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Abstract 

This study presents a review of the state-of-the-art literature on water pipe failure predictions, assessment of water 
losses risk, optimal pipe maintenance plans, and maintenance coordination strategies. In addition, it provides a cat-
egorization of water main (WM) failures as well as a taxonomy of WM maintenance strategies. In particular, predictive 
and prescriptive analytics are highlighted with the investigation of their contributions and drawbacks from methodo-
logical and application perspectives. This review aims at providing a review of failure analytics developed recently 
in water mains domain either for prediction of failure or identification of optimal maintenance strategies conjointly. 
Future research directions and challenges are elaborated in advancing the understanding about the mechanisms 
leading to failures. The existing gaps between theory and practice in managing assets across water distribution 
networks ensuring cost-effectiveness and reliability are discussed. As knowledge about the state of the water mains 
and related areas is crucial, thus, this review provides an state-of-the-art update from recent studies, and accordingly, 
presents and discusses avenues for future research.

Keywords Urban water distribution networks, Water mains, Maintenance, Asset management, Data Analytics, Failure 
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Introduction
A water distribution network (WDN) carries freshwater 
from one or more sources to municipalities for essential 
human consumption, economic development, and social 
activities. The WDN is a complex system. It consists of 
main and booster pumps, water mains typically buried 
underground, branching pipes, elevated water towers, 
and interconnected sub-networks for individual neigh-
borhoods. The system or part of it will fail when one 
or more of its key components, in particular the water 
mains (WMs), break. There have been numerous cases of 
water main failures globally, with severe consequences. 
Examples of consequences include high replacement 
costs, revenue losses, water damages and contamination, 

traffic disruptions, and consumer service interruptions 
(Fares and Zayed 2010; Besner et  al. 2011; Malm et  al. 
2015; Kakoudakis et al. 2017; Liang et al. 2018; Vishwa-
karma and Sinha 2020; Dawood et al. 2020a).

Proactive interventions for reducing failure risks 
are necessary and cost-effective, particularly true in 
the context of aging WMs. Take major urban cent-
ers in Canada as example. Statistics Canada (Trudeau 
2020) reported fair to very poor conditions for a sig-
nificant portion of the WDNs. One simple reason is 
that these WMs have reached or are reaching the end 
of expected service life. Another reason is that the 
nature of water mains buried underground makes it 
complicated and costly to maintain and replace. As a 
result, there has been an increasing rate of failures over 
time (Asnaashari et  al. 2013; Sattar et  al. 2016; Folk-
man 2018; Snider and McBean 2018, 2021). Over the 
past decade, studies of the WM problems have made 
a significant progress, taking advantages of constantly 
advancing data-driven techniques. The studies aimed 
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to detect water main breaks, analyze failure risks, and 
optimize maintenance.

This study aims to scrutinize the recent literature of 
water main failure prediction models, failure conse-
quences, failure risk, optimal WM maintenance strat-
egies, and optimal coordinated maintenance strategies. 
An awareness of the state of the water mains and 
related areas is crucial. The existing review articles have 
mostly focused on water main prediction models (St. 
Clair and Sinha 2012; Dawood et al. 2020b), the effect 
of availability and quantity of the database on WM 
failure models (Snider and McBean 2020a; Chen et  al. 
2022), the effect of the limited, uncertain dataset on 
WM failure models (Jenkins et al. 2014), and the effect 
of combined datasets from different utilities on the per-
formance of machine learning models for predicting 
future breaks (Chen et  al. 2022). Other reviews have 
discussed different approaches to optimizing rehabili-
tation and maintenance strategies for WMs and inte-
grated infrastructures (Abusamra 2018; Ghobadi et  al. 
2021; Ramos-Salgado et  al. 2022; Shahata et  al. 2022; 
Barton et al. 2022). This review aims to address issues 
of the failure prediction models developed recently and 
optimal maintenance strategies conjointly. This review 
also addresses future research directions in predictive 
and prescriptive analytics considering cold-region cli-
matic variables.

It is important to consider water main maintenance in 
coordination with other infrastructures. It is also impor-
tant to pay close attention to indirect costs and conse-
quences, but the challenge lies in quantifying the indirect 
consequences in a monetary value (Muhlbauer 2004); to 
the best of the authors’ knowledge, the literature in this 
domain is scarce (Atef 2010; Yerri et  al. 2017). Water 
main failure consequences are categorized into direct and 
indirect costs. Loss of production, repair and return to 
service and pipeline replacement are direct costs. Travel 
delay, supply outage and substitution, health risk, prop-
erty damage, customer dissatisfaction and environmental 
damages are examples of indirect costs (Fares and Zayed 
2010; Besner et  al. 2011; Malm et  al. 2015; Kakoudakis 
et al. 2017; Vishwakarma and Sinha 2020; Dawood et al. 
2020a). Considering indirect costs would make a major 
difference to WM maintenance plans (Yerri et al. 2017).

Issues exist in either the models or water main data-
sets themselves or both. They need to be discussed in 
detail. Thus, the purpose of this review is to provide an 
update of the knowledge from the recent studies and, 
more importantly, to explore ways to address the issues 
in future studies. This would help generate new ideas to 
improve failure prediction and risk analysis, and thus to 
reduce the costs in WM asset management planning, 
rehabilitation and renewal.

In the forthcoming review, the selection of literature is 
guided by the quest for answers to key questions perti-
nent to WMs. Some examples of such questions are given 
below:

• Different methods and techniques have been pro-
posed for locating and managing leaks in WMs 
(Misiunas 2005; Hamilton and Charalambous 2013; 
Zyoud and Fuchs-Hanusch 2019, 2020; Karim-
ian et al. 2021). What are the requirements of these 
approaches? What are the pros and cons?

• Failure models of various types have been used to 
analyze water main datasets (Economou et al. 2012; 
American Water Works Association 2019; Snider 
and McBean 2020a; Snider 2021; Barton et al. 2022). 
To what extent have the models met the expecta-
tion to predict the probability of future failures, time 
to next failure, and failure rate of pipe, or to predict 
whether or not a break will happen?

• Failures reportedly could result from a large vari-
ety of factors: physical factors (e.g., pipe age, diam-
eter, material, length, and wall thickness), environ-
mental factors (e.g., soil type, climate, freeze/thaw 
properties, pipe bedding, trench backfill, traffic, and 
groundwater), and operational factors (e.g., num-
ber of pervious failures, water quality, internal water 
pressure, transient pressure, and leakage) (Stamou 
et al. 2000; Wang et al. 2009; Arsénio et al. 2015; Lin 
and Yuan 2019; Karimian et al. 2021). What are the 
main issues in data acquisition and quality? Are there 
factors with dominant influence on failures? Will 
these dominant factors change over time?

Availability of sensory and clouding systems has led 
to production of vast digital data from WMs. It is very 
crucial to take advantage of the available data to support 
short-term and long-term plans of asset management. 
The use of analytics has shown a rising trend. This review 
provides a timely update of the existing models for pre-
dicting failures and for management planning. Critical 
pipes are to be identified using the predictive models 
and then are further included in maintenance plans. The 
maintenance plans are efficiently optimized to save time, 
costs and resources.

Predictive analytics
Predictive models of water main failures and pipeline 
deteriorations (Kleiner and Rajani 2001; Rajani and 
Kleiner 2001; El-Abbasy et al. 2019; Robles-Velasco et al. 
2020; Dawood et  al. 2020a) may be classified into two 
main types: a physical law-based model and a data-driven 
model (Rajani and Kleiner 2001; Snider and McBean 
2020a). The first type of model requires significant 
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amounts of input data to analyze physical behaviors 
leading to a failure. The analysis involves comparing the 
resistance capacity of a pipeline to expected loads. The 
data includes an extensive list of parameters and needs to 
be collected from the field. Therefore, it is costly and time 
consuming to use physical law-based models (Rajani and 
Kleiner 2001). The implementation of the models should 
be limited to critical pipelines (Wilson et  al. 2017). The 
second type of model uses historical data to discern pat-
terns between historical values of some relevant param-
eters and breakage rates of pipelines. This type of model 
is much less expensive to use, compared to a physical 
law-based model. Thus, it is suitable to implement a data-
driven model to all pipelines, as long as historical data 
exists (El-Abbasy et al. 2019; Snider and McBean 2020a).

The data-driven models may be subdivided into a 
deterministic model, a probabilistic model, and an artifi-
cial intelligence model:

• The deterministic model relies on regression tech-
niques to predict time to next break of pipe or break 
rate and often assumes uniform breaks in water main 
groups. This assumption rules out uncertainties 
within a dataset.

• The probabilistic model (e.g., a survival analysis 
model) uses historical data to predict the probability 
of water main failure. The model deals with inherent 

randomness that is expected to be within a dataset of 
pipe breaks.

• The artificial intelligence model adopts a learning 
approach to recognizing complicated relationships 
between input and output data, without calculating 
the covariate relationships like the deterministic and 
probabilistic models. Using the artificial intelligence 
model has the potential to significantly reduce the 
number of field inspections needed, provide timely 
warning of break risks and thus avoid a large num-
ber of breaks as well as their consequences (Fu et al. 
2013; Marzouk and Osama 2017; Kakoudakis et  al. 
2017; Snider and McBean 2018; Ghobadi et al. 2021).

The classification of data-driven models and their sub-
categories are shown in Figure 1.

WDNs are a complicated system consisting of inter-
connected pipes and hydraulic control elements in 
order to transport potable water to urban populations 
(Ostfeld 2015). The water infrastructures are aging 
and deteriorating drastically throughout the major 
urban centers, which leads to WM failures. They are 
major problems for municipalities due to high costs 
for replacement/repair and consequences such as the 
disruption of services, health issues resulting from 
contaminated water, and revenue losses (Snider and 
McBean 2020a). Models should be used to predict 

Fig. 1 Classification of water main predictive models
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breaks ahead of their occurrences and to plan rehabili-
tation and replacement. This would promote sustain-
able infrastructures and save costs.

This review focuses on the data-driven models, con-
sidering practicality, data requirement, and liableness. It 
provides a comprehensive overview of the past 15 years 
of literature to investigate the relationship and synergy 
between predictive analytics and prescriptive analytics 
for water mains. A structured survey of the literature was 
performed using such keywords as “water main dete-
rioration”, “deterioration models”, “prediction models”, 
“probabilistic prediction models”, “asset management”, 
“water infrastructure”, “failure consequence”, “water main 
risk analysis”, “integrated municipal infrastructure” and 
“infrastructure optimization”. In total, over 60 articles 
were reviewed in their entirety.

The strengths and limitations of identified publications 
were analyzed. Several researchers have used regression, 
probabilistic and machine learning models for water 
main failure prediction, as explained above in detail. The 
application of these models highly depends on the avail-
ability of the dataset and desired output. The output of 
water main failure predictive models can be break rate, 
number of breaks, probability of future breaks, and time 
to next break. One of the great advantages of putting 
these studies together is that it will help municipalities to 
select and use the most appropriate model, depending on 
the availability of dataset. Therefore, by using these mod-
els, the key question of when and where the break will 
happen would be answered.

Wang et  al. (2009) developed deterioration models, 
using data of water main breaks to predict annual break 
rates. These were multiple regression models involving 
pipe diameter, length, age and material, and identifying 
the length as having the greatest impact. This is possi-
bly because their model output is breaks per kilometer 
length per year. They claimed that the models helped 
analyze break trends. Bruaset and Sægrov (2018) devel-
oped a linear regression model that correlated the fail-
ure rate of water main to frost heave of the ground due 
to the air temperature in a cold region. They found the 
failure rate increasing during the winter months and gray 
cast iron pipes (usually laid in trenches) being more vul-
nerable to fail. This implies that the failure rate would 
decrease under climate warming.

Xu and Sinha (2020) discussed some challenges and 
gaps in the use of survival analysis models. The use may 
give failure rate, number of failures, and time to next 
break (which can be interpreted as either the useful life 
span of a pipe or estimated remaining useful life). One 
challenge is the treatment of left truncation. In the litera-
ture, left truncation has not been addressed in most sur-
vival analyses of water pipeline failure. This would cause 

a bias in the results. The issue of left truncation needs 
attention and solutions.

An analysis of pipeline networks is costly and time 
consuming due to the complexity and large scale of the 
networks. Therefore, a failure analysis of pipelines is cru-
cial for the efficient management of networks. There is a 
trend of increasing use of machine learning algorithms to 
predict the failure rate. Zakikhani et al. (2021) provided 
a review of failure prediction models, including machine 
learning models for oil and gas pipelines. Malek Moham-
madi et  al. (2021) used K-Nearest Neighbor (KNN) to 
predict the condition of sewer pipes. Also, machine 
learning algorithms have been recently used in prediction 
models of infrastructure failure. For example, Marcelino 
et  al. (2021) used general machine learning to predict 
pavement performance.

Karimian et al. (2021) used an Evolutionary Polynomial 
Regression model to predict pipeline breaks. They clus-
tered pipelines based on pipe age, diameter, length and 
material, and showed that pipelines of smaller diameter 
were more prone to failure. The occurrence of breaks was 
most sensitive to pipe diameter. For predicting the time 
to next break of ductile iron pipes, Snider and McBean 
(2018) made a comparison among a gradient-boosting 
algorithm model, an Artificial Neural Network (ANN) 
model and a Random Forest algorithm, suggesting the 
first one outperformed the other two. This is because 
gradient-boosting is an ensemble algorithm or a combi-
nation of multiple learning algorithms (usually decision 
trees) that form a stronger predictive model with better 
performance.

Al-Ali et al. (2019) reported a Logistic Regression (LR) 
model, aiming to find the most proper parameters for 
predicting the probability of water main failure, and lead-
ing to prioritizing pipes and planning an annual renewal. 
Dawood et  al. (2020a) suggested considering soil type, 
traffic loads, trenchless method of construction, contrac-
tor experience and other influential factors, for improved 
results of pipe deterioration model. They recommended 
fuzzy-based assessments to reduce the risks of failure 
incidents.

In the study of pipeline failures in Colombia’s WDN, 
Giraldo-González and Rodríguez (2020) assessed three 
regression models and four machine learning models. 
The regression models were Linear Regression, Poisson 
Regression (PR) and Evolutionary Polynomial Regres-
sion, and the machine learning models were ANN, Bayes, 
Support Vector Machine and Gradient-Boosted Tree 
(GBT). The machine learning models used physical fac-
tors (age, diameter and length), environmental factors 
(moisture content, soil contraction, expansion poten-
tial, precipitation and land use), and operational factors 
(valve, hydrant, and previous failure) as predictors. The 
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study used confusion matrices, accuracy and Receiver 
Operating Characteristic (ROC) curves as an evaluation 
criterion. The study concluded that PR outperformed 
the other regression models and GBT outperformed the 
other machine learning models.

Rahbaralam et al. (2020) employed two machine learn-
ing algorithms (LR and extreme gradient boosting) and 
one survival analysis model (Cox proportional hazard 
model) to predict Barcelona’s water main failures. The 
algorithms were fed with data after being resampled for 
feature selection, feature engineering and balancing. 
The algorithms were evaluated using accuracy, F1 score, 
recall, precision, Area Under the ROC Curve (AUC) and 
Matthew’s Correlation Coefficient (MCC). The extreme 
gradient boosting technique was the best.

Water main breaks interrupt services and cause reve-
nue losses (Snider and McBean 2020a). Predictive models 
of break expected in the future help sustain WDNs and 
reduce costs. In Snider and McBean (2020b), the gradi-
ent boosting decision tree machine learning (xgboost) 
was compared with Weibull proportional hazard sur-
vival analysis, in terms of the effect of censored events on 
time to next break of cast iron pipes. The xgboost model 
combines multiple decision trees, which strengthens the 
performance.

Snider and McBean (2020b) reported that the xgboost 
model underpredicted time to next break because of the 
inability to include censored events. Removing censored 
events from a training dataset is not desirable for long-
term planning of asset management. For this reason, 
they concluded that the model was adequate only for 
short-term planning of asset management. The Weibull 
proportional hazard survival analysis could learn from 
longer censored events in a training dataset; it frequently 
over-predicts break times (i.e., longer time to break) and 
therefore is appropriate for use for long-term planning. 
The analysis can give insights about pipe conditions by 
using historical data of pipe breaks. Note that unlike 
inspection data, historical data can easily be found in 
many water utilities (Xu and Sinha 2020, 2021).

Aslani et  al. (2021) used machine learning models to 
predict water pipeline breaks, with input of spatiotem-
poral data. Vulnerable locations were identified by con-
ducting a spatial clustering. They converted the results of 
the clustering analysis to an independent feature called 
hotspot level for subsequent use in the modeling process. 
They suggested that the results were useful for munici-
palities to locate hotspots and mitigate the vulnerability 
by pipe component renovations.

Robles-Velasco et al. (2020) used LR and Support Vec-
tor Classification (SVC) to predict whether a pipe will 
break or not. LR performed slightly better than SVC. 
The model output was between 0 and 1. This can be 

interpreted as the probability of failure, which is highly 
desirable nowadays. The probability of failure could be 
used by municipalities to optimally manage their annual 
rehabilitation plans. Many studies apply machine learn-
ing models to pipes that have had breaks (Harvey et  al. 
2013; Shirzad et  al. 2014; Sattar et  al. 2016; Kutyłowska 
2017; Kerwin and Adey 2018). Robles-Velasco et  al. 
(2020) considered all pipes rather than just those which 
had experienced breaks. They used three homogenized 
models with respect to the types of material and then a 
global model. A correlation analysis identified the covari-
ance between standardized variables. They reported that 
replacing only 3% of pipelines could prevent around 30% 
of failures.

Chen et al. (2022) investigated the effect of combined 
datasets from different utilities on the performance of 
machine learning models for predicting future breaks. 
They combined datasets belonging to six utilities in three 
ways: using the dataset of only one utility, using a strati-
fied sampling of all utilities and using a combined data of 
all utilities. The results showed that having a large quan-
tity of data does not result in a better prediction model, 
but instead a sufficient amount of high-quality data such 
as historical breaks gives a better prediction model.

The examination of the above studies shows that in 
the case where only a limited amount of input dataset 
is available and where the purpose is to interpret break 
trends, regression models could be the best choice. 
Although survival analysis models are more suitable for 
long-term management plans, they over-predict break 
time and cannot handle the complexity that exists in 
water main dataset. On the other hand, machine learning 
models are more appropriate for water mains with good 
amounts of dataset as the models can treat complex rela-
tionships between input and output variables. However, 
these models are suitable only for short-term manage-
ment planning. Also, it seems that physical parameters 
which are more accessible in water main dataset and 
widely used throughout the literature, have more impact 
on the output of the models. However, the effect of other 
parameters has yet to be discovered. In the following sub-
sections, the problems existing in either the models or 
water main datasets itself explained in detail.

Data preparation for modelling
Most machine learning algorithms require data prepara-
tions: standardization, encoding, and feature transforma-
tion. Standardization rescales all factors. Some machine 
learning algorithms do not need standardization, how-
ever it improves model convergence. Standardization 
also improves model accuracy (Buntine et al. 2009; Shen 
et  al. 2016). Consider a support vector classifier (SVC). 
This algorithm works based on maximizing the distance 
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between the separating plane (hyperplane) and the sup-
port vectors (data points closer to the hyperplane). When 
the algorithm calculates the distances, without stand-
ardization, features with larger values will dominate fea-
tures with smaller values. Therefore, standardization is 
required to reduce the dominancy effect between fea-
tures and improve the model convergence (Lokman et al. 
2019). Consequently, depending on the type of machine 
learning model selected, standardization might help 
improve accuracy.

Encoding categorical attributes yields numerical val-
ues for use in SVC and LR. The two widely used coding 
systems: one-hot-encoding, and dummy coding, convert 
categorical data into binary values (Cohen et  al. 2014; 
Rahbaralam et  al. 2020; Aslani et  al. 2021). The inte-
ger encoding assigns an integer to categorical attributes 
based on failure rate per unit length (Robles-Velasco 
et al. 2020). The first two coding systems have the limita-
tion that there is a significant increase in predictors when 
there are a large number of categories in the categorical 
attributes. Therefore, depending on the amount of data-
set, a suitable coding system should be selected.

In many WMs prediction models, some attributes are 
difficult to model because of their disparity. Consider 
pipe length for instance. Disparate lengths of pipes exist 
in a dataset. Therefore, despite the fact that length is an 
important predictor, it is problematic. Some authors re-
cut the length by street (Winkler et al. 2018), some used 
feature transformation and logarithms of length rather 
than the actual length and improved the accuracy notice-
ably (Robles-Velasco et  al. 2020), and others used mean 
values for all variables related to length (Berardi et  al. 
2008). Therefore, the length of water mains needs atten-
tion and preparation before being fed into the model for 
better accuracy.

In some machine learning algorithms, tuning hyper-
parameters is an important issue which is difficult to 
properly address (Liu and Zio 2019; Fujiwara et  al. 
2020). This is because only a few hyperparameters need 
to be calibrated, which is not enough to capture all the 
variations in the model. When there are extensive vari-
ations in a model but insufficient parameters to capture 
the variations, an overfitting may occur (Ahmadi et  al. 
2015). Thus, overfitting should constantly be checked and 
avoided.

Missing data
In WM dataset, the issue of missing data is common 
(Osman et  al. 2018). Handling missing data in the pre-
processing is crucial. Missing data leads to losing some 
valuable information and causing data insufficiency (Wu 
and Liu 2017; Winkler et al. 2018). Consequently, remov-
ing missing values from a dataset can result in negative 

effects on data-driven models, unreliable parameter 
predictions, loss of valuable information, bias, and poor 
models (Tang et  al. 2019). Therefore, it is necessary to 
keep as much information as possible (Barton et al. 2022).

Alternatively, there are several imputation techniques 
to handle this issue, e.g., traditional methods such as sim-
ple ways of substituting missing data with mean, median 
and constant values, or more advanced methods such as 
imputation using machine learning algorithms (for exam-
ple, substituting missing data with the mean values from 
KNN in the training dataset) (Levinas et al. 2021; Xu and 
Sinha 2021). Advanced imputation methods are often 
better than simple imputation methods (Osman and 
Bainbridge 2011; Kabir et  al. 2019). It is concluded that 
prior to developing a prediction model, one must have 
clean data and ensure minimal missing data.

Imbalanced dataset
Imbalanced data, censoring, and left truncation are three 
important issues associated with predictions of water 
main failures (Scheidegger et  al. 2015; Xu and Sinha 
2020). In water supply networks majority of pipelines 
never suffered from a failure. If the majority of pipelines 
in a dataset have not experience a break (one class) and 
a minority of them have experienced at least one break 
(another class), the dataset is considered as imbalanced, 
also known as unbalanced (Robles-Velasco et  al. 2020) 
and as censored (Li et  al. 2016; Snider and McBean 
2020a)). Figure  2 depicts imbalanced data belonging to 
the City of Kitchener water main break dataset.

Dealing with imbalanced datasets is a challenging 
topic in data mining, receiving extensive research atten-
tion (Zhang and Wang 2013; Ribeiro and Reynoso-Meza 
2020). Resampling may be implemented to an imbal-
anced dataset through random under-sampling, random 

Fig. 2 Frequency of number of breaks in a WDN (imbalanced 
dataset) (Data source: https:// open- kitch energ is. opend ata. arcgis. 
com/ datas ets/ water- main- breaks/ explo re? locat ion= 43. 459288% 
2C- 80. 434081% 2C12. 12 and https:// open- kitch energ is. opend ata. 
arcgis. com/ datas ets/ water- mains/ explo re? locat ion= 43. 434199% 
2C- 80. 474206% 2C12. 58)

https://open-kitchenergis.opendata.arcgis.com/datasets/water-main-breaks/explore?location=43.459288%2C-80.434081%2C12.12
https://open-kitchenergis.opendata.arcgis.com/datasets/water-main-breaks/explore?location=43.459288%2C-80.434081%2C12.12
https://open-kitchenergis.opendata.arcgis.com/datasets/water-main-breaks/explore?location=43.459288%2C-80.434081%2C12.12
https://open-kitchenergis.opendata.arcgis.com/datasets/water-mains/explore?location=43.434199%2C-80.474206%2C12.58
https://open-kitchenergis.opendata.arcgis.com/datasets/water-mains/explore?location=43.434199%2C-80.474206%2C12.58
https://open-kitchenergis.opendata.arcgis.com/datasets/water-mains/explore?location=43.434199%2C-80.474206%2C12.58
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over-sampling, and Synthetic Minority Over-sampling 
Technique (SMOTE) in classification models (He and 
Garcia 2009). Random under-sampling is a well-known 
method that removes examples of the majority class. 
Although this method decreases the computational time, 
it is at the expense of losing some valuable information 
(Japkowicz 2000; Seiffert et al. 2009).

Random over-sampling, on the other hand, randomly 
replicates the existing minority examples to make the 
dataset balanced. This technique also has its own limita-
tions such as increasing the size of the dataset and caus-
ing the model to be overfitted. Thus, it is not applicable 
in the case of having an extensive dataset (García-Pedra-
jas et  al. 2012). SMOTE randomly generates synthetic 
minority examples based on nearest neighbors and 
therefore it is a better way for balancing the dataset; it 
improves model performance (Fujiwara et al. 2020; Rah-
baralam et  al. 2020). Nevertheless, depending on the 
nature of dataset, one of the techniques might work bet-
ter than the others.

An imbalanced dataset is also an issue in other fields, 
e.g., medical diagnostic and credit card fraud detection 
problems (Verhein and Chawla 2007). In such cases, the 
classification problem becomes very difficult since the 
main goal in imbalanced datasets is to predict the minor-
ity class (Huang et al. 2006). The models in question can-
not be properly trained in the training phase and thus 
cannot correctly predict the minority class (Liu and Zio 
2019). A naïve model could predict all data as the major-
ity class and will likely achieve an accuracy of 99%. How-
ever, such models are useless in many cases. To evaluate 
the goodness of a model, accuracy serves a common met-
ric measurement. However, accuracy alone is not consid-
ered as a suitable evaluation measurement in the case of 
an imbalanced data and might cause misinterpretation. 
Therefore, other metric measurements (e.g., F-measure) 
are very much demanded (Huang et al. 2006; Harvey and 
McBean 2014).

The confusion matrix is a good way of evaluation in 
the case of an imbalanced dataset. Accuracy and Recall 
are two metrics derived from the matrix. Accuracy gives 
the percentage of correctly predicted pipes while Recall 
measures the accuracy of true failures. However, higher 
Recall is at the expense of misclassification. AUC is 
another metric measurement that shows the capability 
of the model to avoid misclassification and can be com-
puted from the ROC curve.

Censored events
Censoring happens when no pipe breaks are observed 
within a limited period of time, and this is the case in 
most water utilities datasets. Figure  3 illustrates an 

example of data censorship in water main break data-
set. There are a large number of pipes in service, which 
have never experienced a break. Censored events can 
be handled by a traditional survival analysis (e.g., Cox 
proportional hazard models). On the contrary, many 
machine learning models are not capable of handling 
censored events. Although machine learning models 
are more capable of interpreting complex relationships 
that exist in a water main dataset, when using machine 
learning models, censoring is a concern.

Censoring is almost the case for all WM datasets. 
Although survival models (e.g., Weibull proportional 
hazard survival analysis) can cope with censored data 
(Wang et al. 2019; Almheiri et al. 2021) and are good for 
long-term management planning (Snider and McBean 
2020b), they are not suitable for modeling complex 
relationships between variables. Machine learning algo-
rithms, on the other hand, are very efficient to model 
complex relationships between variables, but they are 
good only for short-term management planning (Snider 
and McBean 2020b). For example, xgboost has been 
found to surpass other single machine learning models 
such as Random Forest and ANN (Zhang et  al. 2017; 
Snider and McBean 2018). The problem with xgboost 
is that it is not programmatically structured to deal 
with censored data. In fact, it removes censored data at 
the training stage so it cannot learn from the censored 
data, therefore it is constantly underpredict time to 
failure (Snider and McBean 2020b).

Machine learning models are more desirable for use 
to predict WM failures. To cope with the problem of 
censoring, a survival machine learning model (a com-
bination of machine learning with a survival statistics) 
can be used, one exampling being Random Survival 
Forest, which is relatively new. These models not only 
incorporate censored data but also utilize data-driven 
approaches to model complex relationship between 
input and output variables (Snider and McBean 2021).

Fig. 3 Censored data (Modified from Snider and McBean (2020a))
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Left truncation
Left truncation occurs when the records of pipe failures 
before collecting data are missing. Like censoring, this 
is also always the case in a water main dataset and it is 
acknowledged widely (Barton et  al. 2022). The effects 
of left truncation have been overlooked in many stud-
ies (Snider and McBean 2020b) even though this issue 
causes a systematic bias, especially for survival analysis 
models (Scheidegger et  al. 2015; Xu and Sinha 2019). 
Instead, they assume the first recorded failure is the first 
real failure. This assumption will lead to bias and inaccu-
rate predictions (Xu and Sinha 2020; Hawari et al. 2020). 
The scale and shape of the survival curve can be severely 
biased due to left truncation, which results in a change 
in estimates of the mean time to failure (MTTF) (Xu and 
Sinha 2021).

There are several ways to tackle the left truncation 
issue. One way is to revise the probability function 
(Mailhot et  al. 2000; Scheidegger et  al. 2013). Xu and 
Sinha (2021) proposed an integration of ANN imputa-
tion method with Weibull proportional hazard survival 
analysis to calibrate the survival curve and reduce MTTF 
estimation bias caused by left truncation. They showed a 
drop of bias from 14.3% to 2.1% by applying the method.

Correlation analysis
A correlation between predictors reduces the accuracy 
and increases computing time for most machine learn-
ing algorithms (Hall 1999; Kumar and Chong 2018), 
except tree-based algorithms which can handle correla-
tions (Eisler and Holmes 2021). The issue of correlations 
between independent attributes has serious impacts, but 
it was not addressed (Snider and McBean 2018; Roc-
cetti et  al. 2019; Giraldo-González and Rodríguez 2020; 
Weeraddana et al. 2020; Rahbaralam et al. 2020; Dawood 
et al. 2020a; Amini and Dziedzic 2021). There are differ-
ent methods to investigate the correlation, e.g., the t-test, 
ANOVA, MANOVA, Chi Squared and Pearson’s correla-
tion analysis. Depending on the nature of the dataset (i.e., 
being numerical or categorical), the above-mentioned 
methods are useful. Pearson’s correlation analysis is one 
of the most widely used methods, but it is useful only for 
identifying the correlation between numerical variables 
(Zhang et al. 2014).

Prescriptive analytics
The literature in the domain of water distribution net-
works can be divided into different categories in many 
ways. In this review, literature is divided into two main 
categories: predictive analytics and prescriptive analyt-
ics. In the following subsections, literature of prescriptive 
analytics is explained in more details.

Failure consequences assessment and risk analysis
This paper reviewed the existing literature related to 
identifying risk, criticality index and failure consequences 
for WMs. Fares and Zayed (2010) utilized a hierarchy 
fuzzy expert system to evaluate the risk of WM failure. 
Their considered 16 risk factors. According to their study, 
risk factors can be divided to factors that lead to failure 
(deterioration factors) and factors which result from fail-
ure (consequence factors). They demonstrated that the 
most significant influences on failure risk are pipe age, 
pipe material, and pipe breakage rate, respectively. Kabir 
et  al. (2015) proposed a Bayesian Belief Network model 
to prioritize metallic WMs and evaluate the risk of WMs 
failure. They used structural integrity, hydraulic capac-
ity, water quality and consequence factors in their model, 
and they claimed that any other factors could also be 
included in their model. They showed that the model can 
visualize the most vulnerable, sensitive and the highest 
risk pipes within a WDN.

Mugume et al. (2015) simulated a simplified synthetic 
water distribution system in EPANET and a synthetic 
urban drainage system in the Storm Water Management 
Model. They investigated the system performance under 
the condition of pipe failure. They focused on minimizing 
failure consequences to improve resilience in urban water 
systems. They also investigated the effect of rehabilitation 
strategies including pipe replacement on resilience. They 
showed that if failure scenarios are considered during 
urban water systems design, the loss of system function-
ality could be minimized.

Al-Zahrani et al. (2016) identified the vulnerable loca-
tions in a WDN using a fuzzy-based decision support 
system. These vulnerable locations experience more 
structural failures as well as failures in supplying water 
at the target quality. Their model was applied to a case 
where a risk index was developed to show both the prob-
ability of failures and their impacts. They showed that the 
model helped utilities to prioritize pipes within the sys-
tem based on the overall failure risk.

Vishwakarma and Sinha (2020) used the fuzzy infer-
ence method for developing the consequence of fail-
ure. They proposed a quantitative risk matrix for risk 
visualization, that compared to semi-quantitative and 
qualitative risk matrix, reduce subjectivity in the design 
process. Their model framework covers different types of 
the consequence of failure assessment such as economic, 
environmental and social impacts, as well as operational 
intelligence and complexity of renewal activities. They 
improve previously developed techniques of assessing 
failure consequences by using a quantitative risk matrix. 
Utilizing risk assessment has multiple advantages for 
management programs, such as supporting pipes renewal 
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prioritization decisions and moving from reactive main-
tenance plans to proactive plans.

Phan et  al. (2019) used a risk assessment framework 
in a case study of WM in a WDN. The calculation of the 
probability of failure used Weibull distribution. They 
used a fuzzy inference system to aggregate failure conse-
quences because unifying different types of consequences 
into one outcome is difficult. Consequences consist of 
impacts on the redundancy/vulnerability of the net-
work, water loss and rehabilitation costs and of impacts 
on public health. They used the diameter to quantify the 
volume of water loss and algebraic connectivity to con-
sider the topological consequence. The topological con-
sequence is useful for redundancy reduction. In order to 
prioritize water mains, a risk map is developed for use by 
decision-makers.

Balekelayi and Tesfamariam (2021) performed a hydro-
dynamic assessment for the wastewater system of Cal-
gary using ordered weighted averaging technique to 
identify the criticality index of the wastewater pipes. A 
dynamic deterioration model was combined with the 
proposed criticality index to determine the operational 
risk of the wastewater pipes. This technique helps munic-
ipalities to prioritize the inspection and replacement of 
sewer pipes. They showed that the technique can suc-
cessfully identify the criticality index of wastewater pipes 
when hydrodynamic data are not available. Using the 
information, hydraulic models can be regularly updated 
and thus wastewater pipe inspection plans can be prior-
itized. The results of the study can also be used for water 
mains.

Risk is a multiplication of the probability of failure 
(POF) and consequences of failure (COF). The probabil-
ity of WM failures can be derived from the prediction 
models explained earlier in predictive analytics sec-
tion. However, in order to achieve a good maintenance 
plan, POF is not the only factor that matters, and COF 
is another important factor. This is because some pipes 
might have the least POF but the highest COF in the net-
work, which might be overlooked in the prioritization 
plan. Therefore, assessing COF is also of relevance. The 
failure consequences can be economic, environmental 
and social impacts. The indirect costs of failure should 
also be taken into consideration. Thus, the determina-
tion of failure consequences and hence the risk are diffi-
cult, because of uncertainties and many factors involved. 
Often, fuzzy techniques are used to deal with uncertain-
ties and to quantify failure consequences and risk factors.

Maintenance planning, scheduling and prioritization
In this section, papers in regard to water loss minimiza-
tion and asset management plans have been collected. 
The deterioration of assets is inevitable due to aging. 

Thus, an efficient asset management becomes crucial for 
assets to continue delivering an adequate level of ser-
vice. There are efficient asset management plans in vari-
ous infrastructures sectors such as road networks, urban 
railways and metro systems, buildings, wastewater and 
drainage systems (Mohammadi et  al. 2018, 2019, 2020; 
Dziedzic et  al. 2021). However, there is less progress in 
case of water systems asset management.

Kleiner et  al. (2010) developed a non-homogeneous 
Poisson model for the analysis and forecast of break-
age patterns in individual water mains, considering both 
static and dynamic factors. Their case study was for a 
water utility in Eastern Ontario. Different costs associ-
ated with each pipe were considered, including the costs 
of pipe replacement and repair, the costs of water loss 
due to failure, and cost-saving due to roadwork coordina-
tion. They used the results of pipe break predictions for 
the water main renewal schedule plan, utilizing a multi-
objective genetic algorithm.

Malm et  al. (2015) developed a Cost-Benefit Analysis 
for leakage reduction. They compared the costs and ben-
efits for each alternative over time. They also considered 
uncertainty analysis. The results show that considering 
uncertainty analysis improved the results of the Cost-
Benefit Analysis. They considered four different alterna-
tives to reduce leakage in their case study of Gothenburg. 
It was found that reactively repairing, despite a high leak-
age rate, is more cost effective, compared to proactively 
pipe replacement.

Zyoud and Fuchs-Hanusch (2019, 2020) applied differ-
ent techniques to a real water supply system in Palestine. 
They compared the traditional Multi Criteria Decision 
Making approach and the Analytic Hierarchy Process 
(AHP) method for a water loss management problem. 
Although AHP is easy to implement and has strong 
potential in structuring and decomposing complex deci-
sion problems, it cannot handle uncertainties. Therefore, 
Fuzzy AHP has been used to deal with uncertainty and 
incomplete information.

Barton et al. (2022) revealed that the quantity and qual-
ity of data have an important impact on the accuracy of 
WM failure models, and poor data results in low accu-
racy of models. They suggested that there should be 
increased focus on data collection since poor quality data 
makes it hard for utilities to manage WMs rehabilitation 
plan. They show that long term management plans for 
water mains remain a challenging issue and require fur-
ther attention.

Ghobadi et  al. (2021) proposed a pipe replacement 
scheduling method based on a life cycle cost assess-
ment. In order to obtain an optimal replacement plan, 
a multi-objective nondominated sorting genetic algo-
rithm (NSGA-II) is used. The proposed replacement plan 
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avoids investment peaks and smooth the investment time 
series based on life cycle cost. Unlike many other stud-
ies, they considered that limitations exist in the annual 
budget in their model. They show that by using online 
monitoring and recording failure data, the accuracy of 
the pipe failure rate is improved, and the annual replace-
ment plans can be updated. The scheduling plan becomes 
near optimal.

Decision making software tools and methodologies 
would help municipalities to perform their water infra-
structure maintenance plans more efficiently. These 
plans usually consider a set of predefined alternatives. 
However, more practical replacement plans which affect 
several pipes simultaneously rather than just replacing 
individual pipes haven’t been considered in these meth-
odologies. Ramos-Salgado et al. (2022) scheduled a sus-
tainable water supply replacement plan with a five-step 
infrastructure asset management framework. (1) As the 
first step, a replacement priority index for every network 
asset has been obtained. (2) Despite the previous main-
tenance strategies (considering individual pipelines), they 
used street sections as the operational replacement unit 
to reduce the social consequences related to each inter-
vention. (3) They considered the replacement plan of two 
adjacent pipes at the same time even with having differ-
ent priority of replacement for the sake of operational 
and convenience criteria, since it is more acceptable by 
utilities and more aligned with their policies. Also, a 
fair budget allocation performed in their study based on 
social and geographic criteria to ensure a decent invest-
ment distribution between districts and towns. (4) After 
specifying the replacement priority of the network assets, 
a short-term, mid-term and long-term replacement plan 
is required. In this regard, a set of indicators for perfor-
mance evaluation of the network is needed which spec-
ify the investment level and certain courses of action. A 
combination of four indicators is used name infrastruc-
ture value index (ratio between the value of the infra-
structure at the current state and its replacement cost), 
average network age, average risk index, and the aver-
age probability of failure. These indicators are easy to 
calculate and interpret. They also present various infor-
mation on the performance of the network. (5) Lastly a 
mathematical technique is used to calculate the required 
budget more efficiently.

Maintenance coordination and prioritization
There have been tremendous efforts on maintenance 
plans as an individual asset management plan. A coordi-
nated asset management plan is much needed to better 
manage existing infrastructure assets, but the coordina-
tion has been neglected by many municipalities. This 
section gives particular attention to the coordination 

of interrelated infrastructures, optimum replacement 
time of them (e.g., roads, water and sewers) and prior-
itization of their budget allocation. Integrated rehabilita-
tion actions among the co-located infrastructure assets 
are necessary when developing a renewal plan. This 
could decrease or avoid unnecessary rework, rehabilita-
tion costs, service disruptions and risks (Halfawy 2008; 
Abusamra 2018).

Marzouk and Osama (2015) proposed a decision sup-
port tool to determine the optimal time of maintenance 
and replacement of mixed infrastructures simultane-
ously (i.e., pavement, water pipes, sewer pipes, gas pipes, 
and electrical cables). This approach could prevent costs 
associated with the surface layer of pavements to be 
destroyed multiple times (for example once for sewer 
pipes replacement and once for water pipes replace-
ment). The useful life of different infrastructures was 
first identified by simulation, and then depending on the 
replacement time and costs, a decision was made on the 
optimal maintenance and replacement time. With regard 
to uncertainties of models, a fuzzy approach was applied. 
The key goal of their study was the minimization of the 
total costs of infrastructure replacement.

Marzouk and Osama (2017) presented a method for 
the coordinated maintenance of road, water distribution 
and wastewater distribution networks. First, a deteriora-
tion model is developed using a hierarchical fuzzy expert 
system technique to assess the condition of each infra-
structure asset. Then, a risk model is developed using 
a fuzzy Monte Carlo simulation to calculate POF and 
AHP to calculate COF. Lastly, a multi-objective optimi-
zation using genetic algorithm (GA) is developed, with 
four objective functions: (1) minimizing the overall risk, 
(2) maximizing level of service (LOS), (3) maximizing 
the overall conditions of the assets, and (4) minimizing 
life cycle cost (LCC). The optimization model considers 
seven scenarios of actions for: (1) road segment only; (2) 
water only; (3) sewer only; (4) road and water; (5) road 
and sewer; (6) sewer and water; (7) road, sewer and water. 
The optimization constraints were set to meet the mini-
mum requirements of the condition, performance and 
risk for all infrastructures within the annual budget. The 
results showed an average integrated risk index of 5.45 
over a planning horizon of 20 years. Over 86% of the pro-
jects were recommended under integrated scenarios as 
follows: road, water and sewer at 38%; road and sewer at 
24%; road and water at 24%. These maximize cost saving.

Abusamra (2018) pointed out numerous attempts to 
improve infrastructure maintenance and intervention 
plans within a limited budget. However, most of them 
were successful only in developing a plan for short-term 
planning and a single asset. The author proposed opti-
mization models to help decision makers to identify a 
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coordinated maintenance plan for the co-located infra-
structure assets (i.e., roads, water, and sewer). Two multi-
objective models were discussed: (1) evolutionary GAs 
optimization, which used a set of meta-heuristic rules to 
find a near-optimum solution; (2) linear programming 
optimization to find an exact solution. The objective 
function was to maximize an overall improvement and to 
maximize the network health index. The results showed 
an overall enhancement (time, cost, efficiency, risk, etc.) 
of 29% over a planning horizon of 25  years, achieved 
from coordinating the interventions. Compared to the 
conventional approach, coordination reduced disrup-
tions and interventions by 67%.

Amador-Jimenez and Mohammadi (2020) considered 
different budgeting scenarios such as worst-first, silos, 
and trade-off optimization, to assess the pros and cons of 
proposed scenarios. They aimed to investigate the prior-
itization of budget allocation and management plans for 
different infrastructure assets (i.e., pavements, sanitary 
sewers, storm sewers and water mains), based on the pro-
posed scenarios, and to select the superior management 
plan among all. They show that a trade-off optimization 
analysis improves results, giving the highest priority to 
water mains and lower priority to pavements and storm 
pipes in terms of investment management planning.

Very recently, Shahata et  al. (2022) proposed a multi-
stage integer programming that is capable of optimiz-
ing the most suitable, cost-effective renewal action (if 
any) for road, sewer and water infrastructure assets. The 
objective function was to maximize risk reduction in a 
cost-effective manner. Their decision-making approach 
used risk assessment and a performance rating model. 
The model also used rehabilitation alternatives, giving 
priority to integrated renewal actions. They showed that 
the approach is capable of reducing risk costs by using 
integrated actions (e.g., road, water and sewer by 36%; 
road and sewer by 23%; road and water by 25%). They also 
showed that their integrated model can enhance budget-
saving, compared to the conventional silos approach 
(renewal plan of only each infrastructure). In order to 
improve the model’s practicality, the consequence of 
each intervention alternative such as the impact on travel 
delay, noise pollution costs, lost business revenue, etc. 
should also be considered.

Discussions
This review of water asset management analytics has 
revealed: a) a need to explore the influence of environ-
mental factors on WM failures; b) a need to consider 
both direct and indirect costs in optimal mitigation anal-
ysis and replacement prioritization. The environmental 
factors indirectly contribute to failures. The contribu-
tion is particularly significant for WMs in cold regions. 

Failure models should be coupled with costs (direct and 
indirect) as a constraint in optimal scheduling plans. The 
coupling renders failure predictions meaningful as the 
ultimate goals are to update asset management plans and 
prioritize rehabilitation or replacement.

Further research efforts are needed to reveal new 
insights about contributing mechanisms of WM failures, 
to create novel ideas for reliable predictions of failures, 
and to invent ways for putting theoretical predictions 
into practical use in managing and maintaining WMs in 
a cost-effective manner. The mechanisms are more com-
plex in cold regions. More details about potential avenues 
for future research are discussed below under each cat-
egory of analytics:

Directions of future research in predictive analytics
In spite of extensive studies of WM failures over the 
past decades, significant knowledge gaps exist in predic-
tive analytics. Environmental factors (e.g., weather con-
ditions, climate factors and so on) are reportedly less 
influential than physical factors (e.g., pipe diameter, pipe 
length and so on). However, the influence of the envi-
ronmental factors such as climatic variations and freez-
ing in cold regions has received little attention (Kleiner 
and Rajani 2002; Farmani et al. 2017; Demissie et al. 2017; 
Almheiri et al. 2020). In the cold regions, pipes are more 
susceptible to break due to temperature fluctuations. Fro-
zen water inside a pipe expands. Even if the pipe does not 
break, it can significantly degrade. Freezing temperature 
fluctuations result in extra stresses on pipes. Moisture 
on the ground can cause frosts at freezing temperatures 
and lead to ground movement and hence stresses on the 
pipes. Cast-iron pipes are more prone to failures at freez-
ing temperatures because of the erosion of soils around 
them. If they are not lined with protection materials, 
they begin to corrode from inside and ultimately break. 
In future research, it would be meaningful to create 
homogenous groups of pipes based on the environmen-
tal factors such as soil type, freezing index, temperature, 
precipitation and frost depth in order to investigate their 
influence on WM failures.

The past studies have overlooked issues related to 
the apparent age of pipes based on their conditions. An 
application of rehabilitation techniques such as lining 
and cathodic retrofit to existing pipes causes a change in 
the conditions of the pipes and thus redefines their ages. 
Therefore, the influence of applied rehabilitation tech-
niques and the resulting change need to be investigated.

One important step before developing any prediction 
model is data preprocessing and preparation. The miss-
ing gap of data needs to be handled properly. If the avail-
able amount of the missing data is not meaningful, they 
can simply be excluded. Otherwise, an existing missing 
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gap should be filled by predictions using advanced impu-
tation methods. Correlated attributes must be removed 
as they will decrease modelling efficiency significantly. 
One needs to pay adequate attention to imbalanced data-
set and general data preparation before applying any pre-
diction method because these steps impact modelling 
reliability significantly. Resampling dataset is a good way 
to cope with imbalanced dataset.

Unresolved issues of censoring, and left truncation 
are common with WM datasets. One way to deal with 
the issues is to use survival machine learning models (a 
combination of machine learning with a survival statis-
tics). The models can handle both censoring and a com-
plex relationship between input and output variables. 
Table  1 presents a summary of predictive analytics and 
the applied techniques published in the past 13 years.

Directions of future research in prescriptive analytics
Previous studies using prescriptive analytics have been 
limited to consideration of economic costs as the main-
tenance objective to optimize. The social and environ-
mental costs (indirect costs) associated with a failure are 
commonly ignored in WM maintenance planning and 
rehabilitation scheduling. Future research should aim 
to maximize the system reliability and at the same time 
minimize the risk index and failure consequences (costs). 
Beside economic costs, the social and environmental 
costs can have significant influence on maintenance plan-
ning and scheduling, and they should be considered.

The multiplication of probability and COF determines 
the risk factor; through this link, a risk map can be devel-
oped and utilized to develop a maintenance prioritization 
plan. The coupling of a WM prediction model, probabil-
ity of WM failure and COF allows us to develop a precise, 

practical maintenance prioritization plan. This goal can 
be achieved using an optimization model, together with 
decision-making methods. The goal should be set in a 
way to reduce leakage, which in turn decreases expenses 
(direct and indirect) and increases the expectancy life of 
assets. However, long-term management plans remain 
challenging and further attention is needed.

The literature in related to optimization of mainte-
nance/replacement time for infrastructures networks 
with coordination and prioritization of maintenance 
activities are rare. In reality, a WM infrastructure is often 
maintained in association with other infrastructure such 
as pavement, and thus the asset management impact of 
one infrastructure on the other is inevitable. The mutual 
impact remains essentially an under explored area. A 
prescriptive analysis of interdependent infrastructures 
would be helpful to prioritize budget allocations and to 
identify the optimal replacement/maintenance time in a 
realist setting.

In conclusion, the need to adopt a coordinated mainte-
nance plan for integrated infrastructure assets is exten-
sively acknowledged in industry and academia. When 
the assets reach an unacceptable LOS, which need some 
actions and interventions, the optimum decision on how 
to repair all overlapping assets using the pre-existing 
and limited budget and without overspending, remains 
challenging. Therefore, priorities should be set in a way 
to answer these questions: Which asset is more critical 
and needs immediate action? What are the actions/inter-
ventions (repair, rehabilitation, replace or do nothing)? 
When is the best time the work should be done? One 
important requirement for all coordinated maintenance 
plans is the ability to support long-term planning. In this 
regard, the life cycles of different infrastructure assets 

Table 1 A summary of predictive analytics applications for water pipes failure

Cluster of research Techniques Applications Input parameters

Deterministic model – Multiple Regression models
– Linear Regression
– Poisson Regression
– Multivariate adaptive regression splines

– Water mains annual break 
rates prediction
– Finding correlation between 
water main failure rates and 
input parameters

Physical Factors:
DIA, LEN, AGE, MAT

Probabilistic model – Cox proportional hazard model
– Weibull proportional hazard survival 
analysis

– Water main failures prediction
– Time to next break prediction

Physical Factors:
DIA, LEN, AGE, MAT, THK

Operational Factors:
WP, VEL, TRF, RT, WPH

Environmental Factors: SR, SPH, MC, FI, SZN

Artificial intelligence model – ANN
– Random Forest
– Xgboost
– LR
– SVC
– Evolutionary Polynomial Regression
– Boosted regression tree

– Predict the failure rate of 
pipeline networks
– Binary classification which 
shows whether or not the pipe 
break

Physical Factors:
DIA, LEN, AGE, MAT, YEAR, NC, NT

Operational Factors:
WP, TRF, NB, BD, BY

Environmental Factors:
MC, ST, PP, LU, LO
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should be considered in these models. Table 2 presents a 
summary of prescriptive analytics and the applied tech-
niques published in the past 12 years.

Proposition
In the light of the above literature review and after con-
sidering the knowledge gaps related to the existing ana-
lytics methods and issues associate with water main 
datasets, establishing an integrated approach for smart 
water mains asset management is advocated (Figure  4) 
incorporating the synergy between failure models (pre-
dictive analytics) and maintenance strategies (prescrip-
tive analytics). Most WM datasets mainly consist of 
physical factors of pipes such as age, diameter, length and 
material. Usually, they do not include operational factors 
such as annual average daily traffic (AADT), number of 
breaks, water pressure, and environmental factors such 
as freezing and thawing index, temperature, precipita-
tion, frost depth, and rain deficit. Therefore, in order to 
investigate the effects of the environmental factors, this 
study suggests merging them with WM datasets. After 
cleansing and careful data pre-processing, dimension-
ality reduction is useful to reduce dataset dimensions 
and computing time. To aggregate the efforts for similar 
regions with similar characteristics, one may perform 
clustering which is relatively new in this domain. The 
next step is to select features that contribute the most 
in failure prediction models. Concretely, with sufficient 
data, a prediction model can be developed as the ultimate 
step in predictive analytics.

In regard to prescriptive analytics, depending on the 
types of prediction model in previous stage, either the 

Table 2 A summary of prescriptive analytics applications for water pipes failure

Cluster of research Techniques Applications

Failure consequences assessment and risk 
analysis

– Hierarchy fuzzy expert system
– Bayesian Belief Network, Fuzzy-based decision 
support system
– Ordered weighted averaging technique
– EPANET
– Fuzzy inference method
– Quantitative risk matrix

– Determination of the risk and criticality index
– Failure consequences assessment, resilience 
investigation
– Risk visualization

Maintenance planning and scheduling – Multi Criteria Decision Making approach
– Analytic Hierarchy Process
– Cost–Benefit Analysis
– NSGA-II
– Non-homogeneous Poisson model
– Multi-objective genetic algorithm

– Water loss minimization and management
– Pipe replacement plan considering life cycle 
cost assessment
– Schedule long-term asset management frame-
work

Maintenance coordination and prioritization – Decision support tool based on a fuzzy 
approach
– Worst-first, silos, and trade-off optimization
– GA optimization
– Evolutionary GA (based on heuristic rules)
– MOSEK linear programming
– Integer programming optimization

– Optimum replacement time of integrated 
infrastructure
– Prioritization of budget allocation for different 
infrastructure assets
– Minimizing risk and LCC
– Maximizing LOS, asset’s overall condition, overall 
improvements and network health index

Fig. 4 Proposed integrated predictive and prescriptive analytics for 
smart water main asset management
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time to failure or POF/COF could be mapped across the 
water mains network. To obtain COF, the indirect costs 
of failure, such as proximity to environmental/external 
factors (e.g., rail tracks and transmission gas mains) and 
the impact on the LOS and the costumer class (e.g., hos-
pital, emergency services, residential) could be consid-
ered. By minimizing the risk of failure, the infrastructure 
maintenance plan can be prioritized accordingly. Using 
the prediction models resulted from the predictive ana-
lytics step, a multi-objective maintenance plan could be 
developed in coordination with other infrastructures 
such as roads and sewer pipes. The other optimization 
objectives could be maximizing LOS, maximizing asset 
condition, and minimizing LCC. Lastly, the rehabilita-
tion/replacement plan will be scheduled. It is expected 
that after implementing the rehabilitation/replacement 
plan in WMs, the condition of the networks will change. 
So, the predictive models should be updated based on 
the new information after each prediction-prescription-
implementation cycle.

Conclusions
Water pipe failures have increased drastically due to a 
slow rate of replacements and thus aging of WMs. This 
issue is difficult to resolve because such networks are 
complex and are typically buried underground. In many 
municipalities, most parts of the networks have reached 
the end of their service life, expediting even more failures 
in near future. Given that failures incur revenue losses 
and cause interruptions to service and economic activi-
ties, it becomes increasingly urgent to find better solu-
tions. Various financial, societal, and technical constraints 
make it infeasible to think of replacing aging WMs, which 
typically serves many residential, commercial, industrial 
and institutional consumers, and which consists of a vast 
network of interconnected pipelines, pumps, valves, regu-
lators and tanks. Thus, predicting near-future failures is of 
economic, social and environmental relevance.

This review provided a comprehensive overview of the 
methods proposed for predicting and minimizing the fail-
ures and their consequences. It has provided new insights 
into the knowledge gaps identified in the existing studies 
related to the applications of predictive and prescriptive 
analytics in water systems asset management. In spite of 
extensive research efforts over the past decades, the treat-
ment of imbalanced data, censoring and left truncation 
remains as key research gaps. The other gaps correspond 
to how to increase sustainability, reliability and resilience 
of WM systems through the use of predictive models and 
efficient rehabilitation planning.

Considering the literature and the identified gaps, this 
study proposed a failure analytics framework for WMs 
and discussed a number of avenues for future research. 

It is worthy to highlight that the quality of dataset could 
have a significant impact on the performance of predic-
tion models. To achieve this goal, this review recom-
mends that municipalities use advanced inspection 
technologies which result in establishing more accurate 
prediction models, leading in turn to more precise data-
drive prescription analytics that improve the reliability of 
WMs and create cost efficiency gains.
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