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Abstract 

Background  The biomarker diagnostic ratio analysis outlined by the European Committee for Standardization is con-
sidered the current gold standard in oil forensic analysis. However, it has a major limitation as an emergency response 
procedure in the case of a large scale oil spill due to the high number of samples collected, long GC/MS instrument 
run time, and the time-consuming data processing required. This current study utilized direct analysis in real time 
time-of-flight mass spectrometry to develop a rapid spilled oil screening method. An exploratory search of biomark-
ers and synthetic additives was conducted on reference oil samples of various types. To build a robust yet swift 
procedure for oil typing, specific heat maps were built with extensive reference sample modelling. These heat maps 
were then used to select relevant ions from which principal component analysis and discriminant analysis of principal 
component models were constructed to result in defensible oil classifications.

Results  The initial exploratory search of biomarkers and additives in the various reference oil samples resulted in 
promising preliminary matches. The heat map and multivariate statistical analysis oil typing method was applied to 
three unknown samples, all of which were classified accurately.

Conclusion  The merit of direct analysis in real time time-of-flight mass spectrometry on oil forensic was confirmed 
with the detected biomarkers compound class starting members and lubricating additives along with the successful 
application of heat maps and multivariate statistical analysis, providing a swift yet reliable screening tool for oil spill 
environmental monitoring and impact surveying.
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Introduction
In the face of climate change, there is an urgent need to 
transition to renewable resources as the primary means 
of energy. Unfortunately, oil is continuing to be widely 
used as a primary energy source due to its current 

perceived cost advantage, established infrastructure and 
wide versatility (U.S. Energy Information Administra-
tion (EIA): Oil and petroleum products explained: Use 
of Oil, 2022). The consequent high demand for oil leads 
to extensive extraction of crude oil and its transporta-
tion (more common usage in North America) to other 
locations. In Canada, over four million barrels of oil are 
transported annually via various means, including pipe-
lines, transport trucks, railway, and cargo ships (Gov-
ernment of Canada: Impact Canada—Oil Spill Response 
Challenge, 2022). With such a high volume of oil cargo, 
the chance of a disastrous oil spill within Canadian 
boundaries is elevated. In cases such as the port of Van-
couver, British Columbia, the marine gateway is located 
in a region of pristine natural waters alive with exotic 
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marine animals and wetland marshes that support migra-
tory birds and other wildlife (British Columbia, Ministry 
of Environment: Estuaries in British Columbia 2006). An 
oil spill in this, and other similar regions, could have pro-
found and even irreversible ecological consequences on 
the environment, which are only exacerbated by delays 
in identification and on-going monitoring (Brody et  al. 
2012; ClearSeas: Oil Spills in Canada 2022; Deepwater 
Horizon’s Impact on Wildlife 2022). When spilled oil is 
exposed to the environment, several types of weathering 
could occur, further hampering the ability of environ-
mental chemists to monitor and biologists to determine 
long-term effects (Chua et. al. 2021; Filewood et. al. 
2022a). Therefore, frequent oil spills of small and large 
scale require the development of rapid and reliable oil 
forensics tools to survey the scale, monitor the impact, 
and locate the source of the contamination.

Current oil spill forensic studies include several quali-
tative screening methods (Chua et  al. 2020a; Filewood 
et. al. 2022c). Currently, the method described in the 
European Committee for Standardization (CEN) EN 
15522–2 Oil Spill Identification guidelines is consid-
ered the gold standard for oil spill identification (Chua 
et. al. 2020a; Chua et. al. 2020b; Chua et. al. 2021; File-
wood et. al. 2022a; Filewood et. al. 2022b; Filewood et. al. 
2022c; McCallum et. al. 2023; Yang et. al. 2022; Yang et. 
al. 2017). The CEN method relies on biomarker ion ratio 
comparison between environmental samples and poten-
tial source oils. Biomarkers are compounds contained 
in oils that are particularly resistant to weathering (CEN 
2021; Filewood et. al. 2022a; McCallum et. al. 2023; Yang 
et. al. 2022; Yang et. al. 2017). Diagnostic ratios are ratios 
between biomarkers, and the CEN method contains 
78 standard ratios. For the spilled oil to be considered 
a match to source oil, a high number of those diagnos-
tic ratios should exhibit a difference of less than 14% 
compared to the same diagnostic ratios measured in the 
source oils. The CEN method, an internationally accepted 
technique, has demonstrated its ability to source spilled 
oil using  gas chromatography mass spectrometry (GC–
MS) and, more recently,  gas chromatography quadru-
pole time-of-flight (GC-QToF) instruments (CEN 2021; 
Filewood et. al. 2022b; McCallum et. al. 2023). Enhance-
ments of the diagnostic ratio analysis have incrementally 
increased its robustness through addition of biomarkers 
such as adamantanes, APAHs, and APASHs, APANHs 
and employing the use of multivariate statistics (Chua et. 
al. 2020b; Filewood et. al. 2022a; McCallum et. al. 2023). 
However, the diagnostic ratio methodology still has some 
limitations as an emergency response method (CEN 
2021; Wang and Stout 2007). Data processing is highly 
complex and involved, often requiring a level of exper-
tise that can only be found in a senior analyst (Chua et. 

al. 2020a; CEN 2021; Filewood et. al. 2022a, b; McCallum 
et al. 2023). Sample preparation is extensive and data col-
lection itself is slow with normally one hour GC–MS run 
time for each sample, making the diagnostic ratio analy-
sis a labour intensive and time-consuming process (Chua 
et. al. 2021; CEN 2021; Filewood et. al. 2022a; McCallum 
et al. 2023). Therefore, research into alternative fast and 
reliable screening techniques is urgently needed to sup-
plement the current biomarker diagnostic ratio analysis 
method.

Direct analysis in real time time-of-flight mass spec-
trometry (DART-ToF MS) offers a promising solution 
to this challenge. In contrast to diagnostic ratio analy-
sis, DART-ToF MS characterization requires little to no 
sample preparation and is capable of screening multiple 
samples in a short amount of time, allowing for instan-
taneous data results (Easter and Steiner 2014; Ezpinoza 
et. al. 2014; Lancaster and Espinoza 2012, Espinoza et. al. 
2015; Finch et. al. 2017; Lian et. al. 2017). In support of 
DART-ToF MS, the procedure has been used forensically 
to quickly screen and identify different wood species, 
drugs, and even sea turtle oil (Easter and Steiner 2014; 
Ezpinoza et. al. 2014; Lancaster & Espinoza 2012, Espi-
noza et. al. 2015; Espinoza et. al. 2021; Finch et. al. 2017; 
Lian et. al. 2017). DART-ToF MS compares two-dimen-
sional sample spectra to those of reference materials that 
can be used to form the basis of spectral library. Heat 
maps are used to visually show the compound presence 
and relative abundance of ions for samples in comparison 
to potential comparable references, in the present case, 
source oils (Price et. al. 2022). Heat maps generated using 
DART-ToF MS are typically coupled with machine learn-
ing algorithms and multivariate statistics to corroborate 
visual conclusions (Brunswick et. al. 2021; Price et. al. 
2022). For example, the wood identification protocol con-
sists of three steps: (1) a database match against the For-
eST (Forensic Spectra of Trees) database to identify the 
top matching species, (2) creation of a heat map followed 
by Principal Component Analysis for the top match-
ing species, and (3) Discriminant Analysis of Principal 
Components to determine the best assignment. Cluster 
analysis may provide confirming information (Price et. al. 
2022). Similar machine learning algorithms and statistical 
software have been used to assess mass spectral data by 
accurate unbiased selection of relevant species, for exam-
ple, in differentiating chemotypically similar wood spe-
cies (Price et. al. 2022). In wood identification, the value 
of the speed of DART-ToF MS analysis together with the 
ability to collate a library for different chemotypes, has 
proven an invaluable tool in forensic analysis (McClure 
et. al. 2015; Musah et. al.  2015; Paredes-Villanueva et. 
al. 2018; Price et. al. 2022). Considering the existence of 
large number of biomarkers in the crude oil and timber 
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products which DART/ToF MS wood species identifica-
tion is based on, we believe that DART/ToF MS could be 
used for oil forensics. Nevertheless, extensive literature 
search has yielded no result on this subject. The potential 
of this approach was a stimulating factor in the develop-
ment of an analogous procedure in the current study.

Herein, we proposed a novel approach to oil forensics 
screening employing DART-ToF MS. The current work 
involved extensive reference sample screening and build-
ing of oil type-specific heat maps to visually compare and 
identify oil types. Additionally, efforts were made for the 
identification of important biomarkers in the mass spec-
tra from DART-ToF MS. The current method develop-
ment was conducted to achieve three goals. The first goal 
was to use heat maps to develop a robust method for oil 
typing. The next goal was to do an exploratory search for 
biomarkers and additives present in various types of oils. 
The final aim was to confirm if the developed method 
could be used to match unknown samples to the correct 
type using heat map oil typing and the use of statistical 
analysis methods.

Materials and methods
Reagents and sample preparation
Dichloromethane (DCM) and methanol, OmniSolv 
grade, were purchased from VWR, (Mississauga, Can-
ada). Closed end borosilicate glass melting point capillary 
tubes were purchased from Fisher Scientific (New Hamp-
shire, United States).

Forty reference oil samples (Additional file 1: Table SI) 
were used for analysis in the current study. To simulate 
unknown samples, three oil samples were transferred 
to vials as quality assurance (QA) samples by a separate 
chemist. These samples were labelled QA1, QA2, and 
QA3 with the identities unknown to the primary ana-
lyst. All oil samples were diluted in DCM. For all crude 
oil, diluted bitumen, intermediate fuel oil, and heavy fuel 
oil, 0.1 mL of each oil was diluted with 10 mL of DCM 

and used directly. For diesel, jet fuel and lubricating oil, 
0.1 mL of each oil was diluted with 1 mL of DCM.

Exploratory search for biomarkers and additives
Select sample spectra of several compound classes 
(Table 1) were searched for potential distinguishing char-
acteristics including differences between biomarkers, 
molecular weight distributions, compound class compo-
sitions and lubricant additives. These compound searches 
were conducted using Mass Mountaineer and curated 
compound lists containing masses and compositions of 
each of the compounds. The lists containing biomarker 
compound classes and lubricant additives were uploaded 
to the program. The software was given parameters 
to account for H+ adducts, a tolerance of 5 mmu and a 
threshold of 1%. The algorithm parsed the sample spec-
tra to glean compounds of interest and then reported the 
relative abundance of the compounds present.

DART/ToF MS data acquisition
For DART-ToF MS oil sample analysis, closed-end capil-
lary tubes (1.5–1.8 ×90  mm) were dipped in oil sample 
and then held in the helium gas stream. Polyethylene 
glycol 600 (PEG 600) from Tokyo Chemical Industry 
(Tokyo, Japan) was used as the accurate-mass calibration 
standard and run before each sample to ensure correct 
peak reading. A DART-SVP ion source (IonSense, Sau-
gus MA USA) along with the AccuTOF-DART 4G mass 
spectrometer (JEOL USA, Inc., Peabody MA USA) were 
used to acquire spectra in positive ion mode. The DART 
source heater temperature was set at 400  °C. The mass 
spectrometer settings included are listed in Tables 2. The 
spectra were obtained over the mass range of m/z 70 to 
1000 at a spectral acquisition rate of one scan per second. 
The factory-preset helium flow rate for the DART-SVP 
source was used. Eight replicates for each oil sample were 
collected.

Table 1  Oils selected for exploratory search of biomarker compound classes and lubricant additives

Oil label Oil type Search conducted

QSPP Lubricating oil Biomarker compound classes; Lubricating additives

MD Diesel Biomarker compound classes

JET A1 Jet fuel Biomarker compound classes

IFO-180 Intermediate fuel oil Biomarker compound classes

ANS Crude oil/Diluted Bitumen Biomarker compound classes

HFO6303 Heavy fuel oil Biomarker compound classes

AWB Crude oil/Diluted Bitumen Biomarker compound classes

PVG Lubricating oil Biomarker compound classes; Lubricating additives

UNI Lubricating oil Biomarker compound classes; Lubricating additives
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Heat maps for oil typing
The extensive reference sampling consisted of 40 differ-
ent oil samples of seven distinct types of oils obtained 
from various sources (Additional file 1: Table S1). Spec-
tra were collected from eight replicates of each oil sample 
and used to build the heatmaps. The msAxel@LP Data 
Processing software was used to extract chromatograms 
and apply mass calibration to the spectra. From the 
msAxel@LP Data Processing software, the mass spectra 
were exported as text files for heat map generation. Heat 
maps are a graphical representation of raw data using 
colour intensity to depict relative abundance of the ions 
present (McClure et. al. 2015; Musah et. al.  2015; Pare-
des-Villanueva et. al. 2018; Price et. al. 2022). The x-axis 
represents the m/z values and along the y-axis, each row 
displays a different spectrum. As the relative abundance 
of an ion increases, the colour of the point representing 
the ion proportionally intensifies. Mass Mountaineer 
(massmountaineer.com) was employed to generate heat 
maps from multiple data sets. Heat maps for each oil type 
were collated and contained different sources of the oil 
type in an effort to assess the full character and variabil-
ity of the oil type. Heat maps were used to select relevant 
ions and build statistical models for further analysis.

Multivariate statistical analysis
Based on the heat maps generated, ions were selected to 
build statistical analysis models in Mass Mountaineer. 
Number of ions used for each statistical model of the 
different data sets is listed in Additional file 1: Table S3. 
Mass Mountaineer was used to discriminate oil sam-
ples by type using principal component analysis (PCA) 
scatterplots and discriminant analysis of principal com-
ponents (DAPC) modelling. Principal component analy-
sis was applied to determine whether there are innate 
class-dependent differences in the DART mass spectra. 
Qualitative identification of QA1, QA2, and QA3 was 
accomplished by using Discriminant Analysis of Prin-
cipal Components (DAPC) with 50 principal compo-
nents that covered 76.89% of the variance. Each model 
had a tolerance of 15 mmu. The accuracy of each model 
was tested with external validation. External validation 

was conducted by randomly reserving 30% of the refer-
ence sample files from the training set, recalculating the 
model, and treating the removed spectra as unknown 
samples. The assessments derived from DAPC were com-
pared to classifications of the QA samples assigned by the 
discriminant analysis of principal components models.

Results and discussion
Exploratory search of biomarkers and additives
The classic biomarker diagnostic ratio method is con-
sidered the gold standard in oil forensics due to its 
robustness and repeated success (Chua et. al. 2020a, 
b; Chua et. al. 2021;  CEN 2021; Filewood et. al. 2022a, 
b, c; McCallum et. al. 2023). However, this procedure 
requires time-consuming GC-MS analysis followed by 
visual assessment of chromatography and application of 
forensic diagnostic ratio analysis. The process would be 
enhanced by the ability to perform a preliminary rapid, 
qualitative analysis to confirm the presence of recognized 
biomarkers. The presence or absence of biomarkers con-
stitutes the foundation of the diagnostic forensic ratio 
approach, with ability to not only distinguish between oil 
types, but also as an indication of weathering. The cur-
rent study was able to explore the use of DART/ToF MS 
and Mass Mountaineer to search biomarker compounds 
from the reference oil samples.

To perform this exploratory search, a list of common 
biomarker compound classes was curated (Additional 
file  1: Table  S2b) and used by the Mass Mountaineer 
software to identify these classes in sample spectra 
from their exact masses. In Fig. 1, the search of a MD 
reference sample yielded biomarker classes diaman-
tane, adamantane, anthracene or phenanthrene, and 
pyrene or fluoranthene starter compounds. Additional 
file  1: Figs. S10, S11, S12, S13, S14, S15, S16, S17, S18 
contain a list of all the oils searched for biomarker 
compound classes as well as the relative abundances of 
the compounds found in each sample spectrum. Over-
all, several biomarker groups were identified across oil 
types successfully in this exploratory search. A simi-
lar approach was applied to lubricating oils to iden-
tify common lubricant additives in three lubricating 
oils (Additional file 1: Figs. S10, S17, 18) to explore the 
possibility of using additives to help identify spilled 
lubricating oils. Like the exploratory search for bio-
markers, the exploratory search for lubricant additives 
was successful as additives were identified in all three 
of the lubricating oil spectra that were subjected to this 
process.

Oil type‑specific heat map comparison
Figure 2 summarizes the observed chemotypes for each 
oil type. Heat maps, as visual representations, provide a 

Table 2  AccuTOF-DART 4G mass spectrometer parameters

Parameter Description Set Value

Ring lens voltage 5 V

Orifice 1 voltage 20 V

Orifice 2 voltage 5 V

Orifice 1 temperature 120 °C

Ion guide voltage [RF] 500
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swift means of determining patterns and differences that 
exist within the same and different oil types. For instance, 
heat maps can visually confirm the reproducibility of 
chemical fingerprints collected from various reference 
materials (Easter and Steiner 2014; Ezpinoza et. al. 2014; 
Lancaster and Espinoza 2012, Espinoza et. al. 2015; Finch 

et. al. 2017; Lian et. al. 2017). Further heat maps are pro-
vided in Additional file  1: Figs. S19, S20, S21, S22, S23, 
S24, S25 showing spectra obtained from duplicates of the 
same oil reference with similar relative abundances.

From the collated heat map, lubricating oils were 
shown to be most unique and its chemotypes were 

Fig. 1  Spectra of marine diesel with identified compound classes highlighted in red (Ions identified from left to right: 94: Aniline + H; 131: 
Dihydronaphthalene + H; 137: Adamantane + H; 163: Iceane + H; 189: Diamantane + H; 203: Pyrene, fluoranthene + H)

Fig. 2  Positive ion heatmap of different types of oils shows the similarities of chemotypes of oil references within the same type. Heatmap also 
provides a tool to differentiate oils based on type, though some oil types are difficult to distinguish visually. Oil spectra are organized by type, 
indicated by the coloured lines above them and the legend
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clearly distinct from all other types of oil (Fig.  2). The 
shared characteristic pattern of lubricating oils may be 
due DART-ToF MS being more sensitive to the lubricant 
additives in the base oils (Easter and Steiner 2014; Ezpi-
noza et. al. 2014; Lancaster and Espinoza 2012, Espinoza 
et. al. 2015; Finch et. al. 2017; Lian et. al. 2017). Similarly, 
jet fuel and diesel were also fairly distinct from the other 
oil types though they populated the same m/z range as a 
type. The distinctness of jet fuel and diesel is likely due to 
the extensive refining process that they are subject to. Of 
interest was that diluted bitumen (dilbit) was not as obvi-
ously visually distinct from crude oil (Fig. 2). These simi-
larities are expected given that the components of crude 
oil and diluted bitumen are the same (The science of 
diluted bitumen (Ask NRCan), 2023). Due to these com-
positional similarities, dilbit and crude oil were treated as 
the same oil type for the purposes of this study (referred 
to as crude/dilbit). The chemotypes obtained from heavy 
fuel oil (HFO) and intermediate fuel oil (IFO) were simi-
lar and difficult to distinguish based on visual compari-
son alone (Figs. 2).

Spectra of the quality assurance samples are dis-
played  in Fig.  3.  A heat map of the three QA samples 
(Fig. 4) was visually compared to the oil type heat maps 
before any further analysis. The first quality assurance 
sample, QA1, contained ions with a similar range and 
relative abundancies as the heavy fuel oil and interme-
diate fuel oil reference samples (Additional file  1: Figs. 
S19, S24). It also had a range similar to diesel, though the 
relative abundancies of most of the diesel spectra for the 
higher m/z values were lower in diesel than they appear 
to be in QA1, making diesel a less likely type match. 
QA2’s chemotype shared the most similarity with the 
crude/dilbit spectra in terms of range of ions and relative 
abundance (Additional file 1: Figs. S20, S25). In the case 
of QA3, the m/z range of ions and the observed relative 
abundancies in QA3 were only observed in the crude/
dilbit chemotypes and in none of the other oil types 
included in this study. In this case, QA2 and QA3 could 
be classified based on the type-specific heat maps alone. 
While QA1 could not be definitively classified based on 
the heat map alone, the use of heat maps narrowed down 
its type, thus demonstrating the screening potential of 
heat map comparisons. As seen with the QA samples, 
results using the rapid visual assessment by heat maps are 
intuitive but classifying certain oils by type may require 
more complex analysis i.e. the visual comparison may not 
be legally defensible in some cases. To overcome this lim-
itation, multivariate statistical modelling methods were 
applied. 

Multivariate statistical analysis
Principal component analysis (PCA) and discriminant 
analysis of principal components (DAPC) has been 
extensively used in forensic analysis for oil data obtained 
from GC-QToF MS (Filewood et. al. 2022a, b, c; McCal-
lum et. al. 2023) and DART-ToF MS wood identification 
(Easter and Steiner 2014; Ezpinoza et. al. 2014; Lancaster 
& Espinoza 2012, Espinoza et. al. 2015; Finch et. al. 2017; 
Lian et. al. 2017) with promising results. PCA is an unsu-
pervised classification method (Abdi and Williams 2010) 
that reduces the complexity of multidimensional data by 
transforming the measured values into a smaller number 
of “principal components” that cover the largest amount 
of variance in the data (Abdi and Williams 2010). The 
first principal component accounts for the most variance 
and the subsequent principal components are chosen to 
be orthogonal to the first principal component (Abdi and 
Williams 2010). DAPC relies on variables generated dur-
ing PCA, i.e., the principal components, to maximize the 
separation of elements from the data set (Jombart et. al. 
2010). In the current study both tools were used as sec-
ond-tier investigation for oil typing identification.

The statistical approach employed in this study was 
based on the pattern recognition observed from the oil 
type-specific heat maps. Oil typing using multivari-
ate statistical models was conducted in two levels. The 
first level involved differentiating oils into the following 
classes: HFO/IFO, Crude/Dilbit, Diesel/Jet and Lubri-
cating. Lubricating oils were clearly distinguished by 
their characteristic additive compositions and would be 
considered a final classification. Similarly, if an oil was 
predicted to be crude/dilbit, the oil-typing would be con-
sidered complete as well. Otherwise, the sample would 
undergo the second level of statistical analysis. For exam-
ple, if an unknown sample was classified as HFO/IFO 
during the first level of analysis, the second level of analy-
sis would consist of building a model using only HFO and 
IFO reference samples.

Principal component analysis (PCA) scatter plots of 
seven types of oil (Fig. 5) display clustering that corrobo-
rates the visual comparison of type-specific heat maps. 
The PCA scatter plot in Fig. 5 of the four classes of oils 
exhibit four separated clusters. This separation demon-
strated that this method can differentiate among these 
four classes of oil types. Most of the lubricating (lube) 
oils along with the diesel oil/jet oil class form especially 
compact clusters. Though still separated from the other 
oil type classes, the crude/dilbit class and heavy fuel 
oil/ intermediate fuel oil display relatively large vari-
ance within each data set. A 3D version of this PCA plot 
can be found in the SI. Discriminant analysis was car-
ried out with 74 principal components which contained 
most of the variance at 78.93% (the number of principal 



Page 7 of 12Tikkisetty et al. Environmental Systems Research            (2023) 12:5 	

components was chosen to cover >  = 70% of the vari-
ance but less than 100% to avoid overfitting). Additional 
file 1: Table S3 shows the principal components and vari-
ance covered by all models. The scatterplot generated by 
DAPC also exhibited four distinct clusters representing 
the type oil type classes (Fig. 6) with improved separation 
relative to the PCA plot.

The DAPC model was externally validated to meas-
ure its accuracy for oil classification. The accuracy of the 
DAPC model was 96.90%. This score suggested that the 

model predicted sample types with high accuracy and 
was highly reliable for classifying oils into one of the four 
oil types, i.e., diesel/jet, crude/dilbit, HFO/IFO, and lube 
oils.

To conduct the initial oil typing classifications of the 
QAs, a PCA plot was first established to determine the 
relation of the QAs to the reference oils (Fig.  7). Visual 
inspection of the PCA plot indicates the likely classi-
fication for each QA sample oil. Clearly, QA1 was clus-
tered with HFO/IFO, making it likely to be the correct 

Fig. 3  Spectra of QA1, QA2 and QA3



Page 8 of 12Tikkisetty et al. Environmental Systems Research            (2023) 12:5 

classification. From Fig. 7, it was also apparent that both 
QA2 and QA3 were crude oils/diluted bitumen. Figure 8 
also shows that the plot generated with DAPC produced 
five clearly distinct clusters. Similar to the PCA plot, QA1 
was clustered with the HFO/IFO date set and QA2 clus-
tered with the crude/dilbit data set. QA3 formed its own 
cluster, but it was closest in proximity to the crude oil/
dilbit cluster. The subsequent automatic predictions by 
the DAPC model confirmed these visual classifications 
for the unknown oil samples.

The discriminant analysis of principal component 
models was validated (Additional file  1: Table  S4) and 
automatically assigned each QA to one of the crude/dil-
bit, diesel/jet, HFO/IFO and lube oil classes. QA1 was 
classified as HFO/IFO while QA2 and QA3 were classi-
fied as crude/dilbit. The results for each the classification 
for each replicate are available in Additional file 1: Tables 
S5, S6. For the DAPC model, the average confidence for 
the QA1, QA2 and QA3 classifications were 100%, 100%, 
and 100% respectively. This confirmed the conclusion 

Fig. 4  Positive ion heat map containing chemotypes of QA1, QA2 and QA3 replicates

Fig. 5  Two-dimensional principal component analysis scatterplot of reference oil samples. Each reference sample is represented by a point
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Fig. 6  Discriminant analysis of principal components of the reference oils

Fig. 7  Two-dimensional PCA plot with QAs with 2-sigma ovals

Fig. 8  DAPC plot of QAs in relation to the diesel/jet, lube, crude/dilbit and HFO/IFO clusters
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from the inspection of the PCA plot generated (Fig.  7). 
Since QA2 and QA3 both classified as crude/dilbit, their 
classification was complete. With these initial classifica-
tions complete, QA1 could undergo final typing with the 
next level of multivariate statistical analysis.

Diesel/jet and HFO/IFO PCA plots (Additional file  1: 
Figs. S26, S27, S28) showed recognizable separation 
between the oil types and indicate that these models 
can distinguish between oil types, even they were rela-
tively closely related. According to the PCA plot in Figure 
S35, QA1 was a heavy fuel oil contained within the HFO 
cluster.

The automatic DAPC modelling were used to assign 
the final consensus oil type prediction for the QA1 sam-
ples. The DAPC model classified 87.5% of QA1 samples 
as a heavy fuel oil. This classification was treated as the 
final assignment for the oil typing of QA1. A summary 
of the QA sample oil type classifications are shown in 
Table 3. The confidence of the heavy fuel oil assignment 
for QA1 was averaged to be 94.12%, 100% for the crude/
dilbit QA2 assignment, and 100% for the QA3 crude/dil-
bit assignment. The full prediction results are shown in 
Additional file  1: Table  S6. In general, these confidence 
scores were very high and, coupled with the principal 
component analysis plot inspection and the heat map 
analysis, allowed for reliable typing of the unknown sam-
ples. The oil typing of QA1, QA2, and QA3 were con-
firmed to be accurate by the secondary chemist who 
prepared the samples once the analysis was complete. 

Conclusion
The potential for direct analysis in real time time-of-flight 
mass spectrometry as an oil forensics tool was demon-
strated. DART/ToF MS data was automatically searched 
for biomarkers and additives, demonstrating its abil-
ity to identify these compounds. A systematic approach 
to oil typing using DART/ToF MS was also developed. 
Three unknown samples were visually compared to oil 
type-specific heat maps that were built using extensive 
reference sampling. To provide conclusive oil type clas-
sifications, multivariate statistical analysis was applied in 
two stages. First, discriminant analysis of principal com-
ponents was used to assign blind QA1, QA2 and QA3 to 
one of four classes: heavy fuel oil/intermediate fuel oil, 

diesel/jet fuel, crude oil/ diluted bitumen and lubricating 
oil. At this stage, QA2 and QA3 were both confirmed to 
be crude oil/diluted bitumen. The second stage of statis-
tical analysis involved using DAPC to accurately identify 
QA1 as a heavy fuel oil.

A DART/ToF MS oil forensics approach was developed 
to provide a rapid technique to supplement the reliable 
but time-consuming classic CEN biomarker diagnostic 
ratio method. Overall, this study successfully achieved 
three main goals: (1) to perform an exploratory search 
of biomarkers and lubricant additives on reference oil 
samples (2) to build oil type-specific heat maps for initial 
oil screening and statistical modelling and (3) to apply 
heat map-based oil typing and statistical tools to three 
unknown samples.

In the case of oil spills, prompt analysis is critical for 
minimizing long-term ecological damage. Oil typing is 
the important first step in oil forensic analysis to iden-
tifying the source of the spilled oil. The development of 
a novel, rapid approach to oil typing using DART/ToF 
MS and its successful application in this study reveals 
the potential of DART/ToF MS to fill a current gap in 
oil forensics. Further research is being carried out by 
the current authors on using DART/ToF MS to rapidly 
analyse large number of oil spill environmental water 
samples.
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Analysis of Principal Components classifications of QAs into lubricat-
ing oil, crude oil/diluted bitumen, heavy fuel oil/intermediate fuel oil 
and diesel/jet fuel.Table S6. Final Oil typing results. Figure S1. Spectra 
of QSPP (Lubricating oil). Figure S2. Spectra of MD (Diesel). Figure S3. 
Spectra of JET A1 (Jet Fuel). Figure S4. Spectra of IFO-180 (Intermedi-
ate Fuel Oil). Figure S5. Spectra of WCS (Crude Oil/Bitumen). Figure S6. 
Spectra of HFO6303 (Heavy Fuel Oil). Figure S7. Spectra of AWB (Crude 
Oil/ Diluted Bitumen). Figure S8. Spectra of PVG (Lubricating Oil). Figure 
S9. Spectra of UNI (Lubricating Oil). Figure S10. Spectra of QSPP with 
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of all extracted compounds are listed. Figure S11. Spectra of MD with 
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of all extracted compounds are listed. Figure S12. Spectra of IFO with 
identified compound classes highlighted in red. Relative abundances 
of all extracted compounds are listed. Figure S13. Spectra of WCS with 
identified compound classes highlighted in red. Relative abundances 
of all extracted compounds are listed. Figure S14. Spectra of HFO with 
identified compound classes highlighted in red. Relative abundances 
of all extracted compounds are listed. Figure S15. Spectra of AWB with 
identified compound classes highlighted in red. Relative abundances 
of all extracted compounds are listed. Figure S16. Spectra of PVG with 
identified compound classes highlighted in red. Relative abundances 
of all extracted compounds are listed. Figure S17. Spectra of UNI with 

Table 3  Summary of final oil type classifications of quality 
assurance samples

QA Label Predicted type Actual type

QA1 HFO HFO

QA2 Crude/Dilbit Crude/Dilbit

QA3 Crude/Dilbit Crude/Dilbit
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identified compound classes highlighted in red. Relative abundances of all 
extracted compounds are listed. Figure S18. Intermediate Fuel Oil Heat-
map. Figure S19. Crude Oil Heatmap. Figure S20. Jet Fuel Oil Heatmap. 
Figure S21. Lubricating Oil Heatmap. Figure S22. Diesel Heatmap. Figure 
S23. Heavy Fuel Oil Heatmap. Figure S24. Diluted Bitumen Heatmap. 
Figure S25. Three dimensional PCA plot for classes: Diesel/Jet, Lube, 
Crude/Dilbit and HFO/IFO. Figure S26. Two-dimensional discriminant 
analysis of principal components plot for classes: Diesel/Jet, Lube, Crude/
Dilbit and HFO/IFO. Figure S27. PCA plot of dilbit and crude reference 
data. Figure S28. PCA plot of HFO and IFO reference data. Figure S29. 
DAPC plot of dilbit and crude oil reference data. Figure S30. DAPC plot 
of jet fuel and diesel reference data. Figure S31. DAPC plot of heavy fuel 
oil and intermediate fuel oil reference data. Figure S32. Positive ion heat 
map of QA1 compared to intermediate fuel oil and heavy fuel oil reference 
data. Figure S33. Positive ion heat map of QA2 compared to crude oil and 
diluted bitumen reference data. Figure S34. Positive ion heat map of QA3 
compared to crude oil and diluted bitumen reference data. Figure S35. 
PCA of QA1 compared to intermediate fuel oil and heavy fuel oil reference 
data. Figure S36. PCA of QA1 compared to intermediate fuel oil and 
heavy fuel oil reference data.
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