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Abstract 

Background:  Artisanal gold mining has been one of the major contributors to soil pollution. These types of soil 
have potential environmental implications and varying degrees of health risk due to agricultural product cultivation. 
The contamination level of Pb in soils under cultivation by maize and spinach from gold mines in Abare, Dareta and 
Bagega mines of Anka local government Zamfara state was examined. Three levels of soil depths (0–21, 21–40 and 
41–60 cm) from study sites were considered for vertical distributions of the Pb. The samples were digested and ana-
lyzed using flame atomic absorption spectrophotometry (Varian model-AA240FS).

Results:  The total Pb concentration ranges from 326.2 to 383.43 (Abare), 67.74–76.44 (Bagega) and 17.88–42.00 mg/
kg (Dareta), which are all within the environmental protection agency (EPA) 400 mg/kg permissible limits, while only 
those analyzed from Abare were above the 85 mg/kg department of petroleum resources of Nigeria (DPR) threshold. 
From the result, the spinach grown in those areas exceeded the FAO/WHO 0.3 mg/kg threshold.

Conclusion:  Additionally, all study sites from all areas revealed the highest Pb concentrations at a 0–20 cm soil 
depth. This study further indicates all the soils from these areas are within safety limits based on the single pollution 
index (SPI) and Nemerow composite pollution index (NCPI). This information will significantly help provide greater 
insight into developing more effective remediation strategies for the affected localities. More research is needed into 
the speciation, chemical forms, bioavailability, and biogeochemical mechanisms that influence Pb mobility in those 
areas.

Highlights 

•	 pH and CEC influence lead (Pb) concentration in contaminated areas
•	 Pb concentration from all the areas is within the EPA 400 mg/kg threshold
•	 The concentration of Pb is high at the depth between 0 and 20 cm in all the sites
•	 The overall status of all the soil studied is within the safety limit
•	 All the maize grown on the cultivated soil from the studied sites are safe for consumption
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Introduction
The problems associated with heavy metal accumula-
tion and environmental pollution are substantial and 
draw increasing attention due to their adverse effects on 
human health and the ecosystem in general (Rotkittik-
hun et al. 2006; Hu et al. 2017). Natural processes, rapid 
industrialization, fossil burning, iron smelting, and/or 
intensive mining activities, among others, are frequently 
responsible for global heavy metals contamination in 
the environment. For decades, it has been established 
that mining activities are a significant contributor to the 
increased concentration of many heavy metals in various 
environmental components (Cai et al. 2015; Cheng et al. 
2018). Among these heavy metals include, but are not 
limited to zinc (Zn), arsenic (As), and lead (Pb). Poten-
tial ecological risk index (PERI) revealed greatest con-
centration of Hg and Cd in sediments and soils among 
other metals (Kumar et al. 2022). Similarly, the levels of 
potentially toxic elements in industrial soils were greatest 
then followed by agricultural and  non-agricultural soils 
(Verma et al. 2021).

Mining for Zn-Pb, gold (Au), and galena (PbS), in 
particular, is an unsafe practice  that not only pollutes 
the environment but also poses a greater risk to human 
health and agricultural products due to the high degree 
of Pb toxicity (Cheng et al. 2018).

Intense and unauthorized gold mining was  the pri-
mary source of a terrible outbreak of Pb poisoning cri-
sis in gold mines communities, particularly in Anka local 
government of Zamfara state Nigeria (UNEP/OCHA 
2010; Anka et  al. 2020). The operation involves physi-
cally grinding, washing, processing, and storing the gold 
extracted from the Pb-rich ore. As a result, these aggres-
sive procedures generate Pb dust, tailing and varying 
forms of waste, resulting in  multiple health issues and 
widespread environmental concern, particularly to the 
communities in  and around the  mining sites (UNEP/
OCHA 2010; WHO 2011; Mohammed and Abdu 2014; 
Abdulkareem et  al. 2015; Njinga and Tshivhase 2019). 
Preliminary investigations have confirmed the presence 
of elevated Pb concentrations in blood, sediment, soil, 
and agricultural products from these areas (Nuhu et  al. 
2014). These draw the attention of local stakeholders and 
international experts, who collaborated to determine the 
actual Pb concentration in the affected communities, an 
initiative that resulted in the areas receiving recommen-
dations for various control measures and remediation 
strategies (Abdu 2010; UNEP/OCHA 2010; Abdulka-
reem et al. 2015; Tirima et al. 2018; Adewumi 2020).

Despite these incidents and proposed mitigation meas-
ures, farming activities continue within and around  the 
affected villages (Abdu and Yusuf 2013; Abdulkareem 
et al. 2015).

This is because the soil as a definitive part of the bio-
sphere is exposed to a vast array of pollutants which 
include heavy metals. Consequently, the heavy met-
als upsurge affects all organisms via biomagnifications 
(Kumar et al. 2019).

Hence, a need for further evaluation and review of the 
soil pollution status and potential exposure risk associ-
ated with agricultural products grown in those com-
munities, for there is a dearth of information on the 
exposure risk and potential Pb pollution in such com-
munities, particularly during post-remediation exercises. 
Therefore, the focus of this research was to evaluate the 
level of Pb contamination, potential exposure risk on 
some cultivated agricultural products and how some 
basic soil parameters influence the Pb availability in the 
affected communities around  Anka mining sites. The 
study’s findings will contribute to a better understanding 
of Pb pollution and potential exposure risk to vulnerable 
communities.

Materials and methods
Study sites and sampling
The study was conducted from selected study sites from 
three selected mining areas, i.e. Abare, Bagega, and 
Dareta of Anka local government, Zamfara state (Fig. 1). 
The area has a total population of 142,280 and total land 
under cultivation of approximately 2,746km2 (Johnbull 
et  al. 2019), with a location coordinate of latitudes 11° 
40′ 0″ and 12° 20′ 0″ North and longitudes 5° 50′ 0″ and 
6° 20′ 0″ East. The three sites were identified as having 
the most risk from lead poisoning due to ore processing 
and conspicuous mining activities (UNEP/OCHA 2010). 
Abare is a confirmed Pb contaminated area with an esti-
mated population of 5000 people (UNEP/OCHA 2010). 
Most of the inhabitants are farmers, while many youths 
earned their living by engaging in illegal gold ore mining. 
On the other hand, Baggage, another Pb contaminated 
area, has an estimated population of 8500 people (Tirima 
et al. 2018), with the majority of its inhabitants relying on 
farming while a significant proportion of its youth earned 
their living by engaging in trading and illegal mining of 
gold ore, while Dareta is a remediated contaminated 
area in June-July 2010. The community has an estimated 
population of 2000 people (Udiba et al. 2020). The major-
ity of the inhabitants are farmers, while a significant 
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proportion of youth in the area earned their living by 
trading and illegally mining gold ore. Mining processes in 
these areas include crushing, washing, drying, aggregat-
ing mercury (Hg), and melting the aggregates to remove 
gold (Adewumi 2020). In all these study areas, maize 
(Zea mays L.) is the major crop and is consumed as a 
staple food along with spinach (Spinacia oleracea) by the 
residents at every meal.

Soil sample collection and preparation
Soil samples were collected from the agricultural field 
very close to the active mining sites using a standard soil 
auger at three depths 0–20 cm, 21–40 cm and 41–60 cm. 
Four different agricultural fields were selected for sam-
pling at each study area (Fig.  1). Three replicates of the 
samples were collected from each profile pits at a dif-
ferent depth. This gave a total of twelve (12) sample pits 
from each of the study areas. The soil samples collected 
were placed inside a polythene bag and taken to a labo-
ratory, air-dried and sieved through a 2  mm sieve for 
further physical and chemical analysis (Chaudhry et  al. 
2012; Abdulkareem et al. 2015).

Crop and vegetable sampling
Fresh spinach and maize, which represent the crop and 
vegetable samples in the study sites, were collected from 
the same study area as the soil samples (Fig.  1). These 
samples were all collected from four farmlands from each 
of the three study sites; during the growing season. All 
the collected samples were washed with double deion-
ized water to eliminate dust and dirt particles, and the 
inedible parts were removed. For the maize, the edible 
parts were removed and dried separately on a sheet of 
filter paper. All the samples were then separately dried 
in an oven at 65  °C for 72  h until constant weight. The 
dried samples were powdered using an electric grinder 
and stored in labelled plastic bags for further analyses 
(Rehman et al. 2017).

Basic soil properties
The dried soil samples were sieved through a 2.0 mm sieve 
and were analysed for basic properties. With the aid of a 
well-calibrated electrical conductivity meter and pH meter, 
the soil pH and electrical conductivity were measured at 
a 1: 2.5 ratio (w: v; at a soil–water ratio). Organic carbon 

Fig. 1  Location of the study sites from Anka local government, Zamfara state, Nigeria
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(OC) was analysed by Walkley and Black (Nelson and Som-
mers 1983). Available phosphorus was analysed using Bray 
1 extraction method (Bray and Kurtz 1945), whereas avail-
able nitrogen was determined using the Kjeldahl method 
(Amusan et  al. 2005; Zhao et  al. 2010) and exchangeable 
cations extraction using 1 N NH4OAc solution (Chaudhry 
et al. 2012).

Determination of soil total Pb concentration
The air-dried soil samples were digested according to Nwa-
jei (2000) and Cao et al. (2010) with a slight modification. 
Approximately 0.3  g dried soil samples were treated with 
3 mL HNO3 in digestion tubes and left overnight. Subse-
quently, 1 mL of HClO4 and 3 mL HF were added to the 
mixture. The mixture was heated to 80  °C for 3  h and 
allowed to be digested and then filtered. The filtered solu-
tion was made up to 100  ml in a standard plastic bottle 
with distilled water and analyzed for total Pb concentration 
using flame atomic absorption spectrophotometry (Varian 
model-AA240FS).

The Rotkittikhun et al. (2006) method was adapted with 
little modifications for grounded maize and spinach. In the 
process, 0.5 g of the sample was digested using HNO3 and 
HClO4 (4:1, V/V). The mixtures were allowed to digest and 
later filtered completely. Subsequently, Pb concentration in 
the plant samples was analysed using flame atomic absorp-
tion spectrophotometry (Varian model-AA240FS) in the 
Ahmadu Bello University multi-user laboratory.

Indices of pollution
Bioaccumulation factor (BCF)
The bio-concentration factor (BCF) indicates the plant 
(spinach and maize) sample’s potential to accumulate a Pb 
relative to the concentration in the soil. It was computed 
using the following equation (Cui et  al. 2004; Ghosh and 
Singh 2005).

Single pollution index (SPI)
Appraisal of the Pb contamination in all the study sites was 
carried out using a single pollution index (SPI). The SPI was 
determined as a ratio of Pb concentration in the soil to that 
of regulatory standard using equation (ii) (Hu et al. 2017).

Nemerow composite pollution index (NCPI)
The degree and the classification of the Pb pollution load 
were done using Nemerow composite pollution index 

(1)BCF =
Conc.(Plant sample)

Conc.(Soil)

(2)SPI =
Conc.(in the soil)

pollution threshold

(NCPI). The index is useful in classifying the soils in 
terms of HM pollution. It was computed based on equa-
tion (iii) (Hu et al. 2017). The grade of the pollution based 
on this index is represented in Table 1.

Statistical analysis
The data collected were analysed using SPSS 25 software 
(US, Chicago, IBM Company) and Microsoft Excel (Ver-
sion 2016). Means between the study sites for each study 
area were analyzed using one-way ANOVA, and statisti-
cally significant differences were computed using Duncan 
multiple range techniques (DMRT) at p < 0.05. Pearson’s 
correlation analysis was employed to compare relation-
ships between total Pb concentrations and the basic soil 
properties using Origin lab pro version 2021b.

Results and discussion
Physical and chemical parameters of the studied soil
The average pH of all the studied areas ranges from 6.9 
to 7.4. These values indicate the pH of all the studied 
sites falls within acidic to neutral conditions (Table  2). 
According to Shu et  al. (2001), normal plant growth 
is promising within the pH range of 5–7; therefore, the 
studied areas are within the pH range to support opti-
mal plant growth. The observed values also match up 
with the average values in the region for plants’ normal 
growth and development (Raji et  al. 2015). The studied 
sites’ average electrical conductivity (EC) ranges from 
0.1 to 0.17 (ds/m), signifying low EC from all three study 
areas. These low EC values indicate no apparent salinity-
associated problems in all the studied sites, as EC is a 
significant index for assessing soil salinity in a particular 
area (Shahid et al. 2018; Bañón et al. 2021). The organic 
carbon (OC) values of all study sites across all study 
areas ranged from 0.37 to 0.60 (g/kg). These values indi-
cate very low carbon content in all study sites, implying 

(3)NCPI =

√

(Pmax)2 + (Pi)2

2

Table 1  Classes of the single pollution index (SPI) and Nemerow 
composite pollution index (NCPI)

Classifications are based on Chen et al. (2015) and Hu et al. (2017)

Class SPI Grade NCPI Grade

1  ≤ 1.0 Safety  ≤ 0.7 Safety

2 1.0 < SPI ≤ 2.0 Slight pollution 1.0 < SPI ≤ 2.0 Alert

3 2.0 < SPI ≤ 3.0 Mild pollution 2.0 < SPI ≤ 3.0 Slight pollution

4 3.0 < SPI ≤ 5.0 Moderate pol-
lution

3.0 < SPI ≤ 5.0 Moderate pol-
lution

5 SPI > 5.0 Severe pollu-
tion

SPI > 5.0 Severe pollution
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that the soil has a shallow carbon content (≤ 2%) based 
on Sigari et  al. (2003) classifications. The low OC can 
be attributed to the study sites’ lack of vegetation cover, 
which also agrees with OC values obtained from the find-
ings of Raji et al. (2015).

The cation exchange capacity (CEC) of soil is an index 
that indicates the soil’s ability to retain ions in a form that 
is available and potentially leachable in the soil profile 
(Solly et al. 2020). The higher the CEC values, the more 
soil potential to retain ions (Hazelton and Murphy 2016). 
The CEC of the soils from all the study sites ranges from 
0.12 to 10.87 (cmol( +)/kg). These values implied vari-
ability in the nutrient retention across the study areas. 
However, it can be inferred that all study areas have a 
moderate CEC potential, which is beneficial to overall 
plant growth potential. The available phosphorus of all 
the studied sites ranges from 2.45 to 4.29 (mg/kg). These 
results indicate low P content in the area based on the 
Sigari et al (2003) classifications and correspond to low to 
medium P rating by the Federal Ministry of Agriculture 
and Natural Resources of Nigeria (Yahaya et  al. 2021). 
Likewise, the total nitrogen (TN) from all the study sites 
ranges from 1.25 to 1.4 (g/kg), which can also be regarded 
as low based on Sigari et al (2003) classifications. There-
fore, the relatively low available P and TN content in all 
the study area’s agricultural land can be related to the low 
organic matter content and perhaps the considerable dis-
tance between the study sites with the municipal sewage 
system and few or no biosolid deposition in the area. This 
is because municipal sewage systems and biosolid appli-
cations have a strong relationship with high P and TN 
availability in particular settings (Bunce et al. 2018).

Total Pb concentration in the soil from all the study sites
The total Pb concentrations in all the soil samples col-
lected from the farmland in all the study areas are 
presented in Table  3. The Pb concentrations vary 

significantly from 17.88 to 383.48  mg/kg across all the 
study areas. The trend of Pb concentrations in the soil 
from the three study sites was Abare > Begaga > Dareta. 
The average total Pb concentration in all the sites was 
below the EPA current allowable limits of 400 mg/kg in 
soil (US-EPA 2004; Widener 2018; Haque et  al. 2021). 
Furthermore, the results revealed Pb level in all of the 
study areas was very low-low grade, as per USEPA stand-
ard (US-EPA 2004; Anka et  al. 2020). However, when 
compared to the local threshold level of Pb 85 mg/kg, in 
the soil as set by the Nigerian Department of Petroleum 
Resources (DPR 2002), the Pb concentration in all the 
other two sites, i.e. Bagega and Dareta, are all below the 
standard limits whereas all the sites in Abare are above 
the DPR standard. However, the total Pb concentration in 
the soils has exceeded the permissible limits in Ludhiana 
district of Punjab, India (Dhaliwal et al. 2021). Moreover, 
Pb in agricultural soils has exceeded the China and Cana-
dian soil guidelines limits (Kumar et al. 2021).

Generally, the high Pb concentration in Abare can 
be linked to the fact that it is one of the prominent Pb 
contaminated areas associated with intensive artisanal 
mining of gold and PbS mining and grinding (UNEP/
OCHA 2010; Adewumi 2020). Most notably, the major-
ity of the agricultural land in the villages of that area is 
within the vicinity of the prohibited artisanal ore min-
ing zone. This elevated total Pb concentration is similar 
to those obtained by Anka et al. (2020), where a total Pb 
concentration of about 385–688  mg/kg was obtained in 
the agricultural land of Abare village. The findings of this 
study are similar to the results of UNEP/OCHA (2010) 

Table 2  Basic physical and chemical parameters of the soil of 
the farmland across the three study areas

OC: organic carbon; EC: electric conductivitiy, pH, soil acodity

Soil parameters Abare Bagega Dareta

pH 7.491667 7.096667 6.9

EC (ds/m) 0.176667 0.110833 0.1

OC(g/kg) 0.374167 0.603333 0.57

Available P (mg/kg) 4.296667 2.561667 2.45

Total N (g/kg) 1.256667 1.416667 1.4

K cmol ( +)/kg 0.23 0.22 0.2

Na cmol ( +)/kg 0.12 0.248333 0.18

Ca cmol ( +)/kg 10.875 6.716667 6

Mg cmol ( +)/kg 0.844167 1.079167 1

Table 3  Pb concentration (mg/kg), in soil, spinach and maize 
from the cultivated land across the study sites

DPR, (2002) for soil: 85 mg/kg, EPA, (2004) for soil: 400 mg/kg, FAO/WHO (mg/kg) 
for crop: 35, FAO/WHO (mg/kg) for vegetable: 0.3; values are means ± standard 
errors (n = 3); means with the same superscript letter within each column are 
not significantly different at p < 0.05

Sites Farm Pb concentrations (mg/kg)

Soil Spinach Maize

Abare 1 383.48 ± 0.21a 9.815 ± 0.0567a 3.6 ± 0.0769b

2 326.28 ± 0.22c 8.32 ± 1.7363a 4.2 ± 0.351a

3 366.62 ± 0.25b 6.1 ± 0.1732b 3.76 ± 0.0312b

4 383.60 ± 0.18a 6.78 ± 0.1519b 3.64 ± 0.0779b

Bagega 1 68.40 ± 0.18a 3.575 ± 0.0082 1.91 ± 0.0173b

2 69.18 ± 8.37a 2.88 ± 0.0779 2.51 ± 0.0229a

3 76.44 ± 2.13b 3.055 ± 0.0952 2.34 ± 0.0150a

4 67.74 ± 0.10a 2.755 ± 0.0173 1.85 ± 0.0029b

Dareta 1 18.24 ± 0.27c 0.47 ± 0.0173 1.265 ± 0.0086a

2 42.00 ± 0.10a 0.53 ± 0.1723 0.35 ± 0.0229c

3 23.4 ± 0.18b 0.325 ± 0.0173 0.365 ± 0.0173c

4 17.88 ± 0.10c 0.285 ± 0.150 0.44 ± 0.01730b



Page 6 of 12Darma et al. Environmental Systems Research           (2022) 11:14 

and Adewumi (2020), where a significant level of Pb con-
centration was found in the soil of this study area. Fur-
thermore, our findings agree with the elevated Pb levels 
found in some contaminated agricultural soils near Pb/
Zinc smelting and mining areas in Hunan Province of 
China (Khan et al. 2016). Additionally, the higher Pb con-
centrations in Abare are similar to that obtained in some 
Pb-contaminated agricultural soil in Pakistan (Rehman 
et al. 2017). Prolonged accumulation of Pb in the agricul-
tural soils of these sites may result in higher Pb uptake by 
food crops, which could be risky and increase the risks 
of food contamination in the affected areas. On the other 
hand, the relatively low Pb concentration in Bagega and 
Dareta could be attributed to massive remediation exer-
cise employed by the joint action of state and UNEP/
OCHA and to the fact that most of the artisanal mining 
activities in these areas are practiced far away from the 
agricultural area as opposed to those in Abare (UNEP/
OCHA 2010; Udiba et al. 2020).

The vertical distribution of total Pb concentration in all 
the studied areas, as presented in Table 3 and Fig. 2, var-
ies with an increase in soil depth. The total Pb concen-
tration trend was 0–20 cm > 21–40 cm > 41–60 cm in all 
the study areas, indicating a decrease in the total Pb con-
centration with increased depth. Based on this trend, it 
can be inferred that the sources of Pb contaminations in 
those agricultural land are more of artificial supplemen-
tations by human activities like mining and deposition 
of metal ores from streams and households as opposed 
to geological sources. Also, these trends could reflect the 
high affinity of the Pb to the organic matter that is more 
condensed at the upper soil surface compared to the 

lower profile (Abdulkareem et  al. 2015; Tomczyk et  al. 
2020). Furthermore, the high Pb concentration in the 
upper profile may be connected to the purity of the water 
saturating these areas. If the saturating water is already 
polluted with high Pb, it possibly remains that high Pb 
will be deposited at the surface, and its level will decrease 
with depth. These findings can be related to the results 
obtained by Mohammed and Abdu (2014) while examin-
ing the relative vertical distribution of Pb at some agri-
cultural soils in Dareta village. Besides that, the accessible 
Pb concentrations in the lower depth may result from Pb 
downward leaching to the lower profile (Adewumi 2020).

Total Pb concentration in maize and spinach from all 
the study sites
Maize and spinach samples were collected from the agri-
cultural land of all the study sites. They were analysed 
for total Pb concentrations as presented in Fig. 3, while 
the details are given in Table 4. The trend in the Pb accu-
mulation across the studies site shows Spinach > Maize, 
which suggests more Pb accumulation in leafy vegetables 
than crops. The mean Pb concentrations of the maize 
range from 3.6 to 4.2, 1.9.1–2.5, and 0.35–1.26  mg/kg 
in Abare, Bagega and Dareta, respectively. These values 
from all the study sites are below 5  mg/kg FAO/WHO 
maximum allowable Pb limits in crops (FAO/WHO 
2007; Chauhan and Chauhan 2014; Chaoua et al. 2019). 
Investigation of crops grown in these areas by Abdu 
and Yusuf (2013) demonstrated the concentration of Pb 
from some of these contaminated areas high above the 
FAO/WHO threshold. Even though the values obtained 
from Abdu and Yusuf ’s findings are higher than those 
obtained in our study, it can be generally understood that 

Fig.2  Pattern of lead (Pb) concentration (mg/kg) across the three (3) 
soil depths in the cultivated farmland of Abare, Bagega and Dareta

Fig. 3  Mean Pb Conc. (mg/kg) of soil, spinach and maize in the 
cultivated farmland of Anka local government, Zamfara state, Nigeria
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contamination of farmland by Pb as a result of artisanal 
gold and Pb mining has significantly contributed to the 
elevated Pb concentration in the crops grown in these 
study areas. These variation may also ascribe to the reme-
diation efforts and raising awareness about Pb pollution 
in the areas, which encourages residents to develop safer 
ore processing practices. In addition, the mean Pb con-
centration in other grains which include wheat and rice 
has exceeded the permissible limits in Ludhiana district 
of Punjab, India (Dhaliwal et al. 2021).

The finding of our study revealed the range of Pb con-
centration in vegetable samples as 6.1–9.8, 2.7–3.5, and 
0.3–4.7 mg/kg in Abare, Bagega and Dareta, respectively. 
The results from our study indicate that, out of all the 
study areas, only one site in Dareta (Site 4) has its spin-
ach samples below the 0.3 mg/kg FAO/WHO maximum 
allowable limits in vegetables (FAO/WHO 2001, 2007; 
Aderinola and Kusemiju 2012). Findings from Adewumi 
(2020) reveal some vegetable samples from farmland in 
Anka have their Pb concentrations above the maximum 
allowable limits of FAO. The investigation of vegetable 
samples grown in Pb mining areas in Pakistan by Rehman 
et al. (2017) revealed high Pb concentration in the stud-
ied vegetables, which agrees with our study findings. The 
variation in Pb accumulation in maize and spinach in 
this study may be connected to the fact that most leafy 
vegetables have higher metal accumulation than crops 
(Rehman et al. 2017). Furthermore, it can be attributed to 
the established findings that most leafy vegetables absorb 
significant amounts of Pb from atmospheric dust (Cao 
et  al. 2010; Udiba et  al. 2020). According to Abdu and 
Yusuf (2013), farming activities are still ongoing in the 
agricultural land affected by Pb poisoning in these areas; 
therefore, the Pb concentrations in the maize and spin-
ach can be assumed to be derived from the already accu-
mulated Pb in these contaminated areas. Moreover, the 
Pb content in the surrounding might be in bioavailable/
mobile form that can be assimilated easily by the plants. 

With reference to the recent reports of Udiba et  al. 
(2020), elevated Pb concentration in plants is directly 
associated with an increased Pb concentration in the soil; 
therefore, this could be the primary reason for the varia-
tion in the Pb concentration in the three different study 
areas. An additional finding by Adewumi (2020) shows 
a relative bioavailability of Pb in maize samples analyzed 
from farmlands near Anka mines. These elevated concen-
trations were assumed to be due to the mobilization of Pb 
from soil to the maize plants. From the study of Chibuike 
and Obiora (2014) and Adewumi (2020) it has been 
established that plants grown in farmlands contaminated 
with mining deposits or near mines have a high potential 
for heavy metal accumulation, and their consumption has 
a significant impact on agricultural products and poses a 
serious risk to human health.

Transfer of Pb from soil to maize and spinach
The bioaccumulation factor (BCF) of the Pb in maize 
and spinach was calculated from all the study sites and 
presented in Table  5. The BCF reflects the potential Pb 
uptake by maize and spinach from the agricultural land 
grown. The BCF of Pb in maize from all the study sites 
ranges from 0.01 to 0.07, while spinach ranges from 0.01 
to 0.05. Although in some locations, the BCF values of 
maize are slightly higher than the spinach, but gener-
ally, it can be understood that the mobility or transfer 
of Pb from all the soils in the study areas to the plant’s 
samples is low. The findings of this study reveal no appar-
ent significant mobility of Pb from soil to the analyzed 
plant samples, as confirmed in some of these areas by 
Adewumi (2020). Therefore, the accumulation of the 
Pb in the maize and spinach can be ascribed to the sig-
nificant deposition of Pb particles from dust during the 
intensive ore processing as opposed to the uptake from 
the soil during plant development. These findings are 
supported by several studies from these areas, which 
show that Pb uptake from some of these contaminated 

Table 4  Pb concentration (mg/kg), and single pollution index (SPI) and Nemerow composite pollution index (NCPI) of the farmland 
across the study sites

Pb (Lead), SPI (Single pollution index), NCPI (Nemerow composite pollution index); DPR 2002 for soil: 85 mg/kg, USEPA 2001for soil: 400 mg/kg; SPI and NCPI < 1 = Safe, 
SPI and NCPI > 1 = Pollution critical limit thus, unsafe; values are means ± standard errors (n = 3);means with the same superscript letter within each column are not 
significantly different at p < 0.05

Soil depth (cm) Pb concentrations in soil (mg/kg) samples SPI

Abare Bagega Dareta Abare Bagega Dareta

0–20 364.995 ± 24.43a 70.44 ± 5.19a 25.38 ± 10.27a 0.91 0.18 0.06

21–40 179.1625 ± 56.24b 58.7 ± 4.32b 21.15 ± 8.56b 0.45 0.15 0.05

41–60 134.371875 ± 42.18c 44.025 ± 3.24c 15.8625 ± 6.42c 0.34 0.11 0.04

p-value 0.025 0.045 0.035

NCPI 0.52 0.36 0.27
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soil is low and that the majority of the associated agricul-
tural produce contamination is due to contaminated dust 
adhesion caused by intense mining and PbS processing 
(Lee et  al. 2013; Roy and McDonald 2015; Tirima et  al. 
2018). Li et  al. (2018) explained that accumulations of 
heavy metals in plants could be attributed to root uptake 
and or atmospheric deposition. This statement, therefore, 
validates the relatively low BCF and high Pb concentra-
tions in the analyzed maize and spinach samples from 
these sites. It should be noted that some studies like Garg 
et  al. (2014) linked to Pb contamination in other min-
ing areas reported BCF value higher than that of our 
research. However, these variations may be intercon-
nected to the nature and content of the organic matter, 
the chemical forms of the Pb in the soil, and the soil pH 
of the environment (Khan et al. 2015; Rehman et al. 2017; 
Udiba et al. 2020).

Pollution load indices and contamination assessment 
of heavy metals in the soils
The values of the SPI were computed using 400  mg/
kg US EPA Pb allowable limits (Table 5). Whereas the 
results of the SPI in Abare range from 0.34 to 0.91, 
Bagega 0.11–0.18 and Dareta 0.04–0.06, the NCPI val-
ues are 0.52, 0.36 and 0.27 in Abare, Bagega and Dareta, 
respectively. The SPI and NCPI values of Pb from these 
agricultural sites indicated safety level (< 1) based on 
Chen et  al. (2015) and Hu et  al. (2017) classifications. 

These findings are consistent with pollution index val-
ues (PLI) reported by Yahaya et al. (2021) from some of 
these agricultural lands, where PLI was described as an 
indicator of low pollution load. However, investigation 
of the degree of pollution indices by Adewumi (2020) 
indicates a high degree of pollution in some agricul-
tural land around Anka which is contrary to our find-
ings. The variations could be attributed to variations 
in sampling locations, as different locations have vary-
ing degrees of contamination, as well as the fact that 
some remediation measures have been implemented in 
some of these areas (UNEP/OCHA 2010; Tirima et al. 
2018; Anka et al. 2020; Udiba et al. 2020). For instance, 
PI showed low contamination of some heavy metals in 
Iranian agricultural soil samples (Keshavarzi & Kumar 
2019). So also, there was a report of great heavy metals 
enrichment in agricultural soil samples with less eco-
logical risk (Heidari et al. 2021).

Consequently, other results have suggested that heavy 
metals led to potential health risks to urban residents 
and environment (Dhaliwal et al. 2021). Contamination 
factor has equally revealed Pb among the key pollu-
tion contaminants and responsible for causing human 
health risks (Kumar et al. 2021).

Relationship of Pb with basic physicochemical parameters
Pearson correlation matrix was performed to elucidate 
the possible relationship between total Pb concentra-
tion and the basic soil physiochemical parameters in 
each study area (Fig. 4a–c). The correlation coefficient 
indicates a significant positive relationship between Pb 
with pH in Abare, Pb with K in Bagega and Pb with Ca 
in Dareta. The relationship between total Pb concen-
tration and average soil pH in Abare (Table  2) can be 
related to the previous studies by Harter (1983), Bravo 
et al. (2017) and Obeng-Gyasi et al. (2021), which dem-
onstrated a dependency of Pb retention in a soil with 
an increase in pH above 7.0. These findings indicate 
that Pb retention is high at a neutral to an alkaline 
condition. Correspondingly, the relationship between 
Pb and K in Bagega and Pb and Ca in Dareta can be 
described as Pb and CEC association. This relationship 
is interrelated to the finding of Zheng et al. (2020), who 
illustrated the significant contribution of CEC as an 
essential soil parameter  influencing the availability of 
Pb in contaminated soil. As a result of these important 
findings, it is crucial to consider soil pH and CEC when 
assessing the risk of Pb exposure in a polluted envi-
ronment. This is significant because Pb content in an 
environment fluctuates with changes in basic environ-
mental conditions (Wani et  al. 2015; Xiao et  al. 2017; 
Zheng et al. 2020).

Table 5  Transfer factor and pollution indices from the 
agricultural farm across the study sites

SPI-Single pollution index, NCPI-Nemerow composite pollution index; data are 
mean  ± SD (n = 3); SPI and NCPI < 1 = Safe, SPI and NCPI > 1 = Pollution critical 
limit thus, unsafe; BCF = Transfer factor

Sites/Subsites Samples Soil

BCF Depth(cm) Indexes

Abare Spinach Maize SPI NCPI

 1 0.03 0.01 0–20 0.91

 2 0.03 0.01 21–40 0.45

 3 0.02 0.01 61–60 0.34

 4 0.02 0.01 0.52

Bagega

 1 0.05 0.03 0–20 0.18

 2 0.04 0.04 21–40 0.15

 3 0.04 0.03 61–60 0.11

 4 0.04 0.03 0.36

Dareta

 1 0.03 0.07 0–20 0.06

 2 0.01 0.01 21–40 0.05

 3 0.01 0.02 61–60 0.04

 4 0.02 0.02 0.27
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Fig. 4  Pearson’s correlation matrix between average Pb concentrations (mg/kg) of soil and basic physicochemical parameters in the farmland 
across the Abare sites, Anka Local (a), Bagega sites, Anka local (b), and Dareta sites, Anka local (c) Governments, Zamfara State, Nigeria
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Conclusion and future directions
The purpose of this study was to determine the con-
centrations, contamination, and exposure risk associ-
ated with Pb contamination in some agricultural land 
in and around Anka mines. In summary, the total Pb 
concentrations from all the soil in the cultivated lands 
analysed in the study sites were found to be below the 
EPA 400  mg/kg permissible limits while those ana-
lysed in Abare demonstrate elevated Pb concentrations 
above the DPR 85  mg/kg threshold. The study further 
revealed a decrease in total Pb concentration with 
increasing depth at all agricultural land studied, which 
is an indicator of possible soil contamination by Pb par-
ticles from dust deposition and anthropogenic sources 
instead of geogenic origin. Based on the SPI and NCPI 
indices, all the studied areas can be regarded as safe 
for agricultural activity. Unlike the maize grown from 
all these areas, which can be safe for consumption, the 
spinach grown is unsafe for consumption. Importantly, 
pH and CEC show a significant relationship with total 

Pb concentrations, thus determining these areas’ Pb 
fate. To effectively manage and regulate Pb pollution 
and toxicity in those areas, it is recommended to devote 
additional attention to studying the chemical forms, 
speciation, bioavailability, and biogeochemical mecha-
nisms influencing Pb mobility in those areas. Overall, 
that information will provide greater insight into devel-
oping more effective remediation strategies for the 
affected localities.
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