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Abstract 

Landfills will likely remain an essential part of integrated solid waste management systems in many developed and 
developing countries for the foreseeable future. Further improvements are required to model the generated gas 
from landfills. The literature has not addressed detailed waste characterization in landfill gas (LFG) modeling by a 
first-order decay model such as LandGEM while using a genetic algorithm. Additionally, little has been done in the 
literature regarding H2S generation modeling. This paper uses a genetic algorithm to independently fit parameters 
to a CH4 and H2S generation model based on a modified first-order decay model. In the case of CH4 generation 
modeling, biodegradable organic waste (OW) was segregated into food waste, yard waste, paper, and wood. In 
addition to optimizing the OW fractions, key modeling parameters of OW, such as CH4 generation potential ( L0 ) 
and CH4 decay rate ( kCH4 ), were determined independently for different periods in the landfill’s life. Similarly, in the 
case of H2S generation modeling, the construction and demolition waste (CD) was classified into fines (FCD) and 
bulky materials (BCD), and H2S generation potential ( S0 ) and H2S decay rate ( kH2S ) of FCD and BCD were determined. 
LFG collection data from a landfill site in the province of Quebec, Canada, was used to validate the LFG generation 
model. A range of scenarios was analyzed using the validated model, including fourteen scenarios (two benchmark 
and twelve optimizing) for CH4 and two for H2S modeling. The results showed that the differentiation of more waste 
types improves the modeling accuracy for CH4. Moreover, within the decade-long lifetime of a landfill, the waste 
management strategies change, requiring different assumptions for the modeling. Also, the work showed the 
importance of considering how different landfill sectors are filled over time. Finally, scenario twelve of optimizing 
scenarios, which assumed four waste types, constant three periodic waste fractions, and six sectors, had the lowest 
residual sum of squares (RSS) value. For H2S generation modeling, both scenarios, with or without separate fits of 
S0 and kH2S for FCD and BCD, predicted the generated H2S well and had a very similar RSS value. Further data could 
improve H2S generation modeling.
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Introduction
Today, more than 90% of waste in low-income countries 
is still openly dumped or burned, and gaseous emissions 
from such dumpsites have been poorly studied (Beaven 
and Scheutz 2019), threatening the environment and 
human health. In contrast, waste in developed countries 
is a resource for energy production (Batista et al. 2021), 
and only 2% is dumped in high-income countries Kaza 
et  al. 2018). Landfills are large and heterogeneous 
emitting sites that contribute 20% and 17.4% of national 
methane (CH4) emissions in Canada (Canada 2017) and 
the U.S. (USEPA 2020), respectively. Landfills will likely 
remain essential to integrated solid waste management 
systems in many developed and developing countries for 
the foreseeable future (Sun et  al. 2019). Understanding 
Greenhouse Gas (GHG) sources and sinks is a significant 
endeavour, and many countries have committed to 
reducing their emissions (e.g., UN COP26 2021, 2021)). 
CH4 is a potent GHG with a global warming potential 
of 28 times that of carbon dioxide (CO2) over a 100-year 
timeframe (Monster 2019).

Human-related activities such as fossil fuel production, 
domestic livestock ranching/farming, manure 
management, rice cultivation, biomass burning, and 
waste management cause 60% of global CH4 emissions 
compared to natural CH4 emitters such as wetlands, 
termites, oceans, freshwater bodies, and wildfires 
(Figueroa et  al. 2009). The waste sector presents 
an appreciable potential for emissions reduction, 
particularly in developing countries where emissions 
from waste can account for 15% of total country GHG 
emissions due to the higher content of biodegradable 
Organic Waste (OW) (Maalouf and El-Fadel 2018). If 
engineered sanitary landfills are managed correctly 
and Landfill Gas (LFG) collection efficiency improves, 
emissions from landfills can be decreased.

Originating from waste decomposition, LFG mainly 
contains CH4, CO2, and trace amounts of hydrogen 
sulfide (H2S) as an inhibitory (reducing CH4 generation), 
odorous and corrosive gas (Flores-Alsina et  al. 2016). 
LFG production occurs in five phases. The aerobic 
condition in the first phase takes hours to weeks, the 
anoxic condition in the second phase takes 1–6 months, 
and the subsequent phases are anaerobic and take several 
months to years (BCMoE 2010). The anaerobic phases 
are the ones that LFG generation is usually addressed. 
Under anaerobic conditions in landfills, CH4 generation 
starts and increases, and CO2 generation decreases (third 
phase). The trend continues until it reaches a steady state 
in the fourth phase and finally approaches zero in the 
fifth phase.

Anaerobic degradation of biodegradable OW (food 
waste, yard waste, etc.) generates CH4. There is as low 

as approximately 0.1% sulphur in Municipal Solid Waste 
(MSW) (Kaiser et al. 1968). Sulphur-containing materials 
such as construction and demolition waste (CD) 
(including bulky materials of construction and demolition 
(BCD) and fines of construction and demolition (FCD) 
wastes) can produce H2S in an anaerobic environment. 
Compared to MSW, around 1.5–9.1% of CD is sulphate 
(Hrobak 2009). These wastes are landfilled with MSW in 
many cases. The byproduct of CD processing facilities 
is screened materials termed FCD (soil and building 
material, including drywall). These fines are often used in 
MSW landfills as alternative daily cover (Anderson et al. 
2010) or final cover.

Based on chapter Q-2, r. 19 of the Regulation 
respecting the landfilling and incineration of residual 
materials of Environment Quality Act (Quebec 2021), 
landfills in Quebec must follow the regulation respecting 
the gas collection system. Chapter II—Landfills, Division 
2—Engineered Landfills, Subdivision 32—Collection and 
Removal of Biogas indicates that “in the case of landfills 
having a maximum capacity greater than 1,500,000 
m3 or as soon as a landfill receives 50,000 t or more of 
residual materials per year, the biogas collection system 
must have a gas pumping device except if such a device 
is not warranted because of the nature of the residual 
materials received and the low quantity of biogas likely to 
be produced.”

According to Canada (2022), in Canada, “British 
Columbia, Alberta, Ontario and Quebec have regulations 
requiring larger landfills to capture and control or reduce 
CH4 emissions, and others include requirements for 
installing LFG recovery and flaring systems in operating 
permits. Quebec and Ontario require landfills larger than 
1,500,000 m3 of waste capacity to install systems. British 
Columbia requires landfills with greater than 100,000 
tons of waste or greater than 10,000 tons disposed of per 
year to evaluate their annual CH4 generation and install 
LFG systems if they exceed 1000 tons of CH4 per year. 
The lowest regulatory threshold in North America is in 
California, which requires landfills that generate LFG 
with a heat input capacity of more than 3.0 MMBtu/
hr (~ 650 tons CH4 generation per year) to install LFG 
recovery systems.”

The first-order kinetic model [e.g., Landfill Gas 
Emissions Model (LandGEM)] is the most widely 
applied model to forecast landfill CH4 generation (Lima 
et  al. 2018). The U.S. EPA (USEPA 2005) developed 
LandGEM, which considers the CH4 generation 
potential, L0 (m3/t biodegradable waste), and the CH4 
generation rate associated with waste decomposition, 
kCH4

 (y−1). Although LandGEM models CH4 generation 
from heterogeneous wastes effectively, some input 
modifications could significantly enhance its accuracy. 
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For instance, da Silva et  al. (2020) concluded that 
LandGEM overestimated CH4 generation. One reason 
could be that LandGEM only includes one type of 
waste, which includes inerts. Reformulating the model 
by involving different types of biodegradable organic 
wastes, such as fast decaying refuse (FDR) and slow 
decaying refuse (SDR) improves the model’s accuracy. 
IPCC (2006;2019) further divided the biodegradable 
OW into rapidly degrading waste (food waste, sewage 
sludge), moderately degrading waste (other (non-
food) organic putrescible, garden and park waste), 
slowly degrading waste (paper/textile and wood/
straw), and bulk waste (Additional file  1: Table  S1 in 
supplementary material). Besides, LandGEM does not 
address the interactions of different waste components 
interfering with the LFG generation rate. Although 
sulfate-reducing bacteria help to maintain pH within a 
reasonable range for methanogenesis [under neutral pH 
conditions, not acidic ones (Mora-Naranjo et al. 2003)], 
methanogens and sulfate-reducing bacteria compete 
for common substrates (i.e., hydrogen and acetate) 
to generate CH4 and H2S, respectively. According to 
Flores-Alsina et  al. (2016), sulfate-reducing bacteria 
outcompete acetogens and methanogens for electron 
equivalents (e.g., hydrogen or organic acids), leading 
to sulfide production, which is inhibitory and causes 
odour and corrosion. Low concentrations of H2S could 
inhibit the growth of microorganisms and suppress the 
CH4 forming processes in the presence of sulphate and 
sulphate-reducing conditions effectively (Mora-Naranjo 
et  al. 2003). In addition to CH4, H2S generation is best 
modeled with a first-order decay equation, similar to 
LandGEM (Anderson et  al. 2010). Therefore, a first-
order kinetic model, similar to LandGEM, could evaluate 
H2S generation from sulphur-containing wastes: BCD 
and FCD. An optimization algorithm, such as a genetic 
algorithm, could also be implemented to estimate H2S 
generation potential, S0 (m3 H2S/t sulphur), and H2S 
generation rate, kH2S (y−1) of BCD and FCD. Li et  al. 
(2011) combined artificial neural networks with genetic 
algorithm to simulate the gas generation in landfills. 
They found that artificial neural networks is efficient in 
providing accurate short-term predictions. At the same 
time, the genetic algorithm can generate a precise model 
of a landfill for long-term forecasting and planning. The 
genetic algorithm can navigate large complex search 
spaces to deliver near-optimal solutions (Kormi et  al. 
2018).

Nikkhah et  al. (2018) used the LandGEM model to 
calculate landfill emissions and CH4 generation, which 
uses one type of waste (i.e. MSW) for the whole landfill 
and the studied period. The model used a first-order 
decay equation in which CH4 generation depended on 

the CH4 generation rate ( kCH4
 ), CH4 generation potential 

( L0 ), and the mass and age of waste. They considered the 
range of kCH4

 and L0 between 0.02 and 0.70 y−1 and 96 to 
170 m3 CH4 per ton of MSW, respectively, and concluded 
that for 400 t MSW per day landfilled, 652,836  t CH4 
generated from 1984 to 2124, assuming the value of kCH4

 
and L0 equal to 0.70 y−1 and 170 m3 CH4 per ton of MSW, 
respectively. Based on their study, each ton of MSW 
generated 0.03 tons of CH4 (42 m3 CH4 considering CH4 
density to be 0.7157 kg/m3). A study by Ramprasad et al. 
(2022) estimated CH4 generation in a landfill from 2010 
to 2060, considering the value of kCH4

 and L0 equal to 
0.05 y−1 and 110  m3 CH4 per ton of MSW, respectively. 
According to their study, the least and the most CH4 
generated were 256,000 m3 in 2010 (receiving 30,768 ton 
MSW or 84 t MSW per day) and 16,600,000 m3 in 2042 
(receiving 3,126,706 ton MSW or 8566 t MSW per day). 
Hence, each ton of MSW generated 8.3 (2010) to 5.3 
(2042)  m3 CH4. Another study (Sauve and Acker 2020) 
applied the LandGEM model, assuming kCH4

 to be 0.09 
y−1 and L0 between 18 to 138 m3/t MSW and achieved 
higher LFG generation with higher CH4 generation 
potential. Their results confirmed the dependence of 
landfill environmental impacts of waste composition, 
particularly the amount of biodegradable OW. Kumar 
and Sharma (2014) compared the LandGEM model 
results with other models and proved this model’s better 
ability to estimate GHG emissions from MSW landfills. 
Various studies [e.g., (da Silva et  al. 2020;Fallahizadeh 
et al. 2019;Sil et  al. 2014;Toha and Rahman 2023)] used 
LandGEM to estimate CH4 generation from landfills, yet 
they did not consider waste characterization, parameter 
fitting of kCH4

 and L0 , and applying a genetic algorithm 
in their work. The same research gap exists for H2S 
generation modeling even further as it has been rarely 
addressed in the literature. Waste characterization, 
parameter fitting of kH2S and S0 , and applying a genetic 
algorithm can not be found in other studies [e.g., (Shaha 
and Meeroff 2020;Xu et al. 2014)].

Using a genetic algorithm, this study fits parameters to 
a CH4 and H2S generation model according to a modified 
first-order decay model. Model validation was done using 
the LFG collection data from a landfill site in the province 
of Quebec, Canada. The data contained thirty-nine years 
of measurements of OW, BCD and FCD quantities and 
twenty-four years of LFG amounts, and was used to 
evaluate the performance of first-order decay models 
to estimate CH4 and H2S generation. In the case of CH4 
generation modeling, food waste (FDR), yard waste 
(FDR), paper (SDR), and wood (SDR) were assumed to 
address OW segregation. In addition to optimizing the 
OW fractions, key modeling parameters of OW ( L0 and 
kCH4

 ) were determined independently for periods in the 
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life of a landfill. Similarly, for H2S generation modeling, 
the CD was classified into FCD and BCD, and S0 and kH2S 
of BCD and FCD were determined. A range of scenarios 
were analyzed, including two benchmark and twelve 
optimizing scenarios for CH4 and two scenarios for H2S 
modeling.

The novelty of this study is that it differentiates the OW 
and CD into four and two types to estimate CH4 and H2S 
generation, respectively, and enhance modeling accuracy. 
Additionally, it applies a genetic algorithm to fit various 
parameters, which has never been done in the literature. 
The methodology could be used in other landfills using 
their waste characterization and gas collection data.

Methodology
Landfilled mass and landfill gas collection trend
The studied landfill was in a wet boreal climate in the 
province of Quebec, Canada. The landfill had six land-
filled sectors, namely 1, 2, 3, 4, 5, and 6, in which only 

landfilled OW, BCD, and FCD were considered (Table 1). 
Sectors 1, 2, 3, and 4 only received OW, but sectors 5 and 
6 received OW and CD. Sector 5 of the landfill received 
BCD and FCD, and sector 6 received only BCD (Fig. 1a, b 
in relative values as they are the confidential data of this 
landfill). Although waste quantities landfilled could be 
found for the entire site lifetime, waste composition data 
were unavailable.

Figure 1c, d shows the amount of generated CH4 from 
all the sectors during thirty-nine years and H2S from sec-
tors 5 and 6 during eleven years in relative values as they 
are the confidential data of this landfill. It was assumed 
that CH4 generation is associated with OW and H2S 
generation with BCD and FCD. LFG flow and CH4 con-
centration were measured automatically by onsite flow-
meters and infrared analyzers. H2S concentration was 
measured by the electrochemical analyzer. Micro 3000A, 
manufactured by Agilent, measured both CH4 and H2S. 
Also, 62–9/9500 flowmeter, manufactured by Thermal 

Table 1  Landfill sectors (1 to 6), landfilled wastes (OW, BCD and FCD) and landfilling years in each sector

Sector 1 2 3 4 5 6

Waste type OW OW OW OW OW, BCD, FCD OW, BCD

Years 4–13 0–3, 13–14 14–22 22–27 28–34 (OW), 27–35 (BCD 
& FCD)

35–46 (OW & BCD)
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Fig. 1  a Landfilled waste (OW) from sectors 1, 2, 3, 4, 5, and 6, b Landfilled waste (BCD and FCD) from sectors 5 and 6, c Measured CH4 from all the 
sectors, and d Measured H2S from sectors 5 and 6, all in relative values due to data confidentiality
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Instrument, was used. Data were recorded daily by the 
landfill operator and were available monthly. Monthly 
data was compiled annually for this study.

Societal changes in landfilling practices resulting from 
stricter legislation in Quebec (enhancements in recycling, 
higher raw material value, etc.) led to considering the 
subdivision of the landfill’s lifetime into three distinct 
periods—Periods 1, 2, and 3—reflecting the specific 
history of refuse admittance based on changes in waste 
characteristics. For instance, Quebec targeted the recovery 
ratio for recyclables, OW, and construction and demolition 
waste to be 70%, 60%, and 70%, respectively, and the 
province aims to increase bioenergy production by 50% 
through various methods such as bio-methanation of 
OW by 2030 (Montréal 2017; Québec 2016). Different 
optimization scenarios were posed in which the 
variables were time-independent (constant in periods) or 
time-dependent.

First‑order decay model
The first-order kinetic equation, LandGEM (USEPA 2005), 
was applied to evaluate CH4 generation from OW (Eq. (1)). 
And a first-order kinetic equation, similar to LandGEM, 
was used to estimate H2S generation from BCD and FCD 
(Eq. (2)) (Shaha and Meeroff 2020).

where QCH4
 (m3/y) is the annual CH4 generation after 

n years, L0 (m3 CH4/t biodegradable waste) is CH4 
generation potential from biodegradable waste, kCH4

 
(y−1) is the CH4 generation rate, OWi (t) is the quantity 
of biodegradable OW landfilled in year i, ti,j is the age of 
the jth section of landfilled OW at the ith year, j = 0.1 year 
time increment and n is the number of years calculated 
(year of calculation—initial year of waste acceptance).

(1)QCH4
=

n
∑

i=1

1
∑

j=0.1

kCH4
L0

(

OWi

10

)

e−kCH4 ti,j

where QH2S (m3/y) is the annual H2S generation after n 
years, S0 (m3 H2S/t sulphur) is H2S generation potential, 
kH2S (y−1) is the H2S generation rate, CDi is the quantity 
of CD landfilled in year i (t), ti,j is the age of the jth section 
of landfilled sulphur at the ith year, j = 0.1  year time 
increment and n is the number of years calculated (year 
of calculation—initial year of waste acceptance).

Parameter fit
A genetic algorithm optimization aims to fit the 
generated CH4 or H2S data with modeled ones. The 
generated data was obtained from the collected data 
using a collection efficiency of around 92% (collected gas 
divided by generated gas). Hence, it was implemented 
to estimate various parameters, such as L0 (m3 CH4/t 
biodegradable waste) and kCH4

 (y−1) of OW, and the 
fraction of each OW type (1) for CH4 modeling, and S0 
(m3 H2S/t sulphur), and kH2S (y−1) of BCD and FCD for 
H2S modeling, based on the modeling scenarios. The 
objective was to minimize the residual sum of squares 
(RSS) of estimation between two sets of data (Eq.  (3)) 
(Wu and Luo 1993).

where yg i is the generated value, ymi is the modeled 
value of CH4 or H2S, and n is the number of years in the 
optimization.

Modeling scenarios
CH4 modeling
This study proposes distinguishing seven categories of 
landfill waste herein: food waste, sludge, paper, yard 
waste, wood, textile, and other OW (Table 2). However, 

(2)QH2S =

n
∑

i=1

1
∑

j=0.1

kH2SS0

(

CDi

10

)

e−kH2Sti,j

(3)RSS =

n
∑

i=1

(

yg i − ymi

)2

Table 2  Lower bound and upper bound of kCH4 (y
−1) and L0 (m3 CH4/t biodegaradable waste) for optimizing scenarios of CH4 modeling

1 Wood of construction and demolition waste

Waste type kCH4
L0

(IPCC 2019) (ECCC 2021) This study (IPCC 2019) (USEPA 2018) (Krause et al. 2016) (Park et al. 2018) This study

FDR Food 0.17–0.70 0.185 0.17–0.70 77–192 – 12–248 45–301 12–301

Sludge 0.17–0.70 0.185 0.17–0.70 38–48 – 23–230 19–70 19–230

Yard 0.15–0.20 0.10 0.10–0.20 173–211 63–104 104 31–136 21–211

SDR Paper 0.06–0.085 0.06 0.06–0.085 247–309 57–194 66–387 67–296 57–387

Wood1 0.03–0.05 0.03 0.03–0.05 53–63 15–24 – 86–130 15–241

Textile 0.06–0.085 0.06 0.06–0.085 137–274 172–191 189–216 73–216 105–274

Other OW 0.15–0.20 0.10 0.10–0.20 82–192 – 22–150 75–109 22–241
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for the parameter fits, only four categories were consid-
ered: (1) food waste, (2) yard waste, (3) paper, and (4) 
wood. The reason is to decrease the optimization vari-
ables and categorizing the biodegradable OW into differ-
ent types: easily (e.g., food waste), slowly (e.g., paper), and 
hardly (e.g., wood, textiles, and leather) biodegradable 
wastes. kCH4

 is the biodegradation half-life in years−1 for 
OW in a landfill and, based on the U.S. EPA, can range 
between 0.02 y−1 (less than 635 mm of precipitation) and 
0.04 y−1 (more than 635 mm of precipitation) (Thompson 
et al. 2009). IPCC reported various ranges of kCH4

 (0.01 
y−1 to 0.70 y−1) for different climatic conditions (IPCC 
2006;2019). L0 depends on the type of waste deposited 
and some landfilling conditions described below. It can 
range vastly between 6–270 m3 CH4/t MSW (USEPA 
2018). Fécil (2003) reported L0 and kCH4

 of MSW to be 78 
m3 CH4/t and 0.0427 y−1, respectively.

Table 2 shows the waste segregation, kCH4
 and L0 in the 

literature and the ones considered in this study. In the 
case of L0 , the minimum and maximum L0 values were 
also calculated based on the mass of degradable organic 
carbon (DOC) following IPCC recommendations for 
each kind of waste [Eqs. (4) and (5)] (IPCC 2006;2019).

where DDOCm (t) is the mass of decomposable DOC 
deposited, W  (t) is the mass of waste deposited, DOC 
(t carbon/t waste) is the degradable organic carbon in 
the year of deposition, DOCf  (1) is the fraction of DOC 
that can decompose, and MCF  is the CH4 (1) correction 
factor for aerobic decomposition in the year of deposition 
(1 (IPCC 2019)).

where L0 (t CH4/t waste) is the CH4 generation potential, 
DDOCm (t) is the mass of decomposable DOC deposited, 
F  (1) is the fraction of CH4 in generated LFG, and 16/12 
is the molecular weight ratio of CH4/C. CH4 density was 
assigned to 0.554 × 10–3 t/m3.

The landfill’s lifetime was subdivided into three periods 
reflecting the specific history of refuse admittance based 
on changes in waste characteristics. Accordingly, vari-
ous scenarios were defined to improve the fitting of the 
CH4 generation model to real generated data using the 
genetic algorithm. In this study, the optimization of first-
order kinetic equation coefficients ( kCH4

 and L0 ) and the 

(4)DDOCm = W × DOC × DOCf ×MCF

(5)L0 =
DDOCm × F × 16/12

W

Table 3  Lower bound and upper bound of kCH4 (y
−1) and L0 (m3 CH4 t−1) and periodic waste fraction (-) for optimizing scenarios of CH4 

modeling, (a) FDR and SDR, (b) food, yard, paper, and wood

Sc optimizing scenario, PWF periodic waste fraction

(a) Optimization variables kCH4
L0 kCH4

L0 PWF_FDR

Waste type/period FDR FDR SDR SDR 1 2 3

Default

 Sc1 & Sc 4 0.70 62.86 0.03 62.86 0.10 – –

 Sc2, Sc 3, Sc 5 & Sc 6 0.60 0.30

Lower bound

 Sc1 & Sc 4 0.10 12.00 0.03 15.00 0.10 – –

 Sc2, Sc 3, Sc 5 & Sc 6 0.30 0.30

Upper bound

 Sc1 & Sc 4 0.70 300.70 0.20 387.00 0.40 – –

 Sc2, Sc 3, Sc 5 & Sc 6 0.60 0.60

(b) Optimization variables kCH4
L0 kCH4

L0 kCH4
L0 kCH4

L0 PWF_food PWF_yard PWF_paper

Waste type/period Food Food Yard Yard Paper Paper Wood Wood 1 2 3 1 2 3 1 2 3

Default

 Sc7 & Sc 10 0.70 62.86 0.15 62.86 0.03 62.86 0.03 62.86 0.10 0.10 0.10 – – – – – –

 Sc8, Sc 9, Sc 11 & Sc 12 0.30 0.30 0.30 0.15 0.15 0.15

Lower bound

 Sc7 & Sc 10 0.17 12.00 0.10 21.00 0.06 57.00 0.03 15.00 0.10 0.10 0.10 – – – – – –

 Sc8, Sc 9, Sc 11 & Sc 12 0.15 0.15 0.15 0.15 0.15 0.15

Upper bound

 Sc7 & Sc 10 0.70 300.70 0.20 211.00 0.09 387.00 0.05 241.00 0.40 0.40 0.40 – – – – – –

 Sc8, Sc 9, Sc 11 & Sc 12 0.20 0.20 0.20 0.30 0.30 0.30 0.30 0.30 0.30
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proportions of the different types of waste are considered 
to best fit the measured LFG using a genetic algorithm in 
MATLAB. The purpose of this study was not to compare 
different numerical optimization methods or CH4 gen-
eration models. The objective was to compare different 
scenarios of modelization using different types of waste, 
different values of kCH4

 and L0 , different periods of land-
filling and different proportions of waste. Yet, a bench-
mark study showed that a genetic algorithm performs 
better and is faster, and LandGEM is well known to be 
a reliable first-order decay model and was therefore con-
sidered an excellent candidate for this study.

Scenarios were divided into two series: benchmark 
and optimizing. Two benchmark scenarios with no 
optimization were considered for testing the model’s 
superiority. These scenarios assumed one type of waste 
(MSW), one periodic waste fraction, and considered the 
entire landfill as one sector. The first benchmark scenario 
assumed kCH4

=0.70 y−1 and L0=170 m3 CH4 t−1 MSW 
(Nikkhah et al. 2018) and the second one assumed kCH4

=0.05 y−1 and L0=110 m3 CH4 t−1 MSW (Ramprasad 
et al. 2022).

As shown in Additional file 1: Table S2 in supplemen-
tary material and Table  3, twelve optimizing scenarios 
were determined, from which some scenarios (4 to 6 
and 10 to 12) considered different variables for each 
sector. In contrast, other scenarios neglected such vari-
ation and assumed the whole landfill as one sector. Sce-
nario 1, namely Sc1_2WT_1PWF_1S, had 5 variables, 
including kCH4

 and L0 for FDR and SDR, in addition to 
one periodic waste fraction for these waste types. This 
scenario neglected variation in time and assumed one 
periodic waste fraction for FDR and SDR throughout 
the landfill lifetime. Scenario 2, Sc2_2WT_3PWF_1S, 
had 7 variables as it considered variation in time 
and had three periodic waste fractions. Scenario 3, 
Sc3_2WT_CPWF_1S, assumed constant three periodic 

waste fractions throughout the landfill lifetime analy-
sis and has 4 variables. The subsequent three scenar-
ios (Sc4_2WT_1PWF_6S, Sc5_2WT_3PWF_6S, and 
Sc6_2WT_CPWF_6S) were the same as scenarios 1, 
2, and 3, except that they considered different variables 
for each sector, and had 30, 42, and 20 variables, respec-
tively. Scenarios 7 to 12 were the same as scenarios 1 to 
6, except four waste types (food waste, yard waste, paper, 
and wood) were considered leading to 11, 17, 8, 66, 102 
and 48 variables, respectively. Table  4 illustrates CH4 
modeling optimization variables in each scenario. This 
study applies to well-documented waste management 
landfills with accurate waste characterization data. Oth-
erwise, the level of error given by the lack of waste char-
acterization overshadows the effort this study is trying to 
produce.

H2S modeling
Sulphur content in MSW is about 0.1% (corrugated box-
board: 0.14%, newspaper: 0.11%, mix paper: 0.12%, food 
waste: 0.25%, grass + dirt: 0.26%, plastic film: 0.07%, plas-
tics, rubber, leather mix: 0.55%, sewage sludge digested: 
0.66%, textiles: 0.20%, wood: 0.11%, glass, ceramics: 
0.00%, and metals: 0.01%) (Kaiser 1968). However, CD 
contains around 1.5–9.1% sulphate (Hrobak 2009) and 
2.08% of CD, and 5.15% of earth and sand construc-
tion waste is sulphur (Chung et  al. 2019). Therefore, 
estimating H2S generation in landfills containing the 
CD is important. H2S is an odorous gas that negatively 
impacts neighbouring’populations’ health and well-
being (Heaney et  al. 2011). The modeling scenarios in 
this study considered two variables ( kH2S andS0 ) for BCD 
and FCD in each sector. Table 5 shows the optimization 
variables and their lower and upper bounds. Although 
the range of kCH4

 and L0 values for CH4 modeling exist in 
the literature, those corresponding to H2S are relatively 
much less known. Anderson et al. (2010) evaluated H2S 

Table 4  CH4 modeling optimization variables in each optimizing scenario

Sc optimizing scenario, WT waste type, PWF periodic waste fraction
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generation from nine U.S. northeastern CD landfills and 
obtainedkH2S = 0.50− 0.88y−1 . This study identified 
some empirical information of the same type through 
trial and error. As presented in Table  6, the number of 
variables was 4 for scenario 1 and 6 for scenario 2, and 
both used a genetic algorithm.

Results and discussion
CH4 modeling
Figure  2 shows the results of two benchmark scenar-
ios. The unrealistic results of these studies indicate the 

necessity of considering different waste types, various 
periodic waste fractions, and several landfill sectors. The 
first benchmark scenario had a higher kCH4

 (0.70 y−1) and 
L0 (170 m3 CH4 t−1 MSW) than the second one ( kCH4

=0.05 y−1 and L0=110 m3 CH4 t−1 MSW), yet both of 
them led to significantly high RSS values (198,439 for the 
first and 49,110 for the second).

Figure  3 illustrates the relative measured and mod-
eled total CH4 generation of optimizing scenarios 1 to 
12. Based on the figures, the highest RSS values were 
obtained for scenarios 1 (two waste types, one periodic 
waste fraction, one sector for the whole landfill, RSS: 
7709) and 7 (four waste types, one periodic waste frac-
tion, one sector for the whole landfill, RSS: 7659), and 
the lowest RSS values were obtained for scenarios 4 (two 
waste types, one periodic waste fraction, six sectors, RSS: 
785) and 12 (four waste types, constant three periodic 
waste fraction, six sectors, RSS: 676). Scenarios 1 and 7 
considered the whole landfill as one sector, not six sec-
tors, for only one periodic waste fraction. Their high RSS 
value reveals they do not coincide with measurement and 
need refining. A comparison of scenarios 2 (two waste 
types, three periodic waste fractions, one sector for the 
whole landfill, RSS: 1550) and 3 (two waste types, con-
stant three periodic waste fractions, one sector for the 
whole landfill, RSS: 1541) shows that the initial input for 
the waste fraction in scenario 3 was very close to real-
ity, leading to negligible improvement by optimization. 
These periodic waste fractions were taken from internal 
reports. Scenario 4 (two waste types, one periodic waste 
fraction, six sectors, RSS: 785) has the lowest RSS for the 
two-type waste modeling series. It indicates the impor-
tance of considering sectors individually in the analysis. 
In scenarios 5 (two waste types, three periodic waste 

Table 5  Lower bounds and upper bounds of H2S modeling 
optimization variables for Sectors 5 and 6

Sector FCD BCD

Optimization range 
for kH2S (y

−1)
5 0.10–0.90 0.10–0.90

6 N.A 0.10–0.90

Optimization range 
for S0 (m3 H2S t−1)

5 0.04–7 0.01–10

6 N.A 0.01–10

Table 6  H2S modeling optimization variables in each scenario

1 Equal to that of BCD
2 Optimization variable
3 Not applicable since Sector 6 did not contain FCD
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fractions, six sectors, RSS: 870) and 6 (two waste types, 
constant three periodic waste fractions, six sectors, RSS: 
786), although multiple variables have been added, RSS 
is greater than the RSS of scenario 4. Since different sec-
tors are filled with waste at different times, considering 

six sectors already indicates that we have 6 periods of 
time. Hence, assuming three additional periods is not 
necessary. Similar to the two-type waste modeling series, 
scenarios 8 (4 waste types, three periodic waste fractions, 
one sector for the whole landfill, RSS: 1494) and 9 (four 

0.0

0.2

0.4

0.6

0.8

1.0

Re
la
tiv

e
CH

4
am

ou
nt

(a)
Sc1_2WT_1PWF_1S

RSS= 7,709
Sc2_2WT_3PWF_1S

RSS= 1,550
Sc3_2WT_CPWF_1S

RSS= 1,541

0.0

0.2

0.4

0.6

0.8

1.0

Re
la
tiv

e
CH

4
am

ou
nt

Sc4_2WT_1PWF_6S
RSS= 785

Sc5_2WT_3PWF_6S
RSS= 870

Sc6_2WT_CPWF_6S
RSS= 786

0.0

0.2

0.4

0.6

0.8

1.0

Re
la
tiv

e
CH

4
am

ou
nt

Sc7_4WT_1PWF_1S
RSS= 7,659

Sc8_4WT_3PWF_1S
RSS= 1,494

Sc9_4WT_CPWF_1S
RSS= 1,801

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Re
la
tiv

e
CH

4
am

ou
nt

Year

Sc10_4WT_1PWF_6S
RSS= 853

0 20 40 60
Year

Sc11_4WT_3PWF_6S
RSS= 707

0 20 40 60
Year

Sc12_4WT_CPWF_6S
RSS= 676

(b) (c)

(f)(e)(d)

(g) (h) (i)

(l)(k)(j)

Fig. 3  Measured (black line) and modeled (blue line) total CH4 generation of optimizing scenarios 1 to 12 (a to l) in relative values due to data 
confidentiality



Page 10 of 14Malmir et al. Environmental Systems Research            (2023) 12:6 

Table 7  Optimized kCH4 (y
−1) and L0 (m3 CH4 t−1) and periodic waste fraction (-) for optimizing scenarios of CH4 modeling, (a) FDR and 

SDR, (b) food, yard, paper, and wood

Sc optimizing scenario, PWF periodic waste fraction

(a) Optimized variables kCH4
L0 kCH4

L0 PWF_1 PWF_2 PWF_3

Waste type FDR FDR SDR SDR FDR FDR FDR

Sc1_2WT_1PWF_1S 0.70 243.25 0.15 78.23 0.15 – –

Sc2_2WT_3PWF_1S 0.70 124.10 0.12 91.74 0.22 0.60 0.31

Sc3_2WT_CPWF_1S 0.70 108.39 0.13 98.16 0.10 0.60 0.30

Sc4_2WT_1PWF_6S 0.67 139.56 0.17 62.27 0.11 – –

0.70 97.85 0.03 132.55 0.28 – –

0.24 190.31 0.07 148.09 0.20 – –

0.41 39.52 0.15 167.39 0.27 – –

0.70 130.41 0.06 70.80 0.17 – –

0.49 91.52 0.11 77.91 0.34 – –

Sc5_2WT_3PWF_6S 0.64 206.33 0.04 53.40 0.14 0.57 0.45

0.59 80.69 0.13 197.47 0.27 0.36 0.33

0.22 148.11 0.10 108.92 0.29 0.58 0.40

0.50 72.81 0.15 152.99 0.13 0.35 0.31

0.32 97.36 0.09 37.92 0.32 0.55 0.50

0.18 129.82 0.05 185.90 0.31 0.42 0.59

Sc6_2WT_CPWF_6S 0.57 169.44 0.16 40.05 0.10 0.60 0.30

0.58 266.65 0.10 129.90 0.10 0.60 0.30

0.65 114.21 0.13 115.58 0.10 0.60 0.30

0.61 50.58 0.12 222.91 0.10 0.60 0.30

0.44 86.13 0.12 65.70 0.10 0.60 0.30

0.39 113.80 0.10 87.18 0.10 0.60 0.30

(b) Optimization 
variables

kCH4
L0 kCH4

L0 kCH4
L0 kCH4

L0 PWF_1 PWF_2 PWF_3

Waste type Food Food Yard Yard Paper Paper Wood Wood Food Yard Paper Food Yard Paper Food Yard Paper

Sc7_4WT_1PWF_1S 0.66 104.86 0.18 68.70 0.08 170.07 0.04 240.95 0.39 0.38 0.38 – – – – – –

Sc8_4WT_3PWF_1S 0.69 267.53 0.10 21.03 0.08 75.49 0.05 123.80 0.16 0.12 0.12 0.29 0.30 0.29 0.16 0.30 0.27

Sc9_4WT_CPWF_1S 0.70 220.64 0.20 21.00 0.06 57.00 0.05 158.20 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15

Sc10_4WT_1PWF_6S 0.62 65.49 0.14 63.90 0.07 156.88 0.04 16.49 0.39 0.20 0.35 – – – – – –

0.47 24.75 0.15 99.51 0.06 98.75 0.05 214.31 0.11 0.27 0.15 – – – – – –

0.53 98.08 0.17 161.56 0.07 288.43 0.04 35.92 0.11 0.11 0.39 – – – – – –

0.20 109.55 0.20 166.45 0.07 182.60 0.03 143.42 0.31 0.32 0.31 – – – – – –

0.67 38.25 0.18 41.89 0.07 98.40 0.05 131.30 0.32 0.31 0.37 – – – – – –

0.61 51.40 0.14 112.65 0.06 331.45 0.04 15.38 0.26 0.38 0.12 – – – – – –

Sc11_4WT_3PWF_6S 0.66 161.90 0.11 153.87 0.07 346.58 0.04 17.36 0.16 0.10 0.14 0.21 0.17 0.19 0.21 0.29 0.19

0.55 109.61 0.14 56.65 0.08 122.27 0.03 185.71 0.12 0.16 0.14 0.18 0.22 0.20 0.15 0.21 0.17

0.36 82.76 0.12 182.47 0.08 336.13 0.05 154.87 0.14 0.13 0.15 0.24 0.19 0.17 0.21 0.21 0.18

0.44 191.27 0.18 97.57 0.07 72.54 0.05 121.45 0.15 0.16 0.11 0.28 0.23 0.25 0.20 0.20 0.23

0.38 146.74 0.11 103.24 0.08 92.89 0.03 82.24 0.19 0.20 0.15 0.25 0.27 0.30 0.16 0.15 0.16

0.67 18.21 0.17 180.26 0.07 299.47 0.04 78.25 0.19 0.18 0.17 0.17 0.17 0.22 0.29 0.16 0.15

Sc12_4WT_CPWF_6S 0.68 179.35 0.12 173.05 0.06 97.82 0.04 83.87 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15

0.61 297.24 0.18 163.77 0.07 368.73 0.04 83.44 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15

0.17 172.41 0.11 208.26 0.08 321.69 0.05 201.18 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15

0.40 105.71 0.17 114.64 0.07 202.09 0.04 173.17 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15

0.64 33.18 0.12 63.22 0.07 238.09 0.03 25.53 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15

0.64 54.01 0.12 38.68 0.06 159.64 0.03 167.25 0.10 0.10 0.10 0.30 0.30 0.30 0.15 0.15 0.15
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waste types, constant three periodic waste fractions, one 
sector for the whole landfill, RSS: 1801) were better than 
scenario 7; however, the constant periodic waste fraction 
didn’t decrease the RSS of scenario 9. Again, similar to 
the two-type waste modeling series, the impact of con-
sidering individual sectors improved the modeling results 
for scenarios 10 (four waste types, one periodic waste 
fraction, six sectors, RSS: 853), 11 (four waste types, 
three periodic waste fractions, six sectors, RSS: 707), and 
12 (four waste types, constant three periodic waste frac-
tions, six sectors, RSS: 676). Among these scenarios, sce-
nario 12 had the lowest RSS, indicating the importance of 
waste segregation and analyzing sectors individually. The 
slight difference in RSS of scenarios 11 and 12 indicates 
that considering periods seems unnecessary. Finally, it 
can be concluded that waste segregation improved the 
modeling accuracy.

Optimized kCH4
 (y−1), L0 (m3 CH4 t−1), and periodic 

waste fractions (%) of optimizing scenarios 1 to 12 are 
shown in Table  7. kCH4

 values of scenario 4 (two waste 
types, one periodic waste fraction, six sectors), as the 
best scenario among the two-type waste modeling series, 
ranged from 0.24 to 0.70 y−1 for FDR and 0.03 to 0.17 y−1 
for SDR. L0 values of this scenario ranged from 39.52 to 
190.31 m3 CH4 t−1 for FDR and 62.27 to 167.39 m3 CH4 
t−1 for SDR. Also, the FDR fraction changed from 11% 
for sector 1 to 34% for sector 6. kCH4

 values of scenario 
12 (four waste types, constant three periodic waste frac-
tions, 6 sectors), as the best scenario among the four-type 
waste modeling series, ranged from 0.17 to 0.68 y−1 for 
food, 0.11 to 0.18 y−1 for yard, 0.06 to 0.08 y−1 for paper, 
and 0.03 to 0.05 y−1 for wood. L0 values of this scenario 
ranged from 33.18 to 297.24 m3 CH4 t−1 for food, 38.68 
to 208.26  m3 CH4 t−1 for yard, 97.82 to 368.73  m3 CH4 
t−1 for paper, and 25.53 to 201.18 m3 CH4 t−1 for wood. 
MSW contains inerts, and hence, the L0 of MSW should 

be lower than the L0 of biodegradable waste considered 
in this study.

One of the limitations of this study is that the effect 
of LFG collection efficiency variation was not consid-
ered. Hence, it could be optimized within the range of 
0.75–0.95 and added to the best scenarios from 1 to 12 
based on their results for future studies. Moreover, the 
waste characterization data is required to model the gas 
generation. However, landfills usually lack such data and 
occasionally conduct waste characterization studies. In 
addition, the interaction of H2S and CH4 generation was 
not considered.

H2S modeling
Figure 4 shows the relative measured and modeled total 
H2S generation of scenarios 1 and 2. Both scenarios esti-
mated the measurement values well and had an almost 
similar RSS value. Scenario 2 with six variables had a 
RSS value equal to 1,027,which was 1,049 for scenario 
1. Optimized kH2S (y−1) and S0 (m3 H2S t−1) of these sce-
narios are shown in Table 8. Optimized kH2S of FCD and 
BCD is 0.10 y−1 for sector 5 in both scenarios and opti-
mized kH2S of BCD is 0.89 and 0.10 y−1 for sector 6 in 
scenarios 1 and 2, respectively. The higher kH2S of BCD 
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Fig. 4  Measured (black line) and modeled (blue line) total H2S generation of scenarios 1 and 2 in relative values due to data confidentiality

Table 8  Optimized kH2S (y
−1) and S0 (m3 H2S t−1) of FCD and BCD 

for H2S modeling

Optimized variables kH2S S0 kH2S S0

Waste type FCD FCD BCD BCD

Scenario 1 Sector 5 0.10 15.98 0.10 15.98

Sector 6 – – 0.89 1.50

Scenario 2 Sector 5 0.10 3.36 0.10 35.91

Sector 6 – – 0.10 4.11
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(0.89 y−1) led to a lower S0 (1.50 m3 H2S t−1). Anderson 
et  al. (2010) reported kH2S = 0.50− 0.88y−1 from nine 
U.S. northeastern CD landfills. Optimized S0 of FCD and 
BCD is 15.98 m3 H2S t−1 for sector 5 in scenario 1, and 
3.36 and 35.91 for scenario 2, respectively. In addition, 
the optimized S0 of BCD is 4.11 m3 H2S t−1 for sector 6 
in scenario 2. Further data could improve H2S generation 
modeling.

Conclusion
Fitting parameters was done in this paper to a CH4 and 
H2S generation model by applying a genetic algorithm 
based on a modified first-order decay model. To predict 
CH4 generation, two benchmark and twelve optimizing 
scenarios were considered. The benchmark scenarios did 
not consider any change in modeling parameters, such 
as waste type, periodic waste fraction or landfill sectors. 
These scenarios led to impractical and unworkable 
residual sum of square (RSS) values. Hence, applying the 
LandGEM model should be done by considering different 
parameters to approach the actual condition of landfill 
gas (LFG) generation in landfills.

In addition to benchmark scenarios, twelve optimizing 
scenarios were considered. Scenarios 1 to 6 divided the 
organic waste (OW) into fast decaying refuse (FDR) and 
slow decaying refuse (SDR). Scenarios 7 to 12 assumed 
four types of OW: food waste, yard waste, paper, and 
wood. In all the scenarios, the OW fractions, CH4 gen-
eration potential ( L0 ), and CH4 generation rate ( kCH4

 ) 
were optimized. In addition, some scenarios optimized 
the parameters mentioned for six landfill sectors, while 
others considered the landfill as one sector. Moreover, 
in some scenarios, the landfill’s lifetime was subdivided 
into three distinct periods reflecting the specific history 
of refuse admittance based on changes in waste charac-
teristics. The results showed that the differentiation of 
more waste types improves the modeling accuracy for 
CH4. Scenarios 11 and 12 considered four waste types 
of 6 landfill sectors and had the best predictions, prov-
ing that waste characterization is a significant factor in 
gas prediction. Additionally, since different sectors were 
filled with waste at different times, assuming 6 sectors 
in the modeling already indicated six periods. Hence, 
considering three additional periods for the landfill’s 
lifetime was unnecessary. Finally, all the scenarios that 
assumed 6 landfill sectors had a better parameter fit to 
real data.

For H2S generation modeling, H2S generation potential 
( S0 ), and H2S generation rate ( kH2S ) of fines (FCD) and 
bulky materials (BCD) of the construction and demoli-
tion waste (CD) were optimized. Based on the results, 
both scenarios had an effective prediction with a similar 

RSS value. If further data could be provided to the model, 
more improvements could be achieved.
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