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Abstract

Background: Environmental decisions can be complex because of the inherent trade-offs among environmental,
social, ecological, and economic factors. This paper presents a novel hybrid fuzzy stochastic analytical hierarchy process
(FSAHP) approach to aid decision making by incorporating fuzzy and stochastic uncertainty into the traditional analytic
hierarchy process (AHP). A case study related to ballast water management is used to demonstrate the applicability of
the proposed approach. Nine experts from government ministries and academic institutions are invited to evaluate five
treatment technologies (i.e., heat treatment, ultraviolet, ozone, ultrasound, and biocide) based on a number of criteria
such as efficacy, capital cost, and human risk.

Results: The experts’ preferences over the set of alternatives are represented as linguistic terms instead of numerical
values. The beta-PERT distribution is adopted to approximate the probability density functions of the values of their
inputs. Statistical analysis indicates that ultraviolet has the highest score (0.22–0.24) in most replications and its overlap
with the second-best alternative is statistically negligible. Ozone, ultrasound, and heat treatment are mostly found as
the second-, third-, and fourth-best alternatives with considerable overlaps that may be reduced if more experts are
involved.

Conclusions: As compared with the traditional AHP, the proposed FSAHP approach can not only take into account
linguistic information but also capture the uncertainty associated with insufficient information and biased opinions in
group decision-making problems.

Keywords: FSAHP approach; Fuzzy; Stochastic; Ballast water management; Group decision-making
Background
Environmental decisions can be complex because of the
inherent trade-offs among environmental, social, eco-
logical, and economic factors [1,2]. Many multi-criteria
decision making (MCDM) approaches have been devel-
oped to facilitate decision making under uncertainty
[3-5]. Kornyshova and Salinesi [6] classified them into
categories such as outranking methods, analytic hier-
archy process, multiattribute utility theory, weighting
methods, fuzzy methods, and multiobjective program-
ming. Among them, the analytic hierarchy process
(AHP), first proposed by Saaty [7], is one of the most
widely used MCDM approaches. It structures the
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rational analysis of decision making by dividing a prob-
lem into hierarchies including goal, criteria, subcriteria
(if any), and decision alternatives. One of the most im-
portant features or, in other words, the strength of the
AHP revolves around the possibility of evaluating quan-
titative as well as qualitative criteria and alternatives on
the same preference scale. Pairwise comparison judg-
ments are given by decision makers using numerical,
verbal or graphical scales and are subsequently synthe-
sized to obtain the overall priorities. This comparison
enables the AHP to capture subjective and quantitative
judgment made by decision makers. Many attempts have
been reported in the literature to apply the AHP in
problems with high complexity and uncertainty, espe-
cially in the environmental sector [8-13].
However, the AHP has been criticized for its inability

to quantify the uncertainty associated with decision
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making [14]. Banuelas and Antony [15] highlighted that
the basic theory of the AHP does not allow any statistical
conclusion to be drawn. Rosenbloom [16] stated that a
small difference in the utilities of alternatives may not be
appropriate to conclude that one alternative is superior to
the other. Carlucci and Schiuma [17] argued that the AHP
is not able to address the interactions and feedback de-
pendencies between the elements of a decision problem.
In addition, in many real-world applications, the available
information is imprecise, incomplete and occasionally
unreliable due to the unquantifiable nature of data or lack
of knowledge. Human experts tend to use linguistic terms
(e.g., good, poor, excellent) to express their judgments
which can not be handled effectively using crisp scales.
To overcome the aforementioned limitations, much re-

search effort has therefore been directed towards taking
uncertainties (e.g., fuzzy sets and probability distributions)
into account in the AHP. On one hand, to capture linguis-
tic information, Yu [18] employed an absolute term
linearization technique and a fuzzy rating expression into
a GP-AHP model for solving fuzzy AHP problems. Tolga
et al. [13] combined the use of fuzzy set theory with the
AHP to address the uncertainty of assigning crisp con-
cepts in decision-making topics. Tesfamariam and Sadiq
[19] incorporated uncertainty into the AHP using fuzzy
arithmetic operations for environmental risk management.
Chowdhury and Husain [8] integrated fuzzy set theory,
the AHP, and the concept of entropy to select the best
management plan for a drinking water facility. Kaya and
Kahraman [10] proposed a hybrid fuzzy AHP-ELECTRE
approach for modeling the uncertainty of linguistic ex-
pression. On the other hand, to deal with insufficient
information and opinion difference in group decision-
making processes, pairwise comparison elements were
suggested to be viewed as random variables and computed
via Monte Carlo simulation by Rosenbloom [16], Eskandari
and Rabelo [20] and Jing et al. [21]. To date, triangular
distribution is the most commonly used distribution
for modeling expert judgment in the AHP [15,22]. How-
ever, it may place too much emphasis on the most likely
value at the expense of the values to either side [23]. It is
possible to overcome this disadvantage of the triangular
distribution by using the beta-PERT distribution. The
beta-PERT distribution has also been widely used for
modeling expert judgments and providing a close fit to
normal distributions with less demand for data [24,25]. Al-
though various types of uncertainty have been discussed
in the literature, there has been no study investigating
the feasibility of incorporating both fuzzy and stochastic
uncertainty into the AHP.
In response to this, in this paper, a hybrid fuzzy sto-

chastic analytical hierarchy process (FSAHP) approach is
developed by integrating the beta-PERT distribution,
fuzzy set theory, pairwise comparison and Monte Carlo
simulation. A real-world case study for ballast water man-
agement is presented to test the feasibility and efficiency
of the proposed approach in a group decision-making en-
vironment. Ballast water is carried by ships to acquire the
optimum operating depth of the propeller and to maintain
maneuverability and stability [26]. It is recognized as the
principle source of invasive species and pollutants in
coastal freshwater and marine ecosystems, causing severe
negative effects on the environment and human health
[27-30]. To address the associated concerns, the Inter-
national Maritime Organization (IMO) has adopted many
legal instruments whereby ships will be required to estab-
lish a ballast water management system between 2009 and
2016 [31]. Many treatment technologies such as filtration,
heat treatment, hydrocyclone, ultraviolet, ozonation, oxi-
dization, electric pulse, and deoxygenation have been tested
and applied to remove unwanted species and pollutants
from ballast water [29]. However, Gregg and Hallegraeff
[32] argued that no treatment option had been shown fully
biologically effective, environmentally friendly, safe and
practical for onboard applications. In addition, the perform-
ance of most treatment processes is likely to be affected by
the cold environment and unpredictable weather condi-
tions [26,29]. The evaluation of their applicability and asso-
ciated risk is of paramount importance and lacks in-depth
research. How to choose the best technology from a sus-
tainability metrics perspective still exists as a challenge to
the government and other public bodies with environmen-
tal responsibilities.

Methods
Fuzzy sets and fuzzy numbers
Zadeh [33] first introduced the concept of fuzzy set the-
ory which was oriented to the rationality of uncertainty
due to imprecision or vagueness. Fuzzy set theory is an
extension of the classical set theory in which elements
have grades of membership ranging from 0 to 1. A tri-
angular fuzzy number (TFN) is defined by its member-
ship function μ(x) as

μ xð Þ ¼
x−að Þ= b−að Þ;
x−cð Þ= b−cð Þ;

0;

a≤x≤b
b≤x≤c

otherwise

8<
: ð1Þ

where a, b and c denote the minimum, most likely, and
maximum values, respectively. Fuzzy numbers are well
suited to represent the imprecise nature of judgments,
such as linguistic terms used by human experts. Some
basic arithmetic operations of fuzzy numbers can be
found at Kaufmann et al. [34].

Stochastic programming
Monte Carlo simulation, which applies probability the-
ory to address variable and uncertain phenomena, relies
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on statistical representation of available information. It has
been widely applied to obtain more detailed information
for systems that are too complex to be solved analytically.
Monte Carlo simulation in its simplest form involves ran-
dom sampling from a probability distribution. Various
probability distributions (e.g., uniform, normal, beta, and
lognormal) have been used in connection with Monte
Carlo simulation to model the uncertainty of environmen-
tal systems. Banuelas and Antony [15] presented a modi-
fied analytic hierarchy process with triangular probability
distribution to include uncertainty in the judgments. Li
and Chen [35] developed a fuzzy-stochastic-interval linear
programming (FSILP) approach for supporting municipal
solid waste management by tackling uncertainties
expressed in normal probability distributions, fuzzy mem-
bership functions and discrete intervals. Jing et al. [25]
proposed a Monte Carlo simulation aided analytic hier-
archy process (MC–AHP) approach by employing the
beta-PERT distribution to prioritize nonpoint source pol-
lution mitigation strategies. Jing et al. [21] further inte-
grated the uniform distribution with interval judgment
to a hybrid stochastic-interval analytic hierarchy process
(SIAHP) framework for group decision making on waste-
water reuse. In this paper, the beta-PERT distribution is
employed to model expert judgment. It uses the most
likely, minimum, and maximum values of expert estimates
to generate a distribution that more closely resembles real-
istic probability distribution.

Fuzzy stochastic analytic hierarchy process (FSAHP)
The proposed FSAHP approach is capable of capturing
not only a human’s appraisal of ambiguity but also the
uncertainty introduced by the lack of information or
scattered opinions. Experts’ linguistic assessments are
aggregated to approximate a series of beta-PERT distri-
butions for randomized fuzzy pairwise comparisons.
Figure 1 Membership spread of linguistic scales.
Monte Carlo simulation is then used to generate ran-
dom fuzzy pairwise comparison matrices (FPCMs), cal-
culate the fuzzy weights, and produce the final scores
for each decision alternative. The detailed steps are
summarized as follows:
Step 1: Structure the decision problem into a hierarchy

of interrelated subproblems that can be analyzed inde-
pendently. The hierarchy usually includes a main goal, cri-
teria, and alternatives, from the top to the bottom. Each
criterion may be further decomposed to a number of
lower-level subcriteria as a new level. The goal, criteria,
subcriteria (if any), and alternatives can be determined
through literature reviews and collective discussions.
Step 2: Linguistic judgments on each alternative and

criterion with respect to the elements on the level im-
mediately above can be obtained from experts through
questionnaires, surveys, interviews, expert panels, and
direct observations. Instead of using a crisp ratio scale,
seven TFNs (Figure 1) are used to represent linguistic
terms with the expectation that experts will feel more
comfortable using such terms in their assessment. It
should be noted that such a verbal clarification becomes
impractical when too many rating scales (e.g., 10-point
format) are involved because the level of agreement be-
comes too fine to be easily expressed in words [36].
Step 3: For the assessment of each alterative and cri-

terion, the number of TFNs should be equal to the num-
ber of experts. The minimum (a), most likely (b) and
maximum (c) values of the TFNs are aggregated into
three individual groups. In order to generate random
TFNs, Equations 2–5 are used to approximate an inde-
pendent beta-PERT distribution for each group.

mean ¼ minþ 4modal þmax
N

ð2Þ
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stdev ¼ max−min
N

ð3Þ

α ¼ mean−min
max−min

� �
mean−minð Þ max−meanð Þ

stdev2
−1

� �
ð4Þ

β ¼ max−mean
mean−min

� �
� α ð5Þ

where mean, min, modal, max, stdev denote the mean,
smallest, most probable, largest values, and standard de-
viations of a, b, and c, respectively; N is the number of
experts; α and β are the shape factors. Equations 6–8 are
then used to generate random numbers (i.e., randoma,
randomb, randomc) that follow the beta-PERT distribu-
tions for a, b, and c, respectively. It is noteworthy that
the triangular shape needs to be verified to validate these
random numbers.

randoma ¼ mina þ betarnd αa; βa
� �

� maxa−minað Þ ð6Þ

randomb ¼ minb þ betarnd αb; βb
� �

� maxb−minbð Þ ð7Þ

randomc ¼ minc þ betarnd αc; βc
� �

� maxc−mincð Þ ð8Þ

where betarnd denotes standard Matlab function (i.e.,
beta distribution) which returns a random number be-
tween 0 and 1.
Step 4: Set up fuzzy pairwise comparison matrices

(FPCMs) for each hierarchy level based on fuzzy arith-
metic. For example, when m alternatives (C1…Cm) on a
given level are evaluated against each other with regard
to the pth criterion (p = 1, 2, 3…n) on the preceding
level, an m ×m FPCM is obtained as below

C1 C2 C3 ⋯ Cm

C1

C2

C3

⋮
Cm

1; 1; 1ð Þ ~x12 ~x13 ⋯ ~x1m
1=~x12 1; 1; 1ð Þ ~x23 ⋯ ~x2m
1=~x13 1=~x23 1; 1; 1ð Þ ⋯ ~x3m
⋮ ⋮ ⋮ ⋮ ⋮

1=~x1m 1=~x2m 1=~x3m ⋯ 1; 1; 1ð Þ

2
66664

3
77775
ð9Þ

To calculate each non-diagonal fuzzy element (e.g., ~x13),
the dominance of one alternative or criterion over another
is determined by the division of two TFNs. For example, if
the random TFNs for C1 and C3 are (a1, b1, c1) and (a3, b3,
c3), respectively, then ~x13 ¼ a1=c3; b1=b3; c1=a3ð Þ and 1=
~x13 ¼ a3=c1; b3=b1; c3=a1ð Þ.
Step 5: Calculate the fuzzy weights of each FPCM. For
example, in Equation 9, the geometric means of each
row and the corresponding fuzzy weights are obtained
using Equations 10–13. The weight assessing method by
geometric mean is applied because of its simplicity and
ease when dealing with fuzzy matrices [10].

ai ¼
Ym
j¼1

aij

" #1=m
; bi ¼

Ym
j¼1

bij

" #1=m
; ci

¼
Ym
j¼1

cij

" #1=m
for i ¼ 1; 2;…;m ð10Þ

asum ¼
Xm
i¼1

ai; bsum ¼
Xm
i¼1

bi; csum ¼
Xm
i¼1

ci ð11Þ

~wip ¼ ai
csum

;
bi

bsum
;

ci
asum

� �
for i ¼ 1; 2;…;m ð12Þ

where aij, bij, and cij are the minimum, most likely, and
maximum values of each non-diagonal fuzzy element ~xij ,
respectively; m is the size of the FPCM or the number of
decision alternatives; ai, bi, and ci are the geometric
means of the minimum, most likely, and maximum
values of the fuzzy elements on the ith row, respectively;
asum, bsum, and csum are the sum of ai, bi, and ci, respect-
ively; and ~wip are the fuzzy weights of the ith alternative
against the pth criterion. Repeating this step to obtain all
other ~wip and ~wp , which are the fuzzy weights of the pth

criterion in terms of the goal.
Step 6: As with the traditional AHP, the proposed

FSAHP approach also measures the inconsistency of
each FPCM. Due to the presence of fuzzy numbers, the
traditional consistency algorithms are not effective in ad-
dressing such uncertainties. Hence, in this paper, a new
inconsistency index (CIF) based on the distance of the
matrix to a specific consistent matrix is adopted from
Ramík and Korviny [37].

sLi ¼ min
i

bi
ai

� 	
⋅
ai
bsum

ð13Þ

sMi ¼ bi
bsum

ð14Þ

sUi ¼ max
i

bi
ci

� 	
⋅

ci
bsum

ð15Þ

CIF ¼ γ⋅ max
i;j

max
sLi
sUj

−aij












; sMi

sMj
−bij












; sUi

sLj
−cij














( )( )

ð16Þ
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γ ¼ 1

max σ−σ 2−2mð Þ=m; σ2 2
m

� �2= m−2ð Þ
−

2
m

� �m= m−2ð Þ !( )

if σ <
m
2

� �m= m−2ð Þ

γ ¼ 1
max σ−σ 2−2mð Þ=m; σ 2m−2ð Þ=m−σf g if σ≥

m
2

� �m= m−2ð Þ

ð17Þ
where sLi , s

M
i , and sUi are the minimum, most likely, and

maximum values of the optimal solution that has the
minimal measure of fuzziness, respectively; σ is the lin-
guistic scale (i.e., [1/7, 7] in this study); γ is the normal-
ity constant; CIF is the inconsistency index of a FPCM
such that a value of 0.1 or less is considered to be ac-
ceptable, otherwise the FPCM should be revised.
Step 7: The overall fuzzy priorities ~wi of the ith alter-

native can be calculated by aggregating the weights
throughout the hierarchy:

~wi ¼
Xn
p¼1

~wip � ~wp ð18Þ

where ~wip are the fuzzy merits of the ith alternative with
regard to the pth criterion, respectively; ~wp are the fuzzy
weights of the pth criterion against the goal; and n is the
number of evaluation criteria.
Step 8: Defuzzify ~wi by using the center of gravity

(COG) method and rank the decision alternatives based
on their normalized crisp overall scores wi.

w�
i ¼

Zc
a

xμ~wi
xð Þdx

Zc
a

μ~wi
xð Þdx

ð19Þ

wi ¼ w�
iXm

i¼1

w�
i

ð20Þ

where w�
i are the crisp overall scores of the ith alterna-

tive; a and c denote the support of ~wi; μ~wi
xð Þ are the cor-

responding membership functions of ~wi ; and wi are the
normalized crisp overall scores of each decision alterna-
tive and are sequenced from high to low in the order of
1 to 5. To validate this ranking scheme, or in other
words, the defuzzification results, Chen’s fuzzy ranking
method is also employed to further compare the overall
fuzzy priorities ~wi and rank them from the highest to
the lowest [38].
Step 9: Repeat Steps 4 to 8 for a number of iterations

(e.g., 1000, 5000), the overall scores of alternatives can
be obtained and plotted as probability density functions
rather than as point values.

Case study
This case study was conducted to demonstrate the ap-
plicability and effectiveness of the proposed FSAHP ap-
proach in addressing uncertainty in the context of group
decision-making. A cargo shop was assumed to be re-
quired for an onboard ballast water treatment system in
order to operate in the North Atlantic. The decision al-
ternatives and evaluation criteria were determined based
on literature review and discussion with experts from
governmental ministries and academic institutions. The
experts were further invited to fill out the questionnaire
on the basis of linguistic terms. Their opinions were ana-
lyzed and interpreted to facilitate the implementation of
the FSAHP approach.

Hierarchy structure
As depicted in Figure 2, the goal was to select the best on-
board treatment technology in order to eliminate invasive
microorganisms and to remove water soluble organics
from ballast water, particularly in the harsh environments.
Five treatment technologies including heat treatment,
ultraviolet (UV), ozone, ultrasound, and biocide were
chosen [26-30]. Heat treatment is capable of killing invasive
species embedded in sediment that has accumulated at the
bottom of the ballast tanks. It should be pointed out that
discharging warm water potentially threatens biological
communities and a complete treatment process may take
hours or days, which is not always practical. Despite the
potential threats posed by mercury contamination and gen-
etic mutation, UV manages to eliminate microorganisms
by breaking chemical bonds in DNA and RNA molecules
and cell proteins [29]. Recently, ozone has been widely
employed in removing microorganisms from ballast water.
The often-cited disadvantages of using ozone as a disinfect-
ant have been reported as the possible formation of toxic
byproducts, low solubility, and high instability [39]. Ultra-
sound can induce the collapse of microscopic gas bubbles
in the exposed liquid and lead to the rupture of cell mem-
branes, yet it is less effective in killing some microorgan-
isms such as bacteria [40]. Many chemical biocides have
been documented as possible treatment options to the
problem of ballast-mediated invasive species. However,
some concerns, such as risks from storage and handling,
high operational and material cost, and possible discharge
of toxic residues need to be taken into account [32]. Based
on the recommendations from literature [29,41,42] and ex-
pert opinions, in this study, eight evaluation criteria inc-
luding efficacy on microorganisms, efficacy on organic
pollutants, adaptability to harsh environment, capital cost,
operation and maintenance (O&M) cost, human health
risk, ecological risk, and waste production were chosen.



Figure 2 Hierarchy structure of the ballast water treatment technology selection problem.

Jing et al. Environmental Systems Research 2013, 2:10 Page 6 of 10
http://www.environmentalsystemsresearch.com/content/2/1/10
Data acquisition
In the absence of quantitative data about each alternative,
experts’ qualitative judgments were used to measure the
priorities of alternatives. The linguistic assessments for the
qualitative attributes were provided by nine local experts
from governmental ministries (environmental division) and
academic institutions (professors and graduate students at
Memorial University of Newfoundland). They were asked
to rate the performance of each alternative and the import-
ance of each criterion using the linguistic scales provided in
Figure 1. Tables 1 and 2 summarize the linguistic assess-
ments made by each participating expert. These assess-
ments were aggregated in groups such that the beta-PERT
distributions of each group can be estimated to generate
Heat Ultraviolet Ozone

Heat 1; 1; 1ð Þ 2; 3; 4ð Þ
6; 7; 7ð Þ

2; 3; 4ð Þ
6; 7; 7ð Þ

Ultraviolet
2; 3; 4ð Þ
6; 7; 7ð Þ

� �−1
1; 1; 1ð Þ 6; 7; 7ð Þ

6; 7; 7ð Þ
Ozone

2; 3; 4ð Þ
6; 7; 7ð Þ

� �−1 6; 7; 7ð Þ
6; 7; 7ð Þ

� �−1
1; 1; 1ð Þ

Ultrasound
2; 3; 4ð Þ
4; 5; 6ð Þ

� �−1 6; 7; 7ð Þ
4; 5; 6ð Þ

� �−1 6; 7; 7ð Þ
4; 5; 6ð Þ

� �−1

Biocide
2; 3; 4ð Þ
5; 6; 7ð Þ

� �−1 6; 7; 7ð Þ
5; 6; 7ð Þ

� �−1 6; 7; 7ð Þ
5; 6; 7ð Þ

� �−1
random TFNs. For example, the performance of heat, ultra-
violet, ozone, ultrasound and biocide with respect to their
efficacy on microorganisms was randomly generated as C
(2, 3, 4), G (6, 7, 7), G (6, 7, 7), E (4, 5, 6) and F (5, 6, 7), re-
spectively. To obtain the corresponding FPCM (Equa-
tion 21), elements in the first row were given by the fuzzy
comparisons between the performance of heat (2, 3, 4) and
all the others, respectively. The consistency of this FPCM
was less than 0.1, which was acceptable, and the fuzzy
weights of each alternative were able to be calculated. It
should be noted that the number of Monte Carlo iterations
used for this case study was determined as 1000 by taking
time constraints and the efficiency of convergence into
account [22].
Ultrasound Biocide
2; 3; 4ð Þ
4; 5; 6ð Þ

2; 3; 4ð Þ
5; 6; 7ð Þ

6; 7; 7ð Þ
4; 5; 6ð Þ

6; 7; 7ð Þ
5; 6; 7ð Þ

6; 7; 7ð Þ
4; 5; 6ð Þ

6; 7; 7ð Þ
5; 6; 7ð Þ

1; 1; 1ð Þ 4; 5; 6ð Þ
5; 6; 7ð Þ

4; 5; 6ð Þ
5; 6; 7ð Þ

� �−1
1; 1; 1ð Þ

ð21Þ



Table 1 Expert assessment for ballast water treatment
technologies

Criteria Alternatives Expert assessment

1 2 3 4 5 6 7 8 9

Efficacy on
microorganisms

Heat C D B B C C D C C

Ultraviolet G F G G G G F F F

Ozone G G E G G F F G F

Ultrasound E E F E F D E E E

Biocide F G G F F G E F G

Efficacy on organics Heat B A A C C B C C B

Ultraviolet F E G F G F F G F

Ozone F G E D F E F G E

Ultrasound E E D E D E D E C

Biocide B B A B B B C B A

Adaptability to harsh
environment

Heat C B D C B C C B C

Ultraviolet F E G F F E F E F

Ozone F E E F G D E F G

Ultrasound E E F D E D E D D

Biocide D D F E D E D C D

Capital cost Heat F D E E F E F E E

Ultraviolet D E D E D B D D C

Ozone C D C D C C C B C

Ultrasound B C B C D C D B D

Biocide G F F E G F E F E

O&M cost Heat F G F E E G E F G

Ultraviolet D E E D D E D E E

Ozone C C C D C E C D C

Ultrasound C B C C D D B C D

Biocide D E D F F E D E F

Human risk Heat G F G E F F E E F

Ultraviolet C C D C D C D C B

Ozone C D B D E D E C D

Ultrasound B D D C D D E D C

Biocide B B C C D C C D B

Ecological risk Heat C D B C D E C E D

Ultraviolet D F D E F G F D D

Ozone F E D E E F F D E

Ultrasound E D E D E D E D D

Biocide C B E D C C D C C

Waste production Heat E D D D C D E D C

Ultraviolet F G F E F G G F E

Ozone D E D D E E E F F

Ultrasound D C C C D D E D E

Biocide C B C B D C E D B

Table 2 Expert assessment for evaluation criteria

Goal Criteria Expert assessment

1 2 3 4 5 6 7 8 9

Best treatment
technology

Efficacy on
microorganisms

G F F E F E G E F

Efficacy on organics E C D E F F D F D

Adaptability to harsh
environment

F F G F E D E C D

Capital cost F E B E C D F D C

O&M cost C B E D C F F E F

Human risk F G E F D E D E E

Ecological risk D E F D E C D F D

Waste production B D D A D B E G C
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Results and discussion
The results and statistics were obtained by following the
proposed FSAHP approach. Figure 3, for example, depicts
the probability density of the scores of each alternative
with respect to the criterion of human health risk after
1,000 iterations. The histogram bar plot clearly demon-
strates that heat treatment (0.26–0.33) appeared to be the
most attractive solution in terms of the lowest health risk,
followed by ozone (0.16–0.25) without any overlap. Ultra-
sound, biocide, and UV were seen as the least preferable
option with considerable overlaps between each other, im-
plying that experts were not confident about ranking one
over the others. The correlation coefficients between the
scores of ultrasound and biocide, biocide and UV, and
ultrasound and UV were -0.201, -0.476, and 0.308, re-
spectively. A negative correlation coefficient between two
variables usually implies that the increase of one variable
is associated with the decrease of the other. One the other
hand, a positive correlation coefficient means that two var-
iables increase (or decrease) simultaneously in the same
Figure 3 Probability distributions of alternative scores with
regard to human risk.



Table 4 Ranking with regard to human risk based on
Chen’s method

Treatment
technology

Rank

1 2 3 4 5

Heat 1000 0 0 0 0

UV 0 2 20 277 701

Ozone 0 929 57 11 3

Ultrasound 0 64 752 180 4

Biocide 0 5 171 532 292

Total 1000 1000 1000 1000 1000
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direction. These principles become more prominent as
the absolute value of a correlation coefficient close to 1. In
this case study, negative correlation coefficients can be
interpreted as larger overlaps as compared to positive cor-
relation coefficients based on the fact that the scores were
closely distributed (Figure 3). Tables 3 and 4 further valid-
ate these conclusions by showing the ranking of alterna-
tive priorities based on the COG and Chen’s
defuzzification methods, respectively. A statistical test of
the null hypothesis that heat treatment was not the prob-
abilistic optimal alternative (versus the alternate assump-
tion that it was) was conducted to examine if the
difference between it and the second best option (i.e.,
ozone) was statistically significant. Heat treatment was
ranked first by both methods with the confidence level ex-
ceeding 95%, indicating the null assumption that it is not
probabilistic optimal (versus the alternate assumption that
it is) is rejected. Ultrasound took the third place in more
than 75% of the iterations while UV had the least prefer-
ence in over 70% of the cases. From the technical perspec-
tive, the results were expected because heat sources such
as waste heat from the engine jacket coolers and add-
itional auxiliary boiler are usually not accessible by most
crew members. On the other hand, short-term exposure
to high level ozone can temporarily influence lung func-
tion and respiratory tract; meanwhile, some by-products
(e.g., bromate) produced from ozonation may also pose
risks to human health. UV was ranked as the least prefera-
ble alternative because excessive human exposure to UV
is positively associated with severe health problems includ-
ing photoaged skin, ocular diseases, and skin cancers.
The probability density distributions of criteria weights

using the kernel-smoothing method are plotted in
Figure 4. It reveals that efficacy on microorganisms,
adaptability to harsh environments, O&M cost, and human
health risk were the most influential criteria that need to
be prioritized in the decision making process. The over-
all scores of each alternative towards the goal are shown
in Figure 5 as histograms. Another statistical test of the
null hypothesis that UV was not the probabilistic opti-
mal alternative (versus the alternate assumption that it
Table 3 Ranking with regard to human risk based on the
COG method

Treatment
technology

Rank

1 2 3 4 5

Heat 1000 0 0 0 0

UV 0 3 6 260 731

Ozone 0 943 51 6 0

Ultrasound 0 50 798 150 2

Biocide 0 4 145 584 267

Total 1000 1000 1000 1000 1000
was) was conducted. Tables 5 and 6 reveal that UV was
ranked with the highest overall score at 100% confidence
level, indicating that the null assumption that it was not
probabilistic optimal (versus the alternate assumption
that it is) was rejected. Ozone, heat treatment, and ultra-
sound had the second, third, and fourth places at the
confidence levels of 61.0–71.4%, 56.0–68.4%, and 78.4 −
84.6%, respectively. Figure 6 further supports this rank-
ing scheme by using box plot to graphically illustrate the
minimum, lower quartiles, medians, upper quartiles, and
maximum of the overall scores. It indicates that the
score distribution of ozone has a remarkable overlap
with that of ultrasound as their medians, lower percen-
tiles, and upper percentiles are close to each other.
Nonetheless, ozone has a wider spread of scores as com-
pared to ultrasound, suggesting that the experts were
more unanimous on the performance of ultrasound dur-
ing their assessment. Another interesting point to note
is that both COG and Chen’s methods produced similar
defuzzification results, which demonstrated their applic-
ability in the proposed FSAHP approach. In addition,
the results also depicted that the proposal approach can
well address linguistic inputs in group decision making
Figure 4 Probability density estimates of decision
criteria weights.



Figure 5 Probability distributions of alternative overall scores.

Table 6 Summary of the simulation results for the final
ranking based on Chen’s method

Treatment
technology

Rank

1 2 3 4 5

Heat 0 25 98 876 1

UV 1000 0 0 0 0

Ozone 0 746 218 36 0

Ultrasound 0 229 684 87 0

Biocide 0 0 0 1 999

Total 1000 1000 1000 1000 1000
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processes. The decision makers would be more comfort-
able and confident to give vague judgments rather than
evaluating pairwise comparisons using single numeric
values. Verbal assessments were collected and compared
against with each other wherein the priorities of each al-
ternative were determined. The use of the beta-PERT
distribution was also able to lessen the uncertainty
caused by insufficient information or biased opinions.

Conclusions
As one of the most widely exploited multi-criteria deci-
sion making (MCDM) approaches, the analytic hierarchy
process (AHP) has been well documented in the litera-
ture. However, it has been criticized for its inability to
quantify the uncertainty associated with decision mak-
ing. In this paper, a hybrid fuzzy stochastic analytical
hierarchy process (FSAHP) approach was developed in
order to assist decision making with more confidence by
integrating fuzzy set theory, probabilistic distribution,
pairwise comparison and Monte Carlo simulation. A
case study related to ballast water management was car-
ried out to verify the feasibility and efficiency of the pro-
posed approach. Five treatment technologies were
evaluated against a number of environmental, economic,
Table 5 Summary of the simulation results for the final
ranking based on the COG method

Treatment
technology

Rank

1 2 3 4 5

Heat 0 71 144 784 1

UV 1000 0 0 0 0

Ozone 0 610 296 94 0

Ultrasound 0 319 560 121 0

Biocide 0 0 0 1 999

Total 1000 1000 1000 1000 1000
and technical criteria by nine experts. The results re-
vealed that UV was ranked with the highest overall score
at 100% confidence level, indicating that the null as-
sumption that it was not probabilistic optimal (versus
the alternate assumption that it is) was rejected. Ozone,
heat treatment, and ultrasound had the second, third,
and fourth places at the confidence levels of 61.0–71.4%,
56.0–68.4%, and 78.4 − 84.6%, respectively. Considerable
overlaps existed among these three alternatives which
may be attributed to the irreducible uncertainty caused
by subjective judgments or lack of knowledge. The re-
sults also revealed that both COG and Chen’s defuzzifi-
cation methods were able to provide the decision
makers with reliable decision references. The proposed
FSAHP approach can offer a number of benefits such as
the capability of capturing human’s appraisal of ambigu-
ity and addressing the effects of uncertain judgment
when dealing with insufficient information or biased
opinions. However, this approach is highly sensitive to
expert dependence whereby any misjudgment may affect
its reliability and efficiency. As a complex methodology,
it requires more computational efforts in assessing com-
posite priorities than the traditional AHP.
Figure 6 Box plots of overall scores for each alternative.



Jing et al. Environmental Systems Research 2013, 2:10 Page 10 of 10
http://www.environmentalsystemsresearch.com/content/2/1/10
Competing interests
The authors declared that they have no competing interest.

Authors’ contributions
LJ and BC co-developed the FSAHP method for group decision-making and
conducted the design of the study. BZ and HP participated in the design of
questionnaire, acquisition of data and data analysis. LJ performed data
analysis and drafted the manuscript, which BC, BZ and HP helped edit and
polish. All authors have read and approved the final manuscript.

Acknowledgements
Special thanks go to American Bureau of Shipping Harsh Environment
Technology Centre (ABS-HETC), Research & Development Corporation
Newfoundland and Labrador (RDC NL), Natural Sciences and Engineering
Research Council of Canada (NSERC), and Memorial University of
Newfoundland for funding this work.

Received: 27 August 2013 Accepted: 4 November 2013
Published: 9 November 2013

References
1. Kiker GA, Bridges TS, Varghese A, Seager TP, Linkov I: Application of

multicriteria decision analysis in environmental decision making.
Integr Environ Assess Manage 2005, 1(2):95–108.

2. Matott LS, Babendreier JE, Purucker ST: Evaluating uncertainty in
integrated environmental models: a review of concepts and tools.
Water Resour Res 2009, 45. doi:10.1029/2008WR007301.

3. Steele K, Carmel Y, Cross J, Wilcox C: Uses and misuses of multicriteria
decision analysis (MCDA) in environmental decision making. Risk Anal
2008, 29(1):26–33.

4. Yeh CH, Chang YH: Modeling subjective evaluation for fuzzy group
multicriteria decision making. Eur J Oper Res 2009, 194(2):464–473.

5. Yu L, Wang S, Lai KK: An intelligent-agent-based fuzzy group decision
making model for financial multicriteria decision support: the case of
credit scoring. Eur J Oper Res 2009, 195(3):942–959.

6. Kornyshova E, Salinesi C: MCDM techniques selection approaches: state of
the art. In Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multi-Criteria Decision-Making (MCDM), Honolulu. 2007.

7. Saaty TL: The Analytic Hierarchy Process: Planning, Priority Setting and
Resource Allocation. New York, NY, USA: McGraw-Hill; 1980.

8. Chowdhury S, Husain T: Evaluation of drinking water treatment technology: an
entropy-based fuzzy application. J Environ Eng-ASCE 2006, 132(10):1264–1271.

9. Jablonsky J: Measuring the efficiency of production units by AHP models.
Math Comput Modell 2007, 46:1091–1098.

10. Kaya T, Kahraman C: An integrated fuzzy AHP–ELECTRE methodology for
environmental impact assessment. Expert Syst Appl 2011, 38:8553–8562.

11. Sadiq R, Tesfamariam S: Environmental decision-making under uncertainty
using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch Env
Res Risk A 2009, 23(1):75–91.

12. Tiryaki F, Ahlatcioglu B: Fuzzy portfolio selection using fuzzy analytic
hierarchy process. Inform Sci 2009, 179:53–69.

13. Tolga E, Demircan ML, Kahraman C: Operating system selection using
fuzzy replacement analysis and analytic hierarchy process. Int J Prod Econ
2005, 97:89–117.

14. Deng H: Multicriteria analysis with fuzzy pair-wise comparison. Int J
Approximate Reasoning 1999, 21:215–231.

15. Banuelas R, Antony J: Modified analytic hierarchy process to incorporate
uncertainty and managerial aspects. Int J Prod Res 2004, 42(18):3851–3872.

16. Rosenbloom ES: A probabilistic interpretation of the final rankings in
AHP. Eur J Oper Res 1996, 96:371–378.

17. Carlucci D, Schiuma G: Applying the analytic network process to
disclose knowledge assets value creation dynamics. Expert Syst Appl
2009, 36(4):7687–7694.

18. Yu CS: A GP-AHP method for solving group decision-making fuzzy AHP
problems. Comput Oper Res 2002, 29:1969–2001.

19. Tesfamariam S, Sadiq R: Risk-based environmental decision-making using
fuzzy analytic hierarchy process (F-AHP). Stoch Env Res Risk A 2006, 21:35–50.

20. Eskandari H, Rabelo L: Handling uncertainty in the analytic hierarchy
process: a stochastic approach. Int J Inf Tech Decis 2007, 6(1):177–189.
21. Jing L, Chen B, Zhang BY, Li P: A hybrid stochastic-interval analytic hierarchy
process (SIAHP) approach for prioritizing the strategies of reusing treated
wastewater. Math Probl Eng 2013. doi:10.1155/2013/874805.

22. Hsu T, Pan FFC: Application of Monte Carlo AHP in ranking dental quality
attributes. Expert Syst Appl 2009, 36:2310–2316.

23. Phanikumar CV, Maitra B: Valuing urban bus attributes: an experience in
Kolkata. J Publ Transport 2006, 9(2):69–87.

24. Coates G, Rahimifard S: Modelling of post-fragmentation waste stream
processing within UK shredder facilities. Waste Manage 2009, 29(1):44–53.

25. Jing L, Chen B, Zhang BY, Li P, Zheng JS: A Monte Carlo simulation aided
analytic hierarchy process (MC–AHP) approach for best management
practices assessment in nonpoint source pollution control. J Environ
Eng-ASCE 2012, 139(5):618–626.

26. Endresen Ø, Behrens HL, Brynestad S, Andersen AB, Skjong R: Challenges in
global ballast water management. Mar Pollut Bull 2004, 48:615–623.

27. Cangelosi AA, Mays NL, Balcer MD, Reavie ED, Reid DM, Sturtevant R, Gao X:
The response of zooplankton and phytoplankton from the North
American Great Lakes to filtration. Harmful Algae 2007, 6:547–566.

28. Galil BS, Nehring S, Panov V: Waterways as invasion highways − impact of
climate change and globalization. Ecol Stud 2007, 193(2):59–74.

29. Jing L, Chen B, Zhang BY, Peng HX: A review of ballast water
management practices and challenges in harsh and arctic environments.
Environ Rev 2012, 20:83–108.

30. Parmesan C: Ecological and evolutionary responses to recent climate
change. Annu Rev Ecol Evol Syst 2006, 37:637–669.

31. Gollasch S, David M, Voigt M, Dragsund E, Hewitt C, Fukuyo Y: Critical
review of the IMO international convention on the management of
ships’ ballast water and sediments. Harmful Algae 2007, 6:585–600.

32. Gregg MD, Hallegraeff GM: Efficacy of three commercially available ballast
water biocides against vegetative microalgae, dinoflagellate cysts and
bacteria. Harmful Algae 2007, 6:567–584.

33. Zadeh LA: Fuzzy Sets. Inform Contr 1965, 8:338–353.
34. Kaufmann A, Gupta MM, Kaufmann A: Introduction to fuzzy arithmetic: theory

and applications. New York: Van Nostrand Reinhold Company; 1985.
35. Li P, Chen B: FSILP: Fuzzy-stochastic-interval linear programming for sup-

porting municipal solid waste management. J Environ Manage 2011,
92:1198–1209.

36. Dawes J: Do data characteristics change according to the number of
scale point used? Int J Market Res 2007, 50(1):61–77.

37. Ramík J, Korviny P: Inconsistency of pair-wise comparison matrix with fuzzy
elements based on geometric mean. Fuzzy Sets Syst 2010, 161:1604–1613.

38. Chen SJ, Hwang CL: Fuzzy multiple attribute decision making. Heidelberg:
Springer; 1992.

39. Herwig RP, Cordell JR, Perrins JC, Dinnel PA, Gensemer RW, Stubblefield WA,
Ruiz GM, Kopp JA, House ML, Cooper WJ: Ozone treatment of ballast
water on the oil tanker S/T Tonsina: chemistry, biology and toxicity.
Mar Ecol Prog Ser 2006, 324:37–55.

40. Holm ER, Stamper DM, Brizzolara RA, Barnes L, Deamer N, Burkholder JM:
Sonication of bacteria, phytoplankton and zooplankton: Application to
treatment of ballast water. Mar Pollut Bull 2008, 56:1201–1208.

41. de Lafontaine Y, Despatie SP, Veilleux É, Wiley C: Onboard ship evaluation
of the effectiveness and the potential environmental effects of
PERACLEAN® Ocean for ballast water treatment in very cold conditions.
Environ Toxicol 2009, 24(1):49–65.

42. Tsolaki E, Diamadopoulos E: Technologies for ballast water treatment: a
review. J Chem Technol Biotechnol 2010, 85:19–32.

doi:10.1186/2193-2697-2-10
Cite this article as: Jing et al.: A hybrid fuzzy stochastic analytical
hierarchy process (FSAHP) approach for evaluating ballast water
treatment technologies. Environmental Systems Research 2013 2:10.


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Fuzzy sets and fuzzy numbers
	Stochastic programming
	Fuzzy stochastic analytic hierarchy process (FSAHP)
	Case study
	Hierarchy structure
	Data acquisition

	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

