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Watershed modeling using arc hydro based on
DEMs: a case study in Jackpine watershed
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Abstract

the accuracy of catchment delineation.

ArcGIS

Background: Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic
modeling supported by geographic information systems (GIS). In this study, DEMs and stream network data were
used to model the Jackpine Watershed in Ontario, Canada, using Arc Hydro Tools.

Results: The modeling results include stream network and catchment delineation. The effects of the DEM
reconditioning process and the stream threshold value on the modeling accuracy were examined through three
simulations. The accuracy was discussed by overlying the actual and simulated maps, as well as by comparing
stream densities, network lengths and numbers of streams, catchment area, and number of catchments. Other
possible methods to improve the watershed modeling were also discussed.

Conclusions: It is concluded that Arc Hydro is capable of performing watershed modeling with satisfactory
performance. It is shown that DEM reconditioning can improve the accuracy of watershed modeling. It is also
implied that lower stream threshold value can not only lead to a more detailed stream network but also enhance
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Background
Hydrologic models and the associated flooding models,
water pollutants transportation models and water supply
models are usually integrated in Geographic Information
System (GIS) for distributed hydrologic stimulations
(Fairfield and Leymarie 1991; Konadu and Fosu 2009;
Moharana and Kar 2002; Wu et al. 2008). Extracting
characteristics of the watershed, such as stream net-
work and catchment delineation is essential for hydro-
logical analysis and water resource management in GIS
(Zhang et al. 2013). The foundation of these hydrologic
models lies on how to obtain hydrologic and topo-
graphic parameters, i.e. watershed characteristics, from
Digital Elevation Models (DEMs) (Ames et al. 2009;
Jenson 1991; Lacroix et al. 2002).

There were many studies on the algorithms of water-
shed characteristics extraction in the past 20 vyears
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(Jones 2002; Turcotte et al. 2001; Fairfield and Leymarie
1991; Zhang et al. 2013). Wu et al. (2008) discussed
about DEM-derived primary topographic attributes for
hydrologic applications. Zhang and Huang (2009) and
Zhang et al. (2013) proposed an algorithm to establish
channel networks in digital elevation models. Many GIS-
based tools have been developed based on the previous re-
searches. The “Hydrology” toolset in ArcGIS, developed
by Esri (2004), has been commonly used for DEM prepro-
cessing and surface stream simulation. WinBasin is a
watershed analysis system that can automatically calculate
depressionless flow directions, delineate watersheds/sub-
watersheds, extract realistic drainage networks, and calcu-
late geomorphologic indices and hydrological responses
from DEMs (Lin et al. 2008). NRCS GeoHydro is an Arc-
GIS application that can compute catchments, drainage
points, drainage lines, and cross-section details for a storm
event hydrologic model (Merkel et al. 2008). Arc Hydro is
an ArcGIS-based system geared to support application in-
volving water resources. There are two key components,
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Figure 1 The corrected DEM of Jackpine watershed.
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including Arc Hydro Data Model and Arc Hydro Tools.
These two components, together with the generic pro-
gramming framework, provide basic database design and
set of tools that facilitate analysis often performed in the
water resources area (ESRI 2004). With these tools,
watershed characteristics such as stream network, flow
length, catchment, and channel networks can be rapidly
and reliably determined or extracted from DEMs (Lin
et al. 2008). However, few has been done to analyze the

effects of DEM processing on watershed modeling accur-
acy (Konadu and Fosu 2009; Murphy et al. 2007). There-
fore, the objective of this study is to extract the
characteristics of the Jackpine watershed in Canada, and
to investigate influential factors on the modeling accur-
acy. The stream network and catchment in the study area
will be modeled based on DEMs using Arc Hydro tools.
Three simulations will be conducted to analyze the fac-
tors that influence the modeling accuracy.
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Figure 2 Original digital elevation map of the Jackpine watershed.
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Figure 3 Profiles of cross-sections in the uncorrected DEM and the corrected DEM.

Results and discussion

DEM reconditioning

DEM Reconditioning is an implementation of the
“AGREE” method of hydrological correction. In this
process, original DEMs were input and stream network
were also input as a linear feature class. After the recon-
ditioning, the elevation in the DEM dropped or raised a
certain amount depending on the linear feature class. In-
teger values for sharp drop raise, smooth drop raise and
stream buffer in this process were 10, 10, and 5, respect-
ively. Figures 1 and 2 present the corrected and the ori-
ginal DEMs. The lowest elevation in the uncorrected
DEM was 183 m; whereas the lowest elevation was 73 m
in corrected DEM. Profiles across streams were exam-
ined using ArcGIS 3D analyst to show the elevation

correction (Figure 3). In the corrected DEM, the eleva-
tion of the cells that overlaid with the stream network
dropped. The DEM reconditioning process was con-
ducted in Simulations B and C.

Stream network simulation

Even though the DEM data and parameter settings were
different in the three simulations, the procedures of the
simulation were similar. Results of the main steps in
Simulation A are presented in Figures 4, 5 and 6 to show
the simulation process. Artificial depressions in the in-
put DEMs were filled using the “Fill Sink” function, then
the flow direction map was created using “Flow Direc-
tion” function. In the flow direction map, the values of
1, 2, 4, 8, 16, 32, 64, and 128 represented eight possible
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Figure 4 Flow direction map of simulation A.

Legend
[] Jackpine Watershed
Fow Direction

[

|

14

K

B 16

) 32

B 64

B 128




Li Environmental Systems Research 2014, 3:11
http://www.environmentalsystemsresearch.com/content/3/1/11

Page 4 of 12

0 5 10 20 30
[ e
Kilometers

Figure 5 Flow accumulation map of simulation A.
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direction of the flow in each cell (Figure 4). Flow accumu-
lation network (Figure 5) was then created based on the
flow direction using the “Flow Accumulation” function.
With the “Stream Definition” function, all the cells in the
input flow accumulation grid that had a value greater than
the given threshold grid was given a value of “1” and de-
fined as stream grid. After linking the stream grid using
the “Stream Segmentation” function, the Stream Link grid
map was produced (Figure 6). Based on this map, drainage

lines, i.e., stream network, were created using the “Drain-
age Line Processing” function, and catchments were cre-
ated using the “Catchment Grid Delineation” and
“Catchment Polygon Processing” function.

Results of the three simulations
Comparisons of the simulated stream networks and the
actual stream network are presented in Figures 7, 8 and 9.

-
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Figure 6 Stream link grid map of simulation A.
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Figure 7 The comparisons of the actual stream network and stream network in simulation A.
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Figure 8 The comparisons of the actual stream network and stream network in simulation B.
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Figure 9 The comparisons of the actual stream network and stream network in simulation C.
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Figure 10 Simulated steam networks under three different

stream threshold values. (A) Stream threshold value = 17506. (B)
Stream threshold value = 10000. (C) Stream threshold value = 2000.

In Simulation A and B, default stream threshold values
(i.e., 18919 and 17506, respectively), which were 1% of the
maximum flow accumulations, were used. The stream
threshold values were relatively high (comparing to the
suggested value 500—1000), thus only the main streams
were extracted in these two simulations. Deviations of the
simulation results were marked out in the comparison fig-
ures. Comparing to the results of Simulation B, the differ-
ences between the actual and simulated stream networks
were much more noticeable. This might result from the
fact that the DEMs in Simulation B had been preprocessed
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with hydrological correction while those in Simulation A
had not. Hydrological correction could enhance the accur-
acy of stream network simulation and thus the watershed
delineation (Zhang et al. 2013).

Stream threshold value is an important factor that influ-
ences the simulation. Simulation results under different
stream threshold values are shown in Figure 10. It is
shown that the higher the stream threshold values is, the
lower the density of simulated stream networks would be.
In Simulation C, the steps of stream network simulation
were repeated for times to find the stream threshold value
that brought the best match to the original stream net-
work. The stream threshold value 2000 resulted in a map
with a similar stream density as that of the actual stream
network, thus 2000 was chosen as the optimal stream
threshold value. In Simulation C, both the stream density
and the mainstreams shows desirable match with the ac-
tual watershed. However, deviations of the simulated re-
sults were found in Simulations B and C where
hydrological corrections were conducted (Figures 8 and
9). This proved that even though the original DEMs were
corrected by “burning” the actual stream network, devia-
tions still happened. There is a high possibility that the
deviations were resulted from local precipitation, DEM
resolutions or the algorithms of flow direction and flow
accumulation functions in Arc Hydro, and it could not
be avoid by changing parameter settings.

Comparison of the simulated catchments and the ac-
tual watershed boundary are presented in Figure 11.
The difference between the simulated catchments and
the actual watershed was relatively large in Simulation
A and B, whereas the simulated catchment in Simula-
tion C matched the actual watershed much better. The
results in Simulation C demonstrated that, with the
lower the stream threshold values, more detailed and
accurate catchment delineation could be obtained.

Table 1 summarizes the comparison of stream networks
and catchments. Statistics of the stream networks and
catchments in the three simulations are presented in
Figures 12 and 13. The network length, number of
streams, catchment area, and number of catchment in
Simulation A and B were similar, and they were all much
less than those in the actual watershed. However, the re-
sults in Simulation C were much higher, and were close to
the values in the actual watershed. The reason might be
that a lower stream threshold value led to a much more
detailed stream network with more second-order and
third-order streams in Simulation C. The detailed stream
network resulted in a long network length, a large number
of streams, and a large number of catchments. The larger
the number of catchments is, the more detailed the catch-
ment delineation would be. Therefore, the lower stream
threshold value eventually resulted in more detailed and
more accurate catchment area.
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Figure 11 Comparison of the catchment delineation in three simulations. (A) Catchment delineation results in simulation A. (B) Catchment
delineation results in simulation B. (C) Catchment delineation results in simulation C).

Conclusion stream threshold value would effect on the accuracy of
The stream network and catchment of Jackpine water-  stream network and catchment modeling. The accuracy
were examined by overlaying the actual and simulated

shed in Ontario were modeled in three simulations
map as well as by comparing the stream densities, net-

using Arc Hydro. The three simulations were designed
to analyze how the DEM reconditioning process and  work lengths, numbers of streams, catchment areas and

Table 1 Summary of stream networks and catchments compared

Catchment area (km?) Number of catchments

Network length (km) Number of streams
Original stream 20824 5054 1868.2 -
Simulation A 565.1 148 17284 148
Simulation B 648.1 155 1744.2 155
Simulation C 1758.2 1374 18034 1374
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Figure 12 Statistics of the catchments in three simulations. (A). Statistics of catchments in simulation A. (B). Statistics of catchments in

J

numbers of catchments. The results demonstrated that
Ayc Hydro could provide watershed simulation with
satisfactory performance. It was proved that DEM
reconditioning could improve the accuracy of water-
shed modeling, and that lower stream threshold value
could not only lead to a more detailed stream network
but also improve the accuracy of catchment modeling.
However, even though DEM recondition was processed
and the optimal stream threshold value was chosen,
there were still deviations in the simulated results. It
is believed that other factors, such as local precipita-
tion, DEM resolution, parameter values and flow cal-
culation algorithms might be the reason of deviations.

Extracting characteristics of a watershed from DEM
dataset is essential for hydrological analysis. It is the
first step of process analysis in distributed hydrological
models. The results could be further applied to many
other watershed characteristics extraction and water-
shed delineation applications, and provide decision
support for water resources management in various
regions.

There are many factors that might influence the ac-
curacy of watershed modeling with Arc Hydro, but
only the DEM reconditioning and stream threshold
value were examined in this study. Therefore, future
work with the consideration of more factors, such as



Li Environmental Systems Research 2014, 3:11
http://www.environmentalsystemsresearch.com/content/3/1/11

Page 9 of 12

Statistics of streamnetworkA

]
5]

22
Standard Deviation: 2695712

T

&

w

*

e
ERR-RR-R R

A

Statistics of streamnetworkB

Field

26 51 77 102 127

flength
Statistics:

Standard Deviation: 2 993745

26 S1 76 101 126

tatistics of streamnetworkC

Field

[length =
Statistics:

Count 1374

Mirsmum: 0.015149

Masimun: 8.76391

Mean:
Standard Deviation: 1.083424

Frequency Distribution

. s p———

C

00 1.1 21 32 42 S3 63 74 84

catchments in simulation B. (C). Statistics of catchments in simulation C.

Figure 13 Statistics of the streams in original flow map and three simulations. (A). Statistics of catchments in simulation A. (B). Statistics of

DEM resolution and other parameter setting in Arc
Hydro is desired. More research on the flow calcula-
tion algorithms would also help improve the accuracy
of watershed modeling.

Methods
Study area
The Jackpine watershed, a watershed in the Great lakes -
St. Lawrence Drainage Area in Ontario, Canada, was
chosen as the study area (Figure 14). The total area of
the watershed is 1868.2 km?. It is a tertiary watershed of

the secondary watershed Northwestern Lake Superior in
Great lakes - St. Lawrence Basin.

The study area is affected by both warm, humid air
from the Gulf of Mexico and cold, dry air from the
Arctic. The Great Lakes have a significant influence
on the climate in this watershed. Acting as a giant
heat sink, the lakes moderate the temperatures of the
surrounding land, cooling the summers and warming
the winters (Magnuson et al. 1997). Climate is milder
in this watershed compared to other locations of simi-
lar latitude. The lakes also increase the moisture con-
tent of the air in the watershed throughout the year.
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Figure 14 Location of the study area and watershed in Ontario, Canada.
- J

Watershed boundary and stream network data water in Canada. It is in vector format following the
Watershed boundary and stream network data were international geometrics standards. The boundary of
extracted from the National Hydro Network (NHN) Jackpine watershed was defined by NHN Work Unit
data on the GeoBase Web portal of Canada. NHN is a  Limit, which generally corresponds to the Water Sur-
geospatial database that covers the inland surfaces vey of Canada Sub-Sub-Drainage Areas. The NHN
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Figure 15 Watershed boundary and stream network of Jackpine watershed derived from National Hydro Network (NHN) data.
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Table 2 Main parameter settings of simulation A, B,
and C

Simulation DEM processing Stream threshold value
A Without hydrological correction Default value: 18919
B With hydrological correction Default value: 17506
@ With hydrological correction 2000

data of Jackpine watershed was downloaded as a NHN
dataset. Watershed boundary and stream network data
are presented in Figure 15.

Digital elevation model sources

Digital elevation data was collected from the GeoBase
Web portal of Canada. The source data was extracted
from the National Topographic Data Base (NTDB) or
various data acquired from the provinces and territories.
Digital data at the scale of 1:50,000 were chosen for the
study area. The grid spacing, based on geographic coor-
dinates, was in the resolution of 0.75 arc seconds.
Ground Elevations were recorded in meters relative to
Mean Sea Level (MSL), based on the North American
Datum 1983 (NAD83) horizontal reference datum. The
DEM sections were first converted to raster files and
then combined using ArcGIS tools. The obtained DEM
map of Jackpine watershed is shown in Figure 2.

Modeling stream networks using digital elevation models
The modeling of stream network was based on the
aforementioned stream network and DEMs data using
the functions in the Arc Hydro application. A depres-
sionless DEM was created based on the input DEM to
ensure that flow was not altered by artificial depressions.
The flow direction algorithm D8 (i.e., deterministic
eight-node algorithm) was used to produce a grid of flow
directions. This grid was used to produce the surface
flow accumulation network. All the cells in the flow ac-
cumulation grid that had a value greater than the given
threshold grid was given a value of “1” and defined as
stream grid. Stream segments that might be a head
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segment, or might be defined as a segment between two
segment junctions were created to produce a stream link
grid map. Finally, the drainage line and catchment delin-
eation were obtained based on the stream link grid.

In Arc Hydro, the original DEM grid can be further en-
hanced by overlaying and “burning” hydrographic details
such as streams, lakes, and shorelines into this grid, to en-
sure that the modeled flow is forced to conform to already
mapped surface water features (Saunders 2000; MacMillan
et al. 2003). This is also called the “DEM reconditioning”,
which uses the “AGREE” method and produces a “hydro-
logically corrected” DEM (Zhang et al. 2013). Although
there is still little published work about this process in
peer-reviewed journals, there are numerous studies in
reports and on the internet and it has been adopted
for the USGS National Hydrography Dataset (Murphy
et al. 2007).

The conventional watershed simulation process includes
sink filling, flow direction determination, flow accumula-
tion and stream definition (Zhang and Huang 2009).
Parameters in DEM preprocessing as well as in all of the
watershed simulation steps might have effects on the ac-
curacy of the modeled stream network. In order to com-
pare the effectiveness of the hydrological correction using
“DEM reconditioning”, Simulation A and Simulation B
were designed. In Simulation C, steps of the simulation
were repeated for times using different threshold and inte-
ger values to match the original stream network. Main
parameter settings of the three simulations are shown in
Table 2. The flowchart of this work is shown in Figure 16.
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