for flooding peak flow and volume
The bivariate hydrologic risk for flood peak flow and vol-
ume indicates the probability of co-occurrence of flood 
peak flow and volume values. Similar with the bivari-
ate hydrologic risk for flood peak-duration, the initial 
risk values are derived based on Eq.  (23) for different 
designed flows and service time, and such risk values 

would decrease as the increase of flood volume, as shown 
in Fig. 12. Table 9 presents the detailed flooding risk val-
ues for different designed flows and service time, with 
respect to different flood volume scenarios. In general, 
the bivariate risk values for flood peak-volume would not 
decrease significantly for all designed flows and service 
time periods at low flooding volumes. This suggests that 
the occurrence of one flooding peak flow would usually 
be accompanied with some flood volumes, e.g. 1500 m3/s, 
as presented in Table 9. However, as shown in Fig. 12, for 
one designed flow and service time period, the increase 
of flood volume would lead to decrease for the bivari-
ate risk for flood peak flow and volume. As can be found 
in Table  8, for a designed flow of 1000  m3/s and a ser-
vice time period of 100 years, the failure risk of the river 
levee would be more than 95% with the flood volume 
being less than 2000  m3/s. Such a risk value would be 
decrease to 87.81, 66.43, 43.33 and 26.18 with the flood 
volume increasing to 2500, 3000, 3500 and 4000  m3/s, 
respectively.

Fig. 8  Comparison of joint cumulative probabilities obtained through empirical equation and copula for flood duration and volume
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The implication for the bivariate risk of flooding peak 
flow and volume is to provide decision support for 
hydrologic facility design and establishment of flooding 
diversion areas. The actual flooding control practices, 
the excess water of floods can be redirected temporary 
holding ponds or other bodies of water with a lower 
risk or impact to flooding. For example, in China, the 
flood diversion areas are rural areas that are deliberately 
flooded in emergencies in order to protect cities. In flood 

diversion practice, the bivariate risk for flood peak flow 
and volume would be an important reference for the 
design of flooding diversion areas. For example, as shown 
in Fig. 12 and Table 9, for the river levee with a designed 
flow of 1000 m3/s and 10-year service period, the flood-
ing risk value would be 43.60, 43.55, 41.39, 31.44, 18.98, 
10.34% with a flood volume being 500, 1000, 1500, 2000, 
2500, and 3500 m3/s, respectively. These risk values sug-
gest the flood diversion area be at least designed based 

Fig. 9  Comparison of joint cumulative probabilities obtained through empirical equation and copula for flood peak and duration

Table 6  Comparison of RMSE and AIC values for joint distributions through different copulas

Copula RSME AIC

Peak-volume Peak-duration Volume-duration Peak-volume Peak-duration Volume-duration

Ali-Mikhail-Haq 0.0610 0.0514 0.0707 − 277.6384 − 294.7895 − 262.9122

Cook-Johnson 0.0665 0.2907 0.0873 − 269.0263 − 121.5381 − 241.8286

Gumbel-Hougaard 0.0312 0.0550 0.0589 − 344.8576 − 288.0178 − 281.1828

Frank 0.0304 0.0541 0.0559 − 347.4879 − 289.7032 − 286.3915
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Fig. 10  Conditional cumulative distribution function of flooding variables
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Table 7  Comparison of univariate, bivariate return periods for flood characteristics (year)

T Peak (m3/s) Volume (m3/s day) Duration (day) T
AND

PV
T
AND

PD
T
AND

DV
T
OR

PD
T
OR

DV
T
OR

PV

−

T
DV

−

T
DP

−

T
PV

5 689.54 1313.48 8.25 7.66 16.18 8.80 2.96 3.49 3.71 6.54 9.56 6.06

10 857.38 1730.89 9.60 21.19 59.78 25.78 5.46 6.20 6.54 16.83 32.61 14.70

20 1026.38 2173.89 10.87 65.75 229.22 84.03 10.46 11.35 11.79 49.39 119.82 40.48

50 1256.75 2809.50 12.51 338.46 1395.49 452.35 25.46 26.46 26.99 243.62 710.43 186.97

100 1438.39 3333.42 13.74 1255.64 5532.43 1710.98 50.46 51.51 52.07 889.62 2791.36 662.29

Fig. 11  Bivariate flooding risk under different flooding peak-duration scenarios

Table 8  The flooding risk in Xiangxi river under different peak-duration scenarios (%)

Service time 10 years 20 years 50 years 100 years

Designed flow (m3/s) 1000 1200 1500 1000 1200 1500 1000 1200 1500 1000 1200 1500

Duration (day)

2 43.60 22.34 10.97 68.19 39.69 20.73 94.29 71.76 44.06 99.67 92.02 68.71

4 42.67 21.80 10.69 67.13 38.85 20.24 93.81 70.76 43.18 99.62 91.45 67.71

6 34.08 16.95 8.21 56.55 31.03 15.75 87.55 60.50 34.85 98.45 84.39 57.55

8 18.52 8.81 4.19 33.60 16.85 8.20 64.08 36.96 19.25 87.10 60.26 34.79

10 7.45 3.45 1.62 14.34 6.78 3.21 32.09 16.09 7.83 53.88 29.59 15.05

12 2.58 1.18 0.55 5.09 2.35 1.10 12.25 5.77 2.72 23.00 11.20 5.38

14 0.85 0.39 0.18 1.69 0.77 0.36 4.16 1.92 0.90 8.16 3.80 1.78

16 0.28 0.13 0.06 0.55 0.25 0.12 1.37 0.63 0.29 2.73 1.25 0.58

18 0.09 0.04 0.02 0.18 0.08 0.04 0.46 0.21 0.10 0.91 0.41 0.19

20 0.03 0.01 0.01 0.06 0.03 0.01 0.15 0.07 0.03 0.31 0.14 0.07
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on a volume of 1500 m3/s, such the bivariate risk would 
not decrease significantly for the flood volume less than 
1500 m3/s.

Conditional probability density functions of flood 
characteristics
In addition to derive the conditional cumulative distri-
bution functions and conditional return periods based 
on the best-fitted copula for the historical flooding data, 
the conditional probability density functions of the flood-
ing variable can also be generated based on Eqs.  (15)–
(18). In flooding risk analysis, the peak flow would be 
the critical factor to judge whether a flood would occur. 

However, once the flood occurred, the severity of the 
flood would also influenced by other flooding variables 
such as flood duration and volumes. In detailed, the flood 
duration would be related to the flooding control pres-
sure in which flood defense materials should prepared for 
strengthening the river levee and some inspectors should 
cruise along the river to confirm the safety of the levee. In 
another side, the flood volume would highly influence the 
flood diversion practices, in which excess water would be 
diverted to temporary holding ponds with lower risk in 
order to protect cities.

Figure 13 shows the distributions of flood volume con-
ditional on the flood peak flows with different return 

Fig. 12  Bivariate flooding risk under different flooding peak-volume scenarios

Table 9  The flooding risks in Xiangxi river under different peak-volume scenarios (%)

Service time 10 years 20 years 50 years 100 years

Designed flow (m3/s) 1000 1200 1500 1000 1200 1500 1000 1200 1500 1000 1200 1500

Volume (m3/s)

500 43.60 22.34 7.67 68.19 39.70 14.76 94.29 71.76 32.92 99.67 92.03 55.00

1000 43.55 22.32 7.67 68.13 39.65 14.74 94.27 71.71 32.88 99.67 92.00 54.95

1500 41.39 21.19 7.28 65.64 37.90 14.03 93.08 69.61 31.46 99.52 90.76 53.03

2000 31.44 16.06 5.51 52.99 29.54 10.71 84.85 58.32 24.67 97.70 82.63 43.25

2500 18.98 9.67 3.31 34.36 18.41 6.52 65.09 39.86 15.51 87.81 63.83 28.61

3000 10.34 5.26 1.80 19.61 10.25 3.57 42.06 23.68 8.69 66.43 41.76 16.63

3500 5.52 2.81 0.96 10.74 5.54 1.91 24.72 13.27 4.71 43.33 24.78 9.21

4000 2.99 1.52 0.52 5.89 3.02 1.04 14.08 7.37 2.57 26.18 14.20 5.08
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periods. In this study, the flood peak flows with return 
periods of 10, 20, 50, and 100-year are under considera-
tion. Each curve represents the probability distribution 
function (PDF) of flood volume associated with a flood 
peak flow with a particular return period. According to 
the PDFs of flood volume, as the increase of flood return 
period, which is equivalent to higher peak flow of the 
flood, the flood volume would be expected to be higher 
as well. For example, as shown in Table 10, if a flood with 
10-year return period occurred, the flood volume is likely 
less than those accompanied with a flood with 20-year 
return period. Moreover, as can be seen from Table  10, 
the higher peak flows would usually lead to increases in 
the mean and standard deviation values of the flood vol-
ume PDFs. However, the increasing rate would gener-
ally decrease. For example, the mean values of the flood 
volume PDFs accompanied with the flood peaks with 
10 and 20-year return period would be 1658.09 and 
1814.52  m3/s, respectively, and the standard deviations 
would be 682.97 and 735.76  m3/s, respectively. In com-
parison, the mean values associated with the flood peaks 
with 50 and 100-year return period would be 1913.47 and 
1947.16  m3/s, respectively, and the standard deviation 
values would be 765.90 and 775.58  m3/s, respectively. 
Such PDFs of flood volume conditional on different 
flood peak flows can be considered as the references for 
flooding diversion practices and be involved in the flood 

optimization models to determine the capacities of flood-
ing diversion.

Figure  14 shows the distributions of flood duration 
conditional on the flood peak flows with different return 
periods. It is indicated that, the increase of flood return 
period would not significantly change the PDFs of the 
flood duration. As presented in Table 10, the mean and 
standard deviation values of the PDFs associated with 
the flood with 10-year return period would be 7.44 and 
2.32 days, while those values accompanied with the flood 
with 100-year return period would be 7.57 and 2.33 days. 
Such low impact of flood peak on the flood duration is 
due to the low correlation between flood peak and dura-
tion, as presented in Table  5. The engineering impli-
cations of the PDFs of flood duration conditional on 
flood peak can be useful for flood control. Once a flood 
occurred, the PDF of flood duration conditional on 
the flood can be provided as a reference to determine 
how much flood defense materials should prepared for 
strengthening the river levee and how long the inspectors 
should cruise along the river to confirm the safety of the 
levee.

Discussion and conclusions
In the present work, bivariate hydrologic risk for the 
Xiangxi River in the Three Gorges Reservoir area, 
China was analyzed based on bivariate copula meth-
ods. In the bivariate hydrologic risk analysis framework, 

Fig. 13  Probability density functions of volume under different peak flow return periods
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the bivariate frequency analysis, which considered the 
flooding variables pairs of flood peak, duration and vol-
ume, was firstly conducted through the Ali-Mikhail-Haq 
(AMH), Cook-Johnson, GumbelHougaard (GH), and 
Frank copulas. The root mean square error (RMSE) and 
Akaike Information Criterion (AIC) values were then 
employed to choose the most appropriate copula in mod-
elling joint distributions of the flooding variable pairs. 
The primary, conditional and secondary return periods 
were then derived based on the selected copula. The 
bivariate hydrologic risk was defined based on the joint 
return period of flooding variables to reflect the hydro-
logic risks of flood peak-duration and flood peak-volume 
pairs. Besides, the conditional probability distribution 

functions (PDFs) of flood volume and duration under dif-
ferent flood peak scenarios were also derived to explore 
the variation in PDFs of flood volume and duration cor-
responding to different flood peak flows.

The results indicated that the correlation coefficient 
for flood peak and duration is much smaller than the 
other two pairs of flood variables (i.e., flood peak-vol-
ume and flood volume-duration). For the four Archi-
medean copulas, the Frank copula would be best for 
quantifying the joint distributions of flood peak-vol-
ume and volume-duration, while the Ali-Mikhail-Haq 
copula performed better in modelling the joint distri-
bution of flood peak-duration. The joint return period 
in “AND” case was much longer than the joint return 

Fig. 14  Probability density functions of duration under different peak flow return periods

Table 10  Statistical characteristics of the conditional PDFs of flooding duration and volume under different peak flow return periods

Flooding variables Index Initial Return periods of peak flow (year)

10 20 50 100

Duration Mean 6.55 7.44 7.51 7.55 7.57

Std 2.30 2.32 2.33 2.33 2.33

Kurtosis 1.72 1.51 1.47 1.45 1.44

Skewness 1.04 0.95 0.94 0.93 0.93

Volume Mean 934.21 1658.09 1814.52 1913.47 1947.16

Std 622.80 682.97 735.76 765.90 775.58

Kurtosis 5.05 2.74 1.85 1.41 1.28

Skewness 1.87 1.43 1.25 1.15 1.12
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period in “OR” case when same univariate return 
period was assumed. Moreover, the secondary return 
period was always higher than that of the primary 
return period and the join return periods of TOR and 
TAND, indicating the low probability of the occurrence 
of the supercritical flooding event. The bivariate risk for 
flood peak flow-duration indicated that, as the increase 
of the flood duration, the probability of the flood peak 
and duration would keep constant for some time and 
then decrease for all designed flows and service time. 
Such bivariate risk values could provide decision sup-
port for flood control. Moreover, the bivariate risk for 
flood peak-volume exhibited similar trend with that 
for flood peak-duration, which could be helpful for 
establishment of flooding diversion areas. Finally, the 
conditional probability density functions of the flood 
duration and volume for given flood peak flows could 
applied to reflect the severity of a flood. The results 
indicated that the distributions of flood volume would 
be highly influenced by the flood peak flows, in which 
the flood volume would be expected to increase as the 
increase of flood return period. Those distributions 
could support the flood diversion practices once a flood 
occurred. The probability of flood duration conditional 
on flood peak flows stated that the increase of flood 
return period would not significantly change the statis-
tical characteristics of the flood duration, which is due 
to low correlation between flood peak and duration.

The accuracy of the copula method in modelling 
the joint probability of flood variables is influenced by 
many factors, such as the performance of the marginal 
distribution of the flood variable, the algorithm used 
for estimating the unknown parameters in the marginal 
distributions and copulas. In current study, the lognor-
mal distribution was employed to model the marginal 
distributions of the flood peak flow, volume and dura-
tion. Consequently, further studies are still required 
to improve the performance of the copula methods 
through using more accurate methods to model the 
marginal distributions of the three flood variables.
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