Skip to main content

Table 5 Optimal solutions under two CO 2 emission scenarios

From: An interval mixed-integer non-linear programming model to support regional electric power systems planning with CO2 capture and storage under uncertainty

 

Facility

High emission scenario

Low emission scenario

t = 1

t = 2

t = 3

t = 1

t = 2

t = 3

IM t (PJ)

 

[68.47, 68.47]

[39.85, 39.85]

[40.18, 40.18]

[74.40, 74.40]

[103.50, 103.50]

[133.00, 133.00]

X it (PJ)

i = 1

[495.00, 507.66]

[636.50, 636.50]

[650.00, 657.68]

[434.78, 471.05]

[353.26, 353.26]

[312.50, 329.18]

i = 2

[200.00, 220.00]

[212.50, 212.50]

[315.00, 315.00]

[229.32, 252.25]

[280.50, 280.50]

[309.68, 309.68]

i = 3

[73.50, 83.87]

[67.60, 80.65]

[58.80, 69.35]

[47.50, 47.50]

[219.24, 219.24]

[290.89, 290.89]

i = 4

[89.00, 115.20]

[187.50, 223.70]

[216.00, 263.50]

[140.00, 150.00]

[187.50, 236.70]

[216.00, 263.50]

i = 5

[4.00, 4.80]

[6.00, 6.80]

[50.00, 54.29]

[4.00, 4.80]

[6.00, 6.80]

[67.94, 73.76]

Y it (GW)

i = 1

[0.00, 0.00]

[1.20, 1.20]

[1.00, 1.00]

[0.00, 0.00]

[0.00, 0.00]

[0.00, 0.00]

i = 2

[0.00, 0.00]

[0.00, 0.00]

[1.00, 1.00]

[0.37, 0.37]

[0.80, 0.80]

[0.94, 0.94]

i = 3

[0.27, 0.34]

[0.18, 0.25]

[0.06, 0.13]

[0.00, 0.00]

[1.69, 1.69]

[2.27, 2.27]

i = 4

[0.78, 1.04]

[2.00, 2.30]

[2.20, 2.60]

[1.50, 1.50]

[2.00, 2.46]

[2.20, 2.60]

i = 5

[0.00, 0.00]

[0.00, 0.00]

[1.23, 1.23]

[0.00, 0.00]

[0.00, 0.00]

[1.74, 1.74]

f ($106)

 

[53714.63, 69399.39]

[65326.26, 81953.30]

   Â