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Abstract 

Background: Ethiopian policy makers, government planners, and farmers all demand up-to-date information on 
maize yield and production. The Kaffa Zone is the country’s most important maize-producing region. The Central 
Statistical Agency’s manual gathering of field data and data processing for crop predictions takes a long time to 
complete before official conclusions are issued. In various investigations, satellite remote sensing data has been 
shown to be an accurate predictor of maize yield. With station data from 2008 to 2017, the goal of this study was to 
develop a maize yield forecast model in the Kaffa Zone using time series data from the Moderate Resolution Imaging 
Spectroradiometer Normalized Difference Vegetation Index, actual evapotranspiration, potential evapotranspira-
tion, and Climate Hazards Group Infrared Precipitation. The indicators’ correctness in describing the production was 
checked using official grain yield data from Ethiopia’s Central Statistical Office. Crop masking was applied on cropland, 
and agro ecological zones suited for the crop of interest were used to change the crop. Throughout the long wet 
season, correlation studies were utilized to investigate correlations between crop productivity, spectral indices, and 
agro climatic factors for the maize harvest. There were indicators established that demonstrated a strong relationship 
between maize yield and other factors.

Results: The Normalized Difference Vegetation Index Average and Climatic Hazards Group Infrared Precipitation with 
station data rainfall exhibit substantial associations with maize productivity, with correlations of 84 percent and 89 
percent, respectively. To put it another way, these variables have a significant beneficial impact on maize yield. The 
derived spectro-agro meteorological yield model  (r2 = 0.89, RMSE = 1.54qha−1, and 16.7% coefficient of variation) 
matched the Central Statistical Agency’s expected Zone level yields satisfactorily.

Conclusion: As a result, remote sensing and geographic information system-based maize yield forecasts improved 
data quality and timeliness while also distinguishing yield production levels/areas and simplifying decision-making for 
decision-makers, demonstrating the clear potential of spectro-agro meteorological factors for maize yield forecasting, 
particularly in Ethiopia.
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Background
Crop yield forecasting is critical for policy planning and 
decision-making. For crop monitoring and production 
forecasts, many countries rely on traditional data collec-
tion methods such as ground-based visits and reports. 

Due to insufficient ground observation, these report-
ing procedures are subjective, costly, time-consuming, 
and prone to major errors, resulting in inaccurate crop 
production evaluations and a delay in reporting criti-
cal measures (Greatrex 2012). Before the emergence of 
remote-sensing techniques like the Normalized Differ-
ence Vegetation Index (NDVI), crop-weather models 
were used for crop monitoring and yield forecasts (Rojas 
2007). In the Kaffa Zone, crop data was collected on 
the ground, which is a time-consuming, expensive, and 
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labor-intensive task. In terms of resolving these concerns, 
re mote sensing is more important than ground surveys. 
Because remote sensing can give precise and timely data 
for crop production estimation, most studies have identi-
fied a link between the Normalized Difference Vegetation 
Index (NDVI), agro meteorological data, green biomass, 
and yield (Rojas 2007).

Many research on agricultural production forecasting 
at various zonal levels have been undertaken in Ethiopia 
utilizing these methodologies; Zinna and Suryabhagavan 
(2016) used time series data from SPOT VEGETATION, 
actual and potential evapotranspiration, and rainfall 
estimate satellite data from 2003 to 2012 to conduct 
a maize crop forecast study in the south Tigray Zone. 
Reda (2015) used time series data from SPOTVEGETA-
TION, actual and potential evapotranspiration, rainfall 
estimate, and satellite data from 2004 to 2013 to predict 
wheat crop yield in the Arsi zone using remote sens-
ing and GIS approaches. However, both investigations 
employed SPOT VEGETATION NDVI and RFE 2.0, 
which cover vast areas with low-resolution (1  km) and 
(10  km), respectively, rather than Moderate Resolution 
Imaging Spectroradiometer Normalized Difference Veg-
etation Index (eMODIS NDVI), which is a better data set 
for crop monitoring due to the length of the time series 
(since 2000) and spatial resolution (250 m), as well as the 
fact that it is freely available and easy to access. For Cli-
matic Hazards Group Infrared Precipitation (CHIRPS) 
rainfall, data from 1981 dekedal is accessible, and prod-
ucts with a spatial resolution of 0.05° can be obtained 
in near-real time. As a result, the researchers wanted to 
solve this research gap by developing a model that uses 
Moderate Resolution Imaging Spectroradiometer Nor-
malized Difference Vegetation Index (eMODIS NDVI) 
and Climatic Hazards Group Infrared Precipitation 
(CHIRPS) satellite rainfall to forecast maize yield for the 
year 2018 in the Kaffa Zone utilizing Remote Sensing and 
GIS approaches.

Materials and methods
Description of the Study Area
This research was carried out in the Kaffa Zone, which 
is located in the South, Nation, Nationalities and Peo-
ples Region, between  6o24’ and  8o13’ north latitude and 
 35o30’ to  36o46’ east longitude. The Zone covers a total 
area of 10,602.7  km2, accounting for 7.06 percent of the 
region’s total area. Based on altitude and temperature 
variances, the Kaffa Zone is divided into twelve admin-
istrative districts and categorized into three traditional 
climate zones. Highland (2500–3000 m), midland (1500–
2500 m), and lowland (1500–2500 m) are the three types 
(500–1500  m). Highland, midland, and lowland areas 
make up 11.6 percent, 59.5 percent, and 28.9% of the 

Zone’s total area, respectively. According to the National 
Meteorology Agency (NMA), the average annual temper-
ature in the area is between 10.1 and 27.5 degrees Celsius 
February, March, and April are the hottest months, while 
July and August are the coolest. The annual rainfall var-
ies between 1001 and 2200 mm. Ethiopia’s Kaffa Zone is 
located in the country’s southwest, where it receives the 
most rainfall. This is due to the existence of an evergreen 
forest cover on top of the wet monsoon winds’ windward 
site (Fig. 1).

Data and data sources
Expedited MODIS (eMODIS) ‑TERRA NDVI
For agricultural production assessments and crop yield 
estimation, many studies employing data from interme-
diate spatial resolution satellite sensors such as the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) 
are recommended (Becker-Reshef et  al. 2010; Mkhab-
ela et  al. 2011; Vintrou et  al. 2012; Kouadio et  al. 2014; 
Johnson 2014 and Faisal et  al. 2019). MODIS data is 
freely available and has a high temporal resolution but a 
low spatial resolution, which could explain some of the 
interest (Kouadio et al. 2014). The Normalized Difference 
Vegetation Index (NDVI), which indicates the contrast 
between the highest absorption in the red section of the 
spectrum and the highest reflection in the near-infrared 
portion, has long been used in agriculture for crop moni-
toring and other uses (Hatfield and Prueger 2010; Basso 
et  al. 2013). When the MODIS NDVI was compared 
to the NOAA-AVHRR (National Oceanographic and 
Atmospheric Administration-Advanced Very High-Reso-
lution Radiometer) NDVI temporal profiles for a number 
of biome types, the MODIS-based index outperformed 
the NOAA-AVHRR in terms of defining seasonal phenol-
ogy (Kouadio et al. 2014). MODIS VIs is useful for crop 
monitoring in agricultural settings that are fragmented 
(sphere size nearing pixel scale) (Duveiller et al. 2012). As 
a result, the planting season in the research area began 
in mid-June, as seen by the zone livelihood profile. The 
maize crop will be sown in the study region in June, 
according to the document. According to local farmers, 
maize crops in the kaffa zone are planted in June, bio-
mass growth occurs from July to August, and blossoming 
occurs in September.

As a result, images of the Moderate Resolution Imag-
ing Spectroradiometer Normalized Difference Vegeta-
tion Index (eMODIS NDVI) decadal were obtained from 
https:// early warni ng. usgs. gov/ fews/ datad ownlo ads/ 
East% 20Afr ica/ eMODIS% 20NDV I20C6  from June to 
September, beginning in 2008 and ending in 2017. (Sta-
tistics from a ten-year period). The NDVI was calculated 
analytically as follows (Eq. 1):

https://earlywarning.usgs.gov/fews/datadownloads/East%20Africa/eMODIS%20NDVI20C6
https://earlywarning.usgs.gov/fews/datadownloads/East%20Africa/eMODIS%20NDVI20C6
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where NIR = near-infrared reflectance and RED = visi-
blered reflectance.

The row eMODIS data were processed, rescaled, and 
analyzed in the ArcGIS 10.5 program to produce the 
real NDVI value of the study area (Eq. 2):

The Climate Hazards Center Infrared Precipitation 
with Station Data (CHIRPS) data set is quasi-global 
in scope and spans 30  years. Climate Hazards Center 
Infrared Precipitation with Station Data (CHIRPS) 
creates gridded rainfall time series for trend analysis 
and seasonal drought monitoring by combining 0.05° 
resolution satellite images with in-situ station data, 
spanning 50°S-50°N (and all longitudes) from 1981 to 
near-present. From June to September, 2008 to 2017 
(ten-year statistics), which were freely downloaded 
from https:// data. chc. ucsb. edu/ produ cts/ CHIRPS- 2.0/ 
afric adekad/ tifs/.

(1)NDVI = (NIR− RED)/(NIR+ RED)

(2)

eMODIS NDVI

= Float(Smoothed eMODIS NDVI− 100)/100

Actual Evapotranspiration (ETa) is calculated using 
data from the Aqua satellite and the Operational Simpli-
fied Surface Energy Balance (SSEBop) model (Senay et al. 
2013). The SSEBop configuration is based on (Senay et al. 
2013) original Simplified Surface Energy Balance (SSEB) 
approach, but with updated and improved parameteriza-
tions for practical usage. It combines ET fractions derived 
from remotely sensed MODIS thermal imaging, which 
are summed every ten days (dekadal) at a resolution of 
one kilometer. The data was used to examine vegetation 
and landscape conditions in order to detect early warning 
droughts. Which were freely downloaded from https:// 
early warni ng. usgs. gov/ fews/ datad ownlo ads/ Conti nen-
tal% 20Afr ica/ Month ly% 20ET% 20. Anomaly from June to 
September, 2008 to 2017 (ten years’ time series data).

Another input for the model computation was Poten-
tial Evapotranspiration (PET), which was estimated using 
the modified Hargreaves equation, and the maize crop 
coefficient from the livelihood early assessment protec-
tion (LEAP) software was used to correct for the crop’s 
growth stage. The climate variables used to create PET 
for this study were gathered from Ethiopia’s national 

Fig. 1. Location map of the Kaffa Zone

https://data.chc.ucsb.edu/products/CHIRPS-2.0/africadekad/tifs/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/africadekad/tifs/
https://earlywarning.usgs.gov/fews/datadownloads/Continental%20Africa/Monthly%20ET%20
https://earlywarning.usgs.gov/fews/datadownloads/Continental%20Africa/Monthly%20ET%20
https://earlywarning.usgs.gov/fews/datadownloads/Continental%20Africa/Monthly%20ET%20
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meteorological office from June to September, 2008 to 
2017 (10 years’ time series data).

Water requirement satisfaction index (WRSI)
The USGS/FEWSNET recently used a Geospatial WRSI 
crop model, which enables for localized crop modeling, 
monitoring, and forecasting at the subnational level, 
using locally accessible statistics as model inputs. The 
result of this model was also chosen as one of the param-
eters for developing a maize forecast model. The water 
requirement satisfaction index for a season is determined 
by the amount of water a crop receives and uses during 
the growing season. The water need satisfaction index 
was calculated using the ratio of seasonal actual evapo-
transpiration (ETa) to seasonal crop water requirement 
(WR) (Eq. 3):

To account for the crop’s growth stage, water require-
ments were calculated using the modified Hargreaves 
equation potential evapotranspiration (PET) and the 
crop coefficient (Kc) using livelihood early assessment 
protection (LEAP) software (Eq. 4):

Spot6 and landsat 8 images
The Ethiopian Geospatial Information Agency (EGIA) 
provided spot and Landsat images of the study area for 
supervised land use and land cover classification. Prior 
to categorization, the image’s spatial resolution was 
increased or pans harped to 1.5 m spatial resolution for 
the spectral bands. A sensor fusion of a multispectral 
Landsat image with a panchromatic SPOT image pro-
vided the best of both image types (Lillesand et al. 2015).

Crop masks data for maize
Another input for masking maize data is crop agro-
ecology in the research area. Maize is generally grown 
between the elevations of l500 and 2200 m (Eq. 5) accord-
ing to Gorfu and Ahmed (2012):

Ancillary dataset
Ancillary dataset: The appropriate data sets, such as 
shape files, were received from the Central Statistics 
Agency of Ethiopia (CSA) for the 2007 population and 
housing census mapping. These shape files were used 
to define the study area’s boundary. Topo-sheets from 
Ethiopian geospatial information agency were also wont 

(3)WRSI = (ETa/WR) ∗ 100

(4)WR = PET+ Kc

(5)
Maize elevation = ∗Value∗ ≥ l500AND ∗ Value∗ ≤ 2200.

to  check the geometric correction of the satellite 
imageries.

Official yield statistics
The calibration of the model with historical crop yield 
records is required for the creation of quantitative yield 
estimates (Rijks et  al. 2007). As a result, Central Statis-
tics Agency of Ethiopia (CSA) was requested for histori-
cal grain yield data (2008–2017) at the Zonal level. The 
maize grain yield estimate archive was provided by Cen-
tral Statistical Agency’s agriculture section (Table 1). The 
yield statistics were derived using a list frame approach 
supported by a ground sample survey (Tables 2 and 3).

Data processing and analysis
Classification
The research area’s pan sharpened SPOT 6 image is pro-
cessed for supervised classification in ArcGIS software. 
According to Yan et al. (2006), supervised categorization 
necessitates the user identifying the various pixel values 
or spectral signatures that should be linked with each 
class. This is done by identifying training sites or loca-
tions that are typical sample sites of well-known cover 
types. In order to construct a thematic map of land cover 
and identify the Land use land cover classification of the 
study area, the maximum likelihood classifier (MLC) 
was used to categorize land cover into two classes (agri-
cultural and non-agriculture) (Fig. 2). It is vital to assess 
the precision of a map created with remote sensing data. 
The most popular way for presenting the accuracy of cat-
egorization findings is to use an error matrix. Overall 
accuracy, user and producer accuracies, and the Kappa 
statistic were all calculated using the error matrices. 
After reducing the fraction of agreement that may occur 
by chance, the Kappa statistic integrates the off diagonal 
portions of the error matrices and indicates agreement. 

Table 1 Trend in maize crop yield in the Kaffa Zone from 2008 
to 2017. Source of data: Annual agricultural report from the CSA 
(2018)

Year Holder Hectares(HA) Production(QA) QT/HA

2008 33,915 9711.58 169,975.06 17.5

2009 51,716 20,223.18 408,441.42 20.2

2010 60,616 20,225.04 440,056.4.92 21.76

2011 59,194 24,008.53 606,474.42 25.26

2012 71,171 27,552.16 601,615.51 21.84

2013 87,562 36,080.52 925,916.99 25.66

2014 44,075 20,691.03 589,424.15 28.49

2015 64,063 25,181.68 753,784.78 29.93

2016 80,203 29,370.34 866,635.91 29.51

2017 90,228 31,812.48 932,105.66 29.3
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As a result, both agricultural and non-agricultural classes 
were evenly represented. A significant number of sam-
ples that represent the thematic classes and are scattered 
uniformly across the map are required to test attrib-
ute accuracy. As a general rule, Congalton and Green 
(2019),  recommend at least 50 samples each class. At 
least 75–100 samples per class should be taken if the 
area is higher than 500  km2 or the number of categories 
is greater than 12. As a result, the accuracy assessment 

sample size was set at 200, with 100 sample points for 
each class. These points were verified in two ways: those 
that were visible and reachable in the field, and those that 
could be verified using Google Earth as a reference. As 
a result, for the 200 sample points, the following error 
matrix (Table 4) is displayed. The overall accuracy of the 
data was 90%, with a kappa coefficient of 0.80, and the 
interpretation may be accepted for further study based 
on the result.

Table 3 Summary of the data collecting and analysis equipment and materials used

Software used Purpose

GPS(Global Position System) For the purpose of gathering ground control points (GCPs), which will be used to assess accuracy

Erdas2015, ArcMap10.3, LEAP 2.7.1, SPSS statisti-
cal tool

GIS and statistical software for image and vector processing and data analysis

Google Earth Used as supplementary for checking and correcting area of doubt about accuracy of the classification

CDT (Climate Data Tool) To calculate potential evapotranspiration

Fig. 2 Maps of Land use/land cove of the study area
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Mask data derivation
Agricultural agro-ecology is another input for masking 
crop data in the research area. Maize is generally grown 
between the elevations of l500 and 2200 according to 
Gorfu and Ahmed (2012). Figure 3 presents crop mask-
ing data for maize.

Using maize mask data to create independent variables
To establish the independent variables’ predictive power, 
all variables were retrieved using crop mask data for 

further correlation analysis and to discover significantly 
linked ones with maize yield. The time series data for 
the Normalized Differential Vegetation Index (NDVI) 
(120 decadal) were image preprocessed in one step and 
were ready for monthly maximum value compositing 
(MVC).In ArcGIS, a tool called ’Cell Statistics’ is found 
in the Spatial Analyst toolbox. You will be adding a lot of 
rasters, including the MODIS NDVI (Moderate Resolu-
tion Imaging Spectroradiometer Normalized Difference 
Vegetation Index) for June–September. The’maximum’ 

Table 4 Accuracy assessment

Map data Ground truth data Total User accuracy

Agricultural Non agricultural

Agricultural 88 8 96 91.7

Non agricultural 12 92 104 88.5

Total 100 100
92

200

Producer accuracy 88

Fig. 3 Crop mask data for Maize
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option was chosen, resulting in 40 monthly composited 
normalized difference vegetation index (NDVI) images. 
These monthly Normalized Difference Vegetation Index 
(NDVI) images were then removed using crop mask 
data to focus just on the crop of interest, and an Aver-
age Normalized Difference Vegetation Index (NDVIa) 
value was calculated for each year. The calculated result 
was in raster format, ranging from 0 to 255, and had to 
be converted to normalized difference vegetation index 
(NDVI) format. As a result, Gidey et  al. (2018) utilized 
the formula eMODIS NDVI = Float (Smoothed eMODIS 
NDVI—100)/100, and the results were ready to be asso-
ciated with maize production (Table  5). These monthly 

Normalized Difference Vegetation Index (NDVI) images 
were extracted with crop mask data to focus only on the 
crop of interest, and Climate Hazards Group Infrared 
Precipitation With Station Data (CHIRPS) time series 
data of decadal image was composited at monthly level 
using monthly maximum value compositing (MVC) 
and extracted with crop mask data for further analy-
sis (Table 5). The Water Requirement Satisfaction Index 
(WRSI) model is a ratio of seasonal actual crop evapo-
transpiration (ETA) to seasonal crop water requirement, 
which is the same as potential crop evapotranspiration 
(PETc). For the phonological from planting to flower-
ing, the maize crop coefficient from the livelihood early 

Fig. 4 Maize crop coefficients at various stages (Planting-Flowering) ( Source: LEAP software)

Table 5 Observed yields and independent variables

NO Year (meher 
season)

maize Yield in(qt/
ht)

NDVIa Eta Eta total WARSI CHERIPS

1 2008 17.5 0.78 38.35 135.94 136.77 49.35

2 2009 20.2 0.84 39.59 135.07 138.43 50.99

3 2010 21.76 0.84 39.57 136.47 157.01 59.86

4 2011 25.26 0.94 38.36 130.34 144.19 60.89

5 2012 21.84 0.85 37.99 132.64 155.15 64.87

6 2013 25.66 0.95 39.17 133.72 152.43 63.48

7 2014 28.49 0.95 39.13 136.26 151.09 65.40

8 2015 29.93 0.97 39.80 137.52 154.37 70.28

9 2016 29.51 0.95 37.69 128.50 144.94 76.18

10 2017 29.3 0.87 38.42 133.7 140.51 69.97
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assessment protection (LEAP) software was used (Initial 
0.3, Vegetative1.15, Flowering1.15, and Ripening 0.55) 
(Fig. 4).

Multiple linear regression analysis
The statistical method of regression analysis is used to 
estimate the relationships between variables. Establish-
ing a link between an independent variable (indicator or 
predictor) and a dependent variable is typical practice in 
forecasting (crop yield). This study aids us in identifying 
the indicator that best explains the behavior of agricul-
tural yields. A statistical strategy for predicting a depend-
ent variable from a set of independent variables is known 
as multiple regression analysis (Bekele 2015). The data 
from Table 5 was used to run Multiple Linear Regression.

There have been some assumptions using during this 
statistic: -

a. The regression analysis method relies on the avail-
ability of lengthy and consistent time series of remote 
sensing data and agricultural statistics. The latter are 
frequently merged at the national/subnational adminis-
trative unit level, allowing for the generation of average 
NDVI values.

b. The criterion variable was believed to be a random 
variable.

c. Instead of a functional relationship, a statistical rela-
tionship (estimation of the average value) would be estab-
lished (calculating an exact value).

d. The relationship between the dependent and each 
independent variable is deemed linear in multiple linear 
regressions. The linearity assumption can be tested using 
scatter plots (Osborne and Waters 2002). As a conse-
quence of the multiple regression analysis, the prediction 
equation (Eq. 6) is as follows:

where, β0 is constant; β1, β2… βn is beta coefficient or 
standardized partial regression coefficients (reflecting 
the relative impact on the criterion variable), × 1, × 2, x 
n is scores on different predictors. When the associated 
independent variable changes by one unit, the regression 
coefficients are the quantities by which the dependent 
variable y changes. When all of the independent variables 
are zero, the dependent y will be 0 and the regression line 
will intercept the y axis. The ratio of the beta coefficients 
is the ratio of the independent variables’ relative predic-
tive power, while the beta weights are a standardized 
form of the coefficients (Linear regression analysis, Yan 
and Su 2009). The developed model predicts the average 
value of one variable (Y) based on the value of another 
variable (X). The X variable is also known as a predic-
tor. A regression model is the name given to this type of 
model (Fig. 5).

(6)Y = β0+ β1x1+ β2 x2+ · · · + βnxn+ ǫ

Results and discussions
Developing multiple linear regression model equation 
for maize yield forecasting in the study area
The monthly maximum value composite (MVC) aver-
ages of normalized difference vegetation index average 
(NDVIa) from the planting date to the end of the crop 
cycle have a correlation coefficient of 0.84 with a sig-
nificant P value of 0.002 at 95 percent confidence level, 
while rainfall has a correlation coefficient of 0.89 with 
a significant P value of 0.0001 at 95 percent confidence 
level. Actual crop evapotranspiration (ETA), with a cor-
relation value of 0.024 and a significant P value of 0.942 at 
95 percent confidence level, Eta total, with a correlation 
value of 0.22 and a significant P value of 0.537 at 95 per-
cent confidence level, and water requirement satisfaction 
index (WRSI) (r = 0.258) with a P value of 0.472, which 
is beyond the acceptable range at 95 percent confidence 
level, were all rejected from the model development. As 
a result, to develop a multiple linear regression model, 
the two most associated variables normalized difference 
vegetation index average (NDVIa) and climatic hazards 
group infrared precipitation with station data (CHIRPS) 
rainfall with the dependent variable (yield) are chosen. 
According to numerous crop forecasting studies, linear 
regression modeling is the most common method for 
generating yield forecasts using remote sensing derived 
indicators and bioclimatic data. Maize yield data and data 
from various variables were generated for multiple linear 
regression analysis. Utilizing the Statistical Package for 
Social Science (SPSS) software, a multiple linear regres-
sion model was created using the two most associated 
variables. The model closely connected variables normal-
ized difference vegetation index average (NDVIa) and cli-
matic hazards group infrared precipitation with station 
data (CHIRPS)rainfall were used to construct a model as 
a result of all of the preceding operations. As shown in 
the table, the coefficient of determination  (R2), root mean 
square error (RMSE), and coefficient of variation (CV) of 
this model were all used to validate it (Fig. 6).

When we plot the actual yield per hectare vs the 
expected yield per hectare to see how well the model fits, 
we can see that most areas are quite close to the 45° line 
(exact prediction line). With a root mean square error 
of 1.54 quintal per hectare, the model’s R square value 
is 0.89; adjusted R square is 0.88. The model’s P value is 
0.0001 at a 95% confidence level.

Based on this P value, it is unclear which independent 
variable is a very good predictor and which is a poor pre-
dictor. According to Table 6, the analysis of variance, the 
maize yield forecast model has an observed significance 
probability (Prob > F) of 0.0001, which is significant at 
the 0.05 level. Because of the p0.0001, we conclude that 
Yield is connected to the average normalized difference 
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vegetation index (NDVIa) and/or climatic hazards group 
infrared precipitation with station data (CHIRPS). 
According to the normalized difference vegetation index 
average (NDVIa) and climatic hazards group infrared 
precipitation with station data (CHIRPS) rainfall have a 
variance inflation factor (VIF) of 1. 992. There is no multi-
collinearity between these two variables because the Var-
iance Inflation Factor (VIF) is less than 10 (Table 6). As 
a result, normalized difference vegetation index average 

(NDVIa) and climate hazards group infrared precipita-
tion with station data (CHIRPS) rainfall were chosen for 
model development in this study. Table  6 shows values 
of -20.375, 28.360, and 0.316 for the intercept (constant 
term), normalized difference vegetation index average 
(NDVIa), and climatic hazards group infrared precipi-
tation with station data (CHIRPS) rainfall, respectively. 
Rainfall, normalized difference vegetation index average 
(NDVIa), and Intercept become extremely significant 

Fig. 5. Flow chart of the methodology
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Fig. 6 Comparison of maize yields predicted by the agro meteorological model and actual yields in the study area

Table 6 Results of the variance analysis; the Variance Inflation Factor; and the parameter estimations for the model

Model Sum of Squares Df Mean Square F Sig

Maize yield forecast model variance 
analysis (ANOVA)

Regression 156.49 1 156.49 65.643 0.000

Residual 19.072 8 2.384

Total 175.561 9

Variance Inflation Factor (VIF) between NDVIa and CHIRPS

Constant 0

NDVIa 1.992

CHIRPS 1.992

Model Unstandardized Coefficients Standardized Coefficients T Sig

B Std. Error Beta

Maize forecast model’s parameter estimates

1 Constant -20.375 7.696 -2.647 0. 033

CHIRPS 0.316 0. 0.093 0. 599 3.407 0. 048

NDVIa 28.360 11.851 0. 4211 2.393 0. 011
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within the model. A unit change in normalized difference 
vegetation index average (NDVIa) and climatic hazards 
group infrared precipitation with station data (CHIRPS) 
rainfall resulted in yield changes of 28.360 and 0.316 unit 
times, respectively. As a result, the multi linear regression 
model equation for maize yield forecasting is (Eq. 7):

According to the Agricultural Production report of the 
Central Statistical Agency, the coefficient of variation of 
maize yield is 17.7%, which is within the allowed range of 
validation values.

Comparing the accuracy level of maize crop 
yield forecast using model and Central Statistics 
at the ground level in the study area
When the subjectivity of traditional and remote sensing 
yield forecasts is compared, the remote sensing approach 
succeeds. According to a report by the Central Statisti-
cal Agency (CSA), the forecast data, which is a result 
of the conventional approach, has a coefficient of vari-
ance of 17.7% and is a subjective approach. The remote 
sensing-based model, on the other hand, forecasts 16.7% 
with a high level of confidence (95%) and a high prob-
ability value. Furthermore, because September is the 
maize crop’s flowering stage, the remote sensing-enabled 
methodology’s forecast result might be supplied as early 
as early October, whereas the traditional method’s data 
release date is normally in December and includes all 
cereal crops. Despite the fact that we did not consider all 
grains covered by the Central Statistical Agency (CSA) in 
my research, this shows that the timeliness issue could 
be addressed more effectively by using a remote sensing-
aided strategy rather than the traditional approach.

Another benefit of the remote sensing-based approach 
is that it provides location information, as the forecast 
can be verified by taking GPS measurements and going 
to the locations once it is prepared. As a result, whilst 
standard methods fail horribly, this method gives for 
a precise indication of which locations have a high and 
low yield in a tangible manner. As a result, it is clear 
that using remote sensing and a geographic information 
system (GIS) to anticipate maize production improves 
data quality and timeliness while lowering subjectivity. 
This research and other similar studies have proven that 
a remote sensing-enabled approach can reveal locales 
(lower administrative areas) where there is comparatively 
high, medium, and low production, making decision-
making much easier. A comparison of standard yield 

(7)
Predicated Maize yield (qt/ha)

= −20.375+ (28.360 ∗ NDVIa)

+ (0.316 ∗ CHIRPS)

estimations and the Remote Sensing aid technique is 
shown in Fig. 7.

Testing the model for predicting maize yields 
for the year 2018 in the study area
The 2018 maize crop forecast was created using the 
developed model. With a mean of 20  qha−1, the maxi-
mum maize yield for 2018 is expected to be 25  qha−1 
and the lowest 15  qha−1. Maize yields are expected to 
be 10–15  qha−1 in 6.1 percent of the study area, 15–19 
 qha−1 in 50.3 percent of the area, and 20–25  qha−1 in the 
remaining 43.6 percent of the study area, according to the 
prediction (Table  7). Certain pockets of the study area, 
such as Gesha, Sayilem, Gimbo, Gewata, and Menjwo 
district, are most productive with 20—25  qha−1 of yield, 
while the western, south-eastern, and central parts of the 
Zone, Bita, Cheta, Talo, and Bonga town zuria weredas, 
are intermediately productive with 15–19  qha−1 of out-
put. The rest of the study area has low-yielding patches 
that produce only 10–15  qha−1 of grain. As a result, the 
zone’s northwestern, north-eastern, northern, and east-
ern parts were more productive than the rest of the study 
area (Fig. 8).

Discussion
Despite the crop is uniqueness, we attempted to compare 
our results to those of earlier studies in terms of relevant 
research. According to Zinna and Suryabhagavan (2016), 
in the multiple linear regression model, the Normalized 
Difference Vegetation Index Average (NDVIa) and rain-
fall parameters were retained as significant variables for 
field level yield prediction, explaining 88 percent of the 
yield variability, implying that rainfall and Normalized 
Difference Vegetation Index Average (NDVIa) are the 
best parameters for yield prediction. Meanwhile, accord-
ing to this study, the Normalized Difference Vegeta-
tion Index Average (NDVIa) and rainfall are kept in the 
model, accounting for 89 percent of yield variation.

Rojas (2007) conducted a maize yield forecast in Kenya 
for a maize crop, and the most important components 
for building a multiple linear regression model were 
evapotranspiration total and NDVIc. The ETa total model 
explained 83 percent of the yield variance (RMSE = 0.333 
 tha−1 and CV = 21 percent), while the NDVIc model 
explained 87 percent (RMSE = 0.333  tha−1 and CV = 21 
percent), demonstrating that spectro-agro meteorologi-
cal models can be used to model even fragmented agri-
cultural lands like this one. Due to different geo-climatic 
circumstances, the evapotranspiration total was not qual-
ified for inclusion in the model (because to its insignifi-
cant p value association with maize yield and its minute 
correlation coefficient).
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The prediction power of the model in this investigation 
was high (Root mean square error = 1.54 and  R2 = 89%). 
The magnitude of the results is nearly identical when 
compared to Zinna and Suryabhagavan (2016) (Root 
mean square error = 1.41 and  R2 = 88 percent) and Reda 
(2015) (Root mean square error = 0.99 and  R2 = 93 per-
cent) South Tigray Zone maize yield forecast and east 
Arsi Zone wheat yield forecast. Rainfall (r = 0.89) is the 
most strongly correlated independent variable with yield, 
followed by the Normalized Difference Vegetation Index 
Average (NDVIa) (r = 0.84). Nonetheless, in Reda, the 
2015 normalized difference vegetation index average 
(NDVIa) and rainfall (r = 0.89) are significantly related 
(r = 0.96). This demonstrates that yield prediction param-
eters range from one agro ecological zone to the next, 
implying that our model takes into account a variety of 
factors in determining varied correlation outcomes.

The Water Requirement Satisfaction Index (WRSI) and 
Actual Evapotranspiration (Eta) were not connected to 
yield in this study, comparable to Zinna and Suryabhaga-
van (2016) and Reda (2015). Similar to Zinna and Surya-
bhagavan’s work, the normalized difference vegetation 
index average (NDVIa) and rainfall are chosen for the 
final model based on Statistics results, however rainfall 
is deleted from Reda’s (2015) article based on the Vari-
ance Inflation Factor (VIF) result. Following Zinna and 
Suryabhagavan (2016) maize crop yield forecast research 
and Reda (2015) wheat crop yield forecast research, 
the findings of this study reveal that agro metrological 

characteristics have a definite potential for maize yield 
forecasting in the kaffa zone.

Conclusions
Crop yield forecasting is essential for addressing the 
challenges provided by climate change’s impact on agri-
culture. By improving the timeliness and accuracy of 
yield forecasting, we can improve our ability to respond 
effectively to these challenges. The major purpose of this 
study was to develop a maize crop model using remote 
sensing and Geographic Information Systems (GIS). 
Crop statistical data was employed as a dependent vari-
able, and many predictor factors derived from remotely 
sensed imageries were calculated, with the variables with 
the highest correlation and significant P values chosen for 
model construction. The investigation’s findings revealed 
that the Normalized Difference Vegetation Index Average 
(NDVIa) and Climate Hazards Group Infrared Precipi-
tation with Station Data (CHIRPS) rainfall for the study 
area have excellent correlations of r = 0.84 and r = 0.89, 
respectively, with a significant P value confirming the 
result. Using these correlation results, agro meteorologi-
cal yield forecasting using a multiple linear regression 
was developed using a table of data containing yields 
as a dependent and a series of agro meteorological and 
remote sensing variables that have a high correlation with 
the yield. The created agrometric model has a prediction 
capability of 0.89 quintal per hectare and an RMSE of 
1.54 quintal per hectare, which is a good result. In an area 

Fig. 7 Comparison of the model’s estimated maize yield (quintal/ha) with the actual yield
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like the Kaffa Zone, where land is fragmented, it can be 
argued that using proven yield forecasting methodologies 
and remotely sensed data, a reasonably precise forecast 

can be formed. Using the regression model developed for 
the research area, maize production predictions may be 
done pretty far ahead of the harvest date. The developed 

Fig. 8 Maize yield forecast map of 2018
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model was also used to create a maize yield forecast map 
for the year 2018, with an average result of 20 quintal per 
hectare, indicating that the Zone’s northwestern, north-
eastern, northern, and eastern parts have high produc-
tivity per hectare and can be used by decision makers to 
identify relative productive areas prior to harvest at the 
lower administration level. Normalized Difference Veg-
etation Index Average (NDVI) generated from Moder-
ate Resolution Imaging Spectroradiometer (eMODIS) 
and Climate Hazards Group Infrared Precipitation with 
Station Data (CHIRPS) rainfall can generally be used to 
forecast maize yields in areas similar to the kaffa zone.

Following the methods indicated in the research meth-
odology, the created model can be tested in areas other 
than the kaffa zone, however more research and testing 
is required. Additional work is needed to operationalize 
the findings of this study, which include: a longer period 
of time series data should be reviewed in order to reach a 
practical application. Other elements, such as soil, should 
be included in future study, and Instead of the Multiple 
Linear Regression Model, other models such as poly-
nomial regression and non-linear regression should be 
used. More research, as well as improved remote sensing 
and GIS technologies, are needed to identify additional 
factors that contribute to production variability.
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