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Abstract 

Background: The global changes that are currently threatening the natural environment demand appropriate 
answers and solutions by the environmental science community. The increasing amount of heterogeneous data—Big 
Data—needed for that endeavor typically requires large computational and storage resources. This manuscript pre-
sents a general conceptual model for easily porting environmental applications on different parallel and distributed 
infrastructures.

Results: We developed the conceptual model for a general environmental application and illustrate it through a 
use case on hydrological modeling. We also positioned this concept in a general methodology that will be used for 
efficiently porting applications on different computing environments.

Conclusion: The proposed conceptual model of an environmental application facilitates and simplifies not only the 
understanding of the structure of the application but also the general execution flow and the data flow. It provides a 
platform-independent, flexible and convenient way to execute the described application in a heterogeneous com-
puting environment.
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Background
At the beginning of the 21st century, global changes 
linked to climate, biodiversity and habitat loss, environ-
mental degradation and pollution, are threatening our 
natural environment and the human society at large, 
with already tangible negative outcomes [see Climate 
Change 2014 Synthesis Report—IPCC (2014)]. Intensi-
fied droughts, ocean acidification, global sea level rise, 
increases in frequency of extreme weather events and 
glaciers melting are examples of such outcomes that are 
thought to intensify if appropriate international policies 
are not endorsed and applied.

Responding effectively to all these complex changes has 
become an important challenge for policy makers, but 
also for the scientific community that demands access to 

continuously increasing quantities of heterogeneous data 
and resources [see e-IRG Report on Data management—
ESFRI (2009)]. Scientists need to understand the inter-
linkage between natural phenomena and human-induced 
activities and an important aspect for achieving this is the 
accessibility and processing of environmental data from 
various disciplines and geographic scales (local, regional, 
national and global).

Turning this data into knowledge is not an easy task, 
especially when locating and accessing the right resources 
(e.g. data, information, tools and services which can be 
information about the state of the Earth, relevant ser-
vices, project results, applications, etc.) is done in a very 
scattered way through different state organizations, oper-
ators, service companies, data catalogs, scientific insti-
tutes, etc.

In the domain of Earth and environmental science 
there is an unprecedented avalanche of data due to a large 
extent to the fast evolution and availability of sensor/
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detector technologies. The advances in IT that enabled 
the capture, analysis and storage of massive amounts of 
data contributed also to this avalanche of data. The so-
called “digital data deluge” is a phenomena caused not 
only by the ease with which these large quantities of new 
data can be created but also by the output of re-analysis 
of already existing archived data [e-IRG Report on Data 
management—ESFRI (2009)]. This phenomenon is con-
siderably changing the way science and research is being 
conducted in many disciplines as they are dealing with 
unprecedented sizes of data that needs massive com-
puting capacities to handle it. The concept of “Big Data” 
emerged in this context.

Big Data are usually defined not just as massive data 
sets but also as data having very complex and varied 
structures, making further actions (e.g., storage, analy-
sis, visualization, processing) very difficult. New satel-
lite, airborne and ground-based remote sensing systems 
characterized by high spatial, temporal and radiometric 
resolution are, or will be soon, available. With the launch 
of three families of Sentinels satellites, Copernicus will 
be producing for example, 8 TB of Earth Observation 
data per day (approximately 3000 TB per year) [Big Data 
Workshop—Copernicus (2014)], which will lead to an 
increase of data volume, diversity and also value. Based 
on this, the main characteristics of Big Data are gathered 
around the “5V” (Demchenko et al. 2012):

  • Volume: available amount of data;
  • Velocity: rate of data collection;
  • Variety: the variety of sources producing Big Data 

but also the implementation of services dealing with 
these different types of data;

  • Veracity: validity and accuracy of the data must be 
taken into account considering that data sources can 
be of different qualities, especially when it comes to 
coverage, accuracy and timeliness;

  • Value: how meaningful the row data is and how valu-
able is the obtained information (the main purpose of 
Big Data is to produce meaningful Small Data).

Big Data is already embedded in environmental sci-
ence studies and is mainly produced by three important 
sources (Yang and Huang 2013): (1) From the impres-
sive array of sensors that are placed in space (via remote 
sensing satellites) and in situ, used to measure and moni-
tor weather, precipitations, vegetation, land cover, water 
quality, as well as other geophysical parameters. These 
collections of data sets satisfy all the characteristics of 
Big Data (the 5 Vs). (2) From the various scientific model 
simulations used for predicting physical phenomena. Cli-
mate change for example can be considered one of the 
largest use cases of scientific modeling and simulations. 

Nowadays climate simulation can be run on a daily basis 
with increasingly higher horizontal (hundreds of meters 
rather than tens of kilometers) and vertical (more model 
layers in the atmosphere) spatial resolution, as well as 
higher temporal resolution (minutes or hours rather 
than days or weeks). The update of these models is done 
more frequently and with much higher quantities of new 
data. Therefore the amount of data coming out of these 
simulations is very large, reaching typically petabytes of 
data from just one simulation. Based on this we can con-
clude that this data can as well be considered Big Data. 
(3) From data assimilation, the process by which mod-
els are updated with the latest observational data to be 
able to correct and validate the assumptions made in the 
model due to different factors like missing parameters, 
incorrect data, etc. Analysis of this Big Data can give 
unprecedented possibilities for better decision making 
for understanding and mitigating the effects of climate 
changes.

Nativi et al. (2015) emphasize the Big Data challenges 
in Global Earth Observation System of Systems—GEOSS 
(GEO 2005)—and particularly its common digital infra-
structure (GEOSS Common Infrastructure—GCI). The 
presented challenges can be identified along all the Big 
Data dimensionalities: volume, variety, velocity, veracity 
and visualization.

Environmental data are most of the time spatially refer-
enced (i.e., referring to a geographic location) and as such 
belongs to geospatial data or geodata. Geospatial data 
describes geographical locations by giving attributes/
information about their spatial and/or temporal extents 
(Giuliani et al. 2011). The amount of geospatial data has 
grown dramatically in the last 30 years mostly due to the 
rapid progress of communication means, as well as tech-
nologies to capture this type of data (e.g., GPS, sensors, 
satellites). Geospatial data is typically voluminous, com-
plex, heterogeneous and geographically distributed. All 
these attributes make it generally difficult to access, share 
and distribute geospatial data, often with challenges 
to combine it with other types of data sets. Nowadays 
geospatial data is used and analyzed most of the times 
within a Geographical Information System (GIS) that 
has capabilities such as assembling, storing, manipulat-
ing, displaying, and merging data from different sources 
(Giuliani et al. 2011). In environmental sciences, GIS can 
be used in conjunction with Spatial Data Infrastructures 
(SDIs) that are widely used to share, discover, retrieve 
and visualize geospatial data through standardized ser-
vices [e.g., Open Geospatial Consortium services—OGC 
(1994)]. SDIs are therefore more than just data reposi-
tories, although suffering from limited analytic capabili-
ties. Making use of GIS and SDI, a wealth of geospatial 
applications, technologies and initiatives have emerged 
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recently in order to handle the increasing amount of 
environmental data, and to extract useful information 
out of it.

IBM for example, offers free supercomputing hours 
in the World Community Grid (http://www.worldcom-
munitygrid.org/) for researchers who are analyzing and 
studying climate change. Google has also donated 1000+ 
terabytes of cloud storage for satellite observations 
and climate models. After the White House’s Climate 
Data Initiative (https://www.whitehouse.gov/the-press-
office/2014/03/19/fact-sheet-president-s-climate-data-
initiative-empowering-america-s-comm), in March 2014 
a large amount of climate data has been made public from 
different organizations and agencies (NOAA, NASA, US 
Geological Survey, US Department of Defense). The goal 
of this was to encourage data providers, scientists and 
the public in general to share data and make use of the 
obtained information. From March to June 2014, ESRI 
hosted the Climate Resilience App Challenge (http://
www.esri.com/software/landing_pages/climate-app) for 
governments, private industries and non-profit organiza-
tions to submit climate resilience applications. The num-
ber of useful submissions, addressing different aspects of 
climate change, was outstanding. In May 2014 the United 
Nations started a new initiative on climate change—the 
Big Data Climate Challenge (http://unglobalpulse.org/
big-data-climate/)—that aims to use Big Data for sup-
porting climate change actions, i.e. “to bring forward 
data-driven evidence of the economic dimensions of cli-
mate change”.

Applications that are used to solve different environ-
mental issues, use specific data as input and produce 
outputs that are useful for the Earth and environmen-
tal community at large can be labeled as “environmental 
science applications” (or simply “environmental appli-
cations” hereafter). Since the 1990s, the number and 
diversity of environmental applications have increase 
dramatically. Many software systems were developed to 
integrate data coming from various thematic areas such 
as agriculture and soil science, ecology, terrain modeling, 
hydrology, land use/land cover, population distribution, 
education and health planning, energy resources, etc. The 
specificity of the majority of these environmental applica-
tions is the requirement of large computational and stor-
age resources due to the massive amount of input and/or 
output data that is typically due to a combination of high 
spatial and temporal resolutions. Other reasons for high 
performance requirements include also the utilization 
of compute-intensive algorithms, the execution of large 
number of scenarios, the urgent need of responses, etc. 
Different parallel and distributed infrastructures, such as 
Grids, Clouds, and High Performance Computing (HPC) 

systems can satisfy the necessary requirements for run-
ning these applications (Nativi et al. 2013).

Despite the popularity of Big Data nowadays and the 
existence of solutions to handle the afferent challenges 
(with respect to storage, management, interoperability, 
governance and analysis), putting these solutions into 
practice is still a time consuming endeavor. Big Data stor-
age management is indeed among the most important 
challenges for computing environments since many data 
intensive applications usually involve a high degree of 
data access locality. Data locality is thus a key aspect in 
providing performance for Big Data processing as trans-
ferring such large amounts of data would considerably 
slow down the process. Typical high performance com-
puting systems did not take data locality into considera-
tion as they used to focus on performing CPU-intensive 
computations over a moderate to medium volume of data 
(Assuncao et  al. 2015), where the ratio of data transfer 
between the computing units to processing time is still 
small. Considering the context of Big Data, this solution 
is in most of the cases inefficient. The alternative is to 
move the computation as close as possible to where the 
data is. Existing parallel and distributed infrastructures 
already have built in mechanisms for efficient transfer of 
data among the computing units, although, considering 
the increasing volume of data we are dealing with, this 
option is no longer efficient. In (Assuncao et al. 2015), the 
authors argue different existing and on-going solutions 
for dealing with data locality in Cloud environments; 
similar initiatives are carried for other computing infra-
structures such as Grid (Kumar and Bawa 2012).

Considering all the efforts of computing infrastruc-
tures to keep up with the increasing demands of Big 
Data, parallelism and distribution are still good solu-
tions to efficiently execute data intensive applications. 
Some examples of environmental applications taking 
advantage of the capabilities offered by parallel and dis-
tributed infrastructures are those using parameter esti-
mation, model calibration (Vrugt et  al. 2006; gSWAT 
2011), Web Processing Service on the Grid (Giuliani et al. 
2012), numerical weather prediction (Maity et al. (2013)) 
and satellite images workflows over the Grid (GreenLand 
2011).

The choice of the appropriate parallel or distributed 
infrastructure depends on the application features, data 
model, and processing requirements of the environ-
mental application. To run on one or several of these 
distributed or parallel infrastructures (i.e., an hetero-
geneous computational environment), the application 
has to be modified to have a particular structure or 
to use particular programming interfaces for access-
ing the resources of the infrastructures. This is typically 
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done without knowing too much details about the final 
infrastructure(s) on which the application will run.

However, to our knowledge there is no convenient tool/
framework to allow a user to easily express and control 
the execution of an environmental application in a het-
erogeneous computing environment, without having 
expertise in sophisticated workflow systems or con-
trol of the backend functionality. The main goal of this 
manuscript is to fill that gap and to propose a concep-
tual model of environmental applications, which will be 
a key component in a general methodology for porting 
these applications on different parallel and distributed 
infrastructures. The conceptual model facilitates and 
simplifies not only the understanding of the application 
structure but also the general execution on different com-
putational platforms. It provides a platform-independent, 
robust, convenient and easy way to use a mechanism that 
allows a user to execute an application on a heterogene-
ous computing environment, and as such provides a first 
step towards the automation of this process.

Figure 1 shows the overall conceptual model architec-
tural context and the goal of our final methodology.

The methodology consists in proposing solutions to 
easily and efficiently port and execute environmental 
applications on different parallel and distributed infra-
structures, using the conceptual model proposed in this 
manuscript. The main steps in this general methodology 
are: (1) conceptualize the environmental application (i.e. 
create the conceptual model), (2) instantiate the concep-
tual model with specific application data, (3) collect user 
specifications (data formats, application type, execution 
preferences, etc.), (4) check for similar executions per-
formed in the past (history), (5) execute the application, 
and (6) collect the results. The execution of the applica-
tions and the selection of the computing environment(s) 
can be done automatically by a Mediator component, 
based on a complete conceptual model as well as on 
application related information provided by the user and 
other useful information such as availability of comput-
ing environments, previous execution history of the 
application, etc.

The development of this general methodology is still a 
work in progress. The purpose of the current manuscript 
is to detail the Conceptual Model which is a key compo-
nent in this methodology.

The final methodology, based on the proposed con-
ceptual model, will bring important contributions to the 
environmental science community but also to the parallel 
and distributed computation field. Despite the fact that 
the conceptual model is based on environmental appli-
cations experiments, it is flexible enough to be reused in 
other scientific areas. The simultaneous usage of different 
computational infrastructures is still a research challenge 

due to the complexity of each individual infrastructure 
but also due to the complexity of the interoperability 
between them.

Environmental science applications
Environmental science is a multidisciplinary field that 
integrates physical, biological and information sciences 
to study together the systems, the problems and the 
solutions of the environment. In the beginning of envi-
ronmental science in the 1960s, the scientific commu-
nity was more focused on disciplines, trying to develop 
knowledge in particular fields (such as geology, ecosys-
tems, hydrology, etc.) but in the 1980s it became more 
and more obvious that these disciplines are strongly 
connected and the scientific community started to study 
them as interacting elements in a single big system (Doz-
ier 2009). After this shift, it was easier to understand 
complex, system-oriented phenomena that link concepts 
from different fields (climate change involves atmos-
pheric science, biology, human behavior, etc.) but also to 
understand and make a better use of the collected data 
(such as these coming from satellite observations). The 
growing understanding of these complex processes lead 
also to the development of new models. The knowledge 
gathered mainly for scientific understanding, begins to 
be used more to support practical decisions and actions, 
redirecting the environmental science to environmen-
tal applications. The role between basic science and 
applications is emphasized by the societal needs. After 
collecting and analyzing the gathered information, the 
community needs also a more fundamental, process-
based understanding of the phenomena—a science of 
environmental applications. This science is guided more 
by societal needs than by scientific curiosity, focus-
ing more on specific actions as well as on their conse-
quences (Dozier 2009).

In environmental science there is data that is consid-
ered “independent” and data considered “dependent” . 
The “independent” variables are the ones being manipu-
lated and selected to determine its relationship to an 
observed phenomena. These are normally the input vari-
ables that are observed in its naturally occurring varia-
tion. The “dependent” variables are the observed results 
of the independent variables and are usually the output 
variables that cannot be directly controlled. The distinc-
tion of dependent and independent data is done by the 
researcher and by the context in which it is applied. Now 
considering the form of the response (dependent) envi-
ronmental data, we can specify several types of data: 
continuous data (such as temperature, mass, distance), 
counts (simple—the number of plants infected by a dis-
ease, or categorical—the number of infected plants clas-
sified into tree species and town), proportions (such as: 
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percent mortality, sex ratio), binary data (ex: alive or 
dead, present or absent), time to death/failure (ex. the 
time it takes juveniles to disperse out of the study area), 
time series (such as temperature data measured at fixed 
intervals, river discharged measured over time) and cir-
cular (ex: day of the year). A detailed description of all 
these types is done by Piegorsh and Bailer (2005), and in 
(Environmental Data Analysis 2005). There are also many 
de-facto standards for delivering environmental data 
such as: HDF (Hierarchical Data Format), HDF-EOS, 
NetCDF (network Common Data Form), NetCDF-4, 
XML with initiatives such as GML (Geography Markup 

Language), CSML (Climate Science Modeling Language), 
ESML (Earth Science Markup Language), etc.

Conceptual modeling
Conceptual modeling is the activity of formally describ-
ing properties and actions of the physical and social 
world, with the purpose of better understanding, com-
municating and visualizing these properties and actions. 
The descriptions that arise from conceptual modeling 
are meant to be used both by humans and machines. The 
approach of conceptual modeling was first associated to 
semantic data modeling, but it soon found applications in 

Fig. 1 Conceptual model architectural context
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many other fields such as modeling organizational envi-
ronments, modeling software development processes 
or even modeling different parts of the world for better 
human communication and understanding (Mylopoulos 
1992).

Conceptual models, mostly graphical, are used to rep-
resent both static and dynamic phenomena and they usu-
ally play an important role in communication between 
developers and users, for example for understanding of 
a new domain, providing a good documentation or pro-
viding input during the design process. High quality con-
ceptual models also enable early detection and correction 
of errors (Wand and Weber 2002). A conceptual model is 
always an approximation, with different levels of details, 
of the real world system being modeled. It is a physical, 
mathematical or logical representation of a system, phe-
nomenon or process and serves as a representation of an 
event/thing that is real or deliberately created. A model is 
thus produced by abstracting from reality a description 
of the system, with the observation that not all aspects of 
the system are represented, as this would be typically too 
time-consuming, complex and expensive.

Considering that environmental science is a com-
plex and interdisciplinary domain, conceptual models 
are useful methods for meeting the challenges of deep 
understanding of the studied environmental phenomena. 
Conceptual models are useful in improving the coher-
ence and analyzing the environmental issues and inte-
grating knowledge. They can help the user not only to 
understand the complexity of an environmental system, 
but also to comprehend the variety of existing scientific 
approaches used to formulate and solve environmental 
problems (Fortuin et al. 2011). Not much research work 
has been reported, to our knowledge, on the usage of 
conceptual models for describing environmental applica-
tions. We review below what is found in the literature on 
that subject.

ISO191xxx (2003) is a series of standards defining and 
managing geographic information that is based on con-
ceptual modeling. The main goal of ISO 191xx series is 
to facilitate the interoperability of geographic informa-
tion systems by providing abilities to discover, access, 
understand and use the information and tools indepen-
dently from the platform supporting them. ISO 18101 
also defines a fundamental concept of geographic data—
the feature—that is an abstraction of the real world phe-
nomena. The research presented in (Fortuin et al. 2011) 
highlights the usage of conceptual modeling in facing 
the challenges given by the complexity and interdiscipli-
nary character of the environmental science curricula. 
However, the usage of the conceptual models is oriented 
there more on solving the problems at the academic 
level instead of actually providing a deep understanding 

of environmental science applications and their interac-
tions with different computational environments like we 
intend to do.

Nativi et  al. (2013) present the concept of Model 
Web—a Model as a Service approach which will increase 
environmental model access and sharing, facilitate mod-
eler to modeler and interdisciplinary interaction and 
reduce reinvention. The final idea is to have a wide net-
work of interconnected models, data, and tools accessible 
via websites that are available as a resource for decision 
makers, researchers and the general public. In describing 
the Model Web conceptual framework, the manuscript 
introduces an entity (Model), which represents the con-
ceptual and mathematical structure of an environmen-
tal model. Together with this entity, it also introduces 
other concepts, all part of the conceptual framework: 
Application, ModelRepresentation, ConfigurationParam-
eter, ModelParameter, ModelRun, ModelEngine, Dataset, 
Service, InputData, ModelOutput. All these entities are 
elements in a procedural representation of an environ-
mental model.

Wand and Weber (2002) and Davies et al. (2006) pre-
sent a detailed description and a framework on concep-
tual modeling. Mylopoulos (1992) presents the process 
of conceptual modeling through the existence of four 
different kinds of knowledge: subject world, usage world, 
development world and system world. With these, con-
ceptual models can reach a very high degree of com-
plexity while trying to integrate as many aspects as 
possible from the simulated process/studied phenom-
ena. However, the purpose of our study is to keep things 
as simple as possible and to highlight only the necessary 
details, allowing a more flexible execution of environ-
mental science applications on different computational 
environments.

In (Modeling and Simulations Fundamental, 
Sokolowski and Banks 1970), the authors discuss about 
the degree of uncertainty that each real world system 
has got and about the way in which this uncertainty 
and variability can be included in conceptual modeling 
through random variables and random processes. Parekh 
(2005) proposes the use of ontologies and Semantic Web 
technologies to tackle the complexity and diversity of 
knowledge and data within the environmental sciences 
and engineering with the purpose of enabling efficient 
data sharing. “Ontologies provide shared domain mod-
els that are understandable to both humans as well as 
machines.” Ontologies provide an abstract conceptualiza-
tion of information by defining basic concepts in specific 
domains together with their relations. The advantage is 
that all these definitions are both human and machine 
interpretable, leading to efficient automated mechanisms 
for information sharing and integration. The goal of their 
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research work is to use ontologies to provide semantic 
interoperability among heterogeneous data, semantic 
descriptions of the datasets, as well as a common con-
ceptual model for those datasets. In environmental sci-
ence, the modeling activity can be complex and difficult, 
even for a specialist: acquiring knowledge of individual 
computational models, searching, gathering and analyz-
ing raw data, ensuring high quality of data, transforming 
the data into formats compatible with the computational 
models, and then finally performing the modeling. This 
process typically takes several days to months. The ulti-
mate vision of Parekh (2005) is to build intelligent and 
powerful environmental information systems that will 
enable efficient data sharing and integration mechanisms.

GC3Pie (Maffioletti and Murri 2012; GC3Pie 2012) is 
a Python framework that aims to orchestrate the execu-
tion of external commands over different computing 
resources (such as a Sun/Oracle/Open Grid Engine 
cluster, the Swiss National Distributed Computing 
Infrastructure SMSCG, OpenStack Cloud, ARC-based 
computational grid, etc.). It is a flexible framework that 
allows the implementation of command line driver 
scripts (in the form of Python object classes) that can be 
customized easily by overriding specific object methods. 
GC3Pie also conceptualizes the executed applications 
but using plain programming language (i.e., you describe 
your application using a set of Python classes which can 
be extended and specialized). The tool was designed to 
coordinate the execution of independent applications 
meaning that it is used to steer the computation, not 
to perform it. The description of application in a pro-
gramming manner offers many advantages, but with the 
drawback of a certain complexity as not all users have 
programming capabilities. Our solution tries to simplify 
things as much as possible for the user, by allowing non-
specialists in programming to create a simple conceptual 
model of the executed application.

Klischewski and Wetzel (2012) present an interesting 
approach in workflow management area by introducing 
a flexible vision for heterogeneous workflow networks. 
The idea is to redefine the workflow management to 
meet today’s challenges. The process execution realized 
based on predefined process patterns and resource rela-
tions (“processing by definition”) is replaced by a pro-
cess execution driven by recurrent process evaluation 
and service contracting (“process by contract”). This 
approach supports decentralized resource management 
through dynamically interrelating services and contract-
ing resources as services during workflow execution.

Based on our experience in environmental science 
applications and on our research done in this area, and 
also taking into account the previous discussed works 
done around the topics of conceptual modeling of a 

phenomena and execution of environmental applica-
tions on parallel and distributed infrastructure, we are 
formulating in the following section a proposition for a 
simple and efficient conceptual model of an environ-
mental application in general. The proposed model can 
be applied to any type of application but the parser used 
to extract the information was developed specifically for 
environmental science applications, that is it takes into 
account the specific environmental input and output 
data, as well as the algorithms used in this field.

Conceptual modeling of an environmental 
application
The development of our conceptual model was mainly 
based on the experience that we have gathered in execut-
ing different environmental applications (see below) on 
different computing infrastructures (Clouds, Clusters 
and Grids). After analyzing the characteristics and the 
behavior of environmental applications, while executing 
them on several computing infrastructures, we came up 
with a solution to flexibly describe, in a conceptual way, 
a general environmental application. This conceptual 
model will be later integrated in a methodology that will 
allow scientists to easily map their applications on differ-
ent computing infrastructures.

To narrow a little the large area of environmental sci-
ence applications, we have started our research mainly 
through hydrological modeling but this does not limit 
the applicability of the proposed methodology to this 
research area. Flood and drought forecasting, water man-
agement, and prediction of the impact of natural and 
human induced changes in hydrological cycle are just a 
few examples in which distributed hydrological models 
can be very useful. As many other environmental appli-
cations, these models have to simulate a large variety of 
physical processes that lead not only to a high complexity 
but also to a high degree of parameterization (Silvestro 
et  al. 2013). Hydrological models have evolved a lot in 
the past decade, both because of the exponential devel-
opment of computational capacities and because of the 
progress of Earth observation techniques that allow one 
to access large amounts of data readily available.

In the future we will consider also global and regional 
climate models (Dai et al. 2001; Wang et al. 2015) in our 
experiments, as they also pose diverse challenges regard-
ing the storage and the computational resources.

In what follows we briefly present the hydrological 
models used in our study.

Continuum (Silvestro et  al. 2013) is a distributed and 
continuous hydrological model that aims at balancing 
the necessity for a complete description of physical pro-
cesses with the goal of avoiding over-parameterization. 
This means that special attention is given to reducing as 
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much as possible the parameterization of the physical 
processes (so that land information can be extensively 
used as a constraint to parameter calibration) but at the 
same time, the model indents to maintain the neces-
sary details of all the terms of the hydrological cycle. The 
model was designed to be implemented in different con-
texts but especially on data-scarce environments (with no 
stream flow data). It has been used notably in the context 
of the Global Flood model for the UNISDR/UNEP Global 
Assessment Report (see Global Assessment Report on 
Disaster Risk Reduction—GAR 2013).

SWAT (Soil Water and Assessment Tool, SWAT 2009) 
is a physically-based hydrological model used for simu-
lating different physical processes and predicting the 
impact of land management in large, complex water-
sheds, with varying soils, land uses, and management 
conditions. Like most of the other hydrological models, 
SWAT has to be calibrated first for obtaining meaning-
ful results. The execution of SWAT hydrological models 
usually involves a large set of input and output data and 
a large number of simulations for performing model cali-
bration on many parameters. This implies the necessity of 
large storage and computational resources.

Experiments
We performed several experiments with the presented 
applications:

Execution of a test SWAT hydrological model 
calibration on different types of parallel and distributed 
infrastructures: Grid (gLite middleware), Cluster and Cloud 
(different instances of OpenStack and Windows Azure)
SWAT execution on cloud: OpenStack and Windows Azure
The testing steps on these infrastructures are as follows:

  • Prepare the necessary SWAT input files and pack 
them in an archive

  • Upload the input archive in the Cloud storage
  • Launch the necessary number of virtual machines 

(VMs) (depending on the performed SWAT use 
case), with a predefined image and Linux flavour

  • On each instantiated VM, execute a script that:

 – copies the input archive locally, from the Cloud 
storage

  – executes the SWAT model on this input
 – retrieves and copies the results back into the stor-

age

For Windows Azure execution, we have developed 
a program that starts automatically a given number of 
Linux VMs on Azure. Upon starting, each VM runs a 
script that starts the execution as described above. On 

OpenStack, we have executed the tests on two instances. 
The particularity of one instance, in executing the above 
mentioned SWAT calibration steps, was that the input 
data was stored on a proxy machine and we have cop-
ied the input data, to each launched VM, using multicast 
(UDPCast software). This approach reduced significantly 
the download time. On the second instance, the execu-
tion was performed using the boto library [A Python 
interface to Amazon Web Service—boto (2015)] to access 
the data from and to S3 (2006)—Amazon Simple Storage 
Service.

SWAT execution on the “Baobab Cluster” of University 
of Geneva
The execution on this infrastructure was done using 
SLURM (2003) workload manager. The steps are quite 
similar with the ones performed in the Cloud except that 
the input files were placed in the common file system 
and instead of launching VMs, we have launched jobs on 
individual nodes in the cluster.

SWAT execution on Grid running gLite middleware
Tests for executing the calibration of different instances 
of SWAT model have been performed in the framework 
of the enviroGRIDS (2009) project. In our case, the exe-
cution steps differ from those performed in the Cloud 
in that the input data is uploaded on a Storage Element 
instead of a Cloud Storage and the jobs are launched in 
the Grid using utilities such as Ganga [Gaudi/Athena and 
Grid Alliance—Ganga (2009)—CERN] and DIANE [Dis-
tributed Analysis Environment—DIANE (2007)] instead 
of starting VMs. Apart form this, the execution flow 
remains the same. A detailed description of these experi-
ments is found in (Rodila et al. (2012)).

Execution of the global flood model for the UNISDR/UNEP 
Global Assessment Report
The Global Flood model contains two procedures: down-
scaling the data and execution of the Continuum hydro-
logical model, procedures which were executed on 13 
out of 30 geographic areas (domains) covering the entire 
surface of the Earth. The execution was done on the Bao-
bab cluster, provided by University of Geneva, using the 
SLURM workload manager, and the tests were performed 
using different distribution techniques.

Gridification of OGC web services
The OGC [Open Geospatial Consortium OGC (1994)] 
Web services (OWS) are Geospatial services used to 
exchange information in an interoperable and efficient 
way over a distributed environment. We have made 
several test on these services executed over the Grid 
infrastructure [Grid Middleware—gLite (2002)], with a 
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varying number of features in the database (amount of 
data) and a varying request complexity (number of per-
formed service requests). These tests were done during 
the enviroGRIDS project and they proved the existence 
of a complexity boundary for the execution on each com-
puting background. Depending on the level of complex-
ity of the model, the efficiency of the execution varies on 
different computational platforms. For a detailed descrip-
tion of the experiments and obtained results, see (Rodila 
and Gorgan 2012).

The performed practical experiments and the 
knowledge gathered after reviewing the scientific lit-
erature in this area formed together the starting point 
and the foundation on which our conceptual model, 
for describing a general environmental application, 
was built. The conceptual description contains spe-
cific details of the mapped application, such as: name, 
description, initial and intermediary inputs, outputs, 
executable processes, cost associated with each execu-
tion, etc. All these details are stored in a file and are 
used not only in determining the structure of the appli-
cation but also the execution flow (i.e. control flow, 
specifying the order of the activities to be executed) 
and the data flow (specifying the input and the output 
data for each activity/task to be executed). Having this 
information in a common standard way is a step for-
ward to automatize the mapping of applications on dif-
ferent computing infrastructures.

The execution flow of the application actually 
describes a workflow that is composed by connecting 
multiple tasks according to their dependencies. In gen-
eral, a workflow can be represented as a Directed Acy-
clic Graph (DAG) or a non-DAG in which the nodes are 
execution tasks and the edges represent the communi-
cations lines between these tasks. In DAG workflows, 
the tasks can be structured as sequential tasks, paral-
lel tasks or choice tasks (Costan 2010). The sequential 
tasks (or sequence) can be seen as an ordered series of 
tasks in which a task starts only after the previous one 
has completed. Parallel tasks are performed concur-
rently, while choice tasks are executed at runtime only 
when certain conditions are fulfilled. Using our expe-
rience in environmental applications, there are a lot of 
cases in which a set of tasks have to be executed sev-
eral times, such as the calibration of a hydrological 
model for example, in which the process is executed 
in a large number of iterations but with different input 
parameters. In non-DAG workflows, besides the above-
mentioned structures, we can also have iterations struc-
tures in which a section of tasks in the workflow can be 
repeated in an iteration block (i.e. loop). Using these 
entire structure types we can compose/decompose very 
complex workflows for an application. The proposed 

conceptual model has to be general enough to cover all 
the execution use cases of an application. As this goal is 
quite hard to achieve as one cannot foresee all the pos-
sibilities that might appear, the conceptual model has to 
be flexible enough to allow the extensions of new flows 
if this is the case for certain particular applications. It 
must allow the execution of arbitrary control flows 
through dependency graphs, taking into account condi-
tional executions, looping, error handling and recover-
ing, etc.

Execution flows
Possible executions flows based on the identified work-
flow structure types:

Simple execution
The execution flow in this case (Fig. 2) is a simple one in 
which the user defines the input(s) that are entries for a 
single execution point producing some output(s). The 
inputs and the outputs can be of different types and can 
be specified in different formats.

Sequential execution
In this case (Fig.  3) the execution flow is modeled as a 
sequence of several executions. The execution of a step 
normally depends on the results of a previous execution. 
That is why synchronization has to be taken into consid-
eration. Simple Execution is a particular case of Sequen-
tial Execution in which we only have one execution node.

Parallel execution
The execution flow in this case (Fig.   4) is composed of 
several executions that are run in parallel. Each step is 
independent and can be executed concurrently with the 
others. A “Simple Execution” is also a particular case in 
which we only have one execution node.

Fig. 2 Conceptual model—simple execution
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Composed execution
The composed execution (Fig.  5) has a complex struc-
ture in which one can include different types of execu-
tions: simple, sequential or parallel. This is useful if a 
user wants to save/use previously computed executions 
without having to define them again. All other mentioned 
cases: Simple Execution, Sequential Execution and Par-
allel Execution can be considered particular use cases of 
this type.

Loop execution
The execution flow in this case (Fig. 6) consists in execut-
ing the same module several times. The module can be 
composed of several types of executions or it can be one 
of the already presented types. This is useful when the 
same set of executions has to be repeated several times. 
An example of this case can be the calibration of a cli-
matic model. The inputs can be the same set of parame-
ters or a slightly different one, but the outputs are usually 
different.

The proposed conceptual model covers all the above 
use cases. Using this model, a user can easily describe 
the structure and the execution flow (workflow) of his/
her application. The actual execution of this model can 
be done through instantiation, i.e. binding the workflow 
tasks to specific resources (different for each application 
and for each execution use case). The conceptual model 

provides a flexible way of specifying an environmental 
application without being concerned with the low-level 
implementation details. The tasks in the conceptual 
model can be mapped on any executable platform at run 
time using mapping mechanism. In a concrete model, 
the specific resources of the applications are bind to the 
tasks. At this level, new tasks may also appear, related to 
data movement between tasks and/or repositories. The 
concrete model can be generated (either full or partial) 
either before or during the execution.

The steps to complete the conceptual model for a spe-
cific application are the following ones:

1. Define all the inputs of the application. Here the 
user has to specify for each input what is its type, 
how it can be accessed and to which execution task 
it belongs. The inputs can either be initial inputs or 
they can also be outputs from other executions.

2. Define all the outputs of the application by specifying 
as well their type, where should they be stored and 
from what execution they come from.

3. Define the executions tasks within the applications. 
Depending on what inputs are associated with a spe-
cific task, we can decide if the task will be executed 
in parallel or sequentially with other tasks. The loop 
executions are specifically described within a loop 
tag in the file in which the user has to specify what 

Fig. 3 Conceptual model—sequential execution
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executions are part of the loop and how many times 
the loop is repeated.

4. Define the Composed Executions if any. At this point 
the user can specify the path to an already defined 
conceptual model of a previous application.

The parser intended to process the defined conceptual 
model will explore all these information. The conceptual 

description can be used in general for any type of appli-
cation so far but the specificity of the environmental sci-
ence field will be modeled in the parser component, as 
this is the level where the differences appear concerning 
especially the input and output data, as well as the algo-
rithms used to handle environmental data.

SWAT use case: conceptual instantiation
The SWAT hydrological model allows a number of differ-
ent physical processes to be simulated in a watershed. The 
inputs of the SWAT model are specific information about 
weather, soil properties, vegetation, topography, and land 
management practices of the watershed. To apply and 
successfully use hydrological models, both good calibra-
tion and good prediction analysis are required. Calibra-
tion is the process of estimating the model parameters to 
obtain a better system that closely resembles the system 
that the model intends to represent. SWAT calibration 
involves:

  • large set of input and output data
  • high number of simulations
  • time constrain (in certain cases): decision makers 

may need to obtain near real time output from the 
SWAT model to be able to make reliable and mean-
ingful predictions and to deal with emergency envi-
ronmental disasters.

  • The parallelization of SWAT calibration, using SUFI2 
(Sequential Uncertainty Fitting) algorithm (Abba-
spour et al. 2007), is accomplished at the simulation 
level by simply executing several SWAT runs with 
different parameters. Each simulation runs the same 
SWAT model but with different input parameter 
values. The execution of an iteration consists in per-
forming three important phases:

Pre-processing phase is executed only once for each 
iteration. In this phase, the input parameter values are 
generated randomly but within a specific range for each 
simulation, based on the parameters intervals and using 
Latin hypercube sampling. A combination of param-
eters is generated for each simulation. Each simulation 
in an iteration represents one task which is executed on 
a node in a certain computing platform. Depending on 

Fig. 4 Conceptual model—parallel execution
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the available resources, a node can execute one or more 
tasks (i.e. simulations) from an iteration.
Execution phase each simulation is run on different 
nodes.
Post-processing phase The output of each simulation is 
retrieved and processed after all the simulations have 
finished.

The SWAT model instance used in our experiments 
was developed in the EU/FP7 enviroGRIDS (2009) 
(Black Sea Catchment Observation and Assessment 
System supporting Sustainable Development) project 
and uses high-resolution data to model the Black Sea 

catchment. This large hydrological model was built 
using the SWAT2009 program (SWAT 2009) and cov-
ers the Danube River Basin. The Danube River flows for 
a distance of 2826 km and the model covers an area of 
801,093 km2. The region was divided into 1224 smaller 
sub-basins and the simulation period was set to 5 years. 
A detail description of this model and a comparative 
execution on Multicore and Grid infrastructure can be 
found in (Rodila et al. 2012).

The application flow of this hydrological model can be 
described using the proposed conceptual model in the 
following way:

Fig. 5 Conceptual model—composed execution



Page 13 of 16Rodila et al. Environ Syst Res  (2015) 4:23 

Fig. 6 Conceptual model—loop execution
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Conclusions and future work
The challenges that the environmental science commu-
nity is facing are immense in light of the current global 
environmental changes occurring at various scales. 
Part of the solution is to be able to efficiently analyze 
the growing set of available environmental “Big Data”, 
and this has become possible recently both due to the 
increasing capabilities of computational resources (and 
hardware advances) and to the availability of tools, algo-
rithms and techniques used to take advantages of these 
resources. But it often remains difficult to easily integrate 
environmental applications with high performance com-
puting resources. To ease that step, we have introduced 
there a solution to easily model environmental applica-
tions and to facilitate their integration with different par-
allel and distributed infrastructures.

Taking into account the growing need for compu-
tational speed, storage and scalability that environ-
mental applications demand, the users usually tend to 
use—or to switch between—more than one execution 
platform for obtaining the necessary resources. To be 
able to easily switch between these platforms we have 
proposed an application conceptual model that hides 
the complexity of different types of environmental 
applications and that provides an easy and flexible 
way to map an environmental application to an execu-
tion platform. Using this model, a user can describe 
the structure, the data flow, as well as the execution 
flow (workflow) of the application. The model is built 
to cover different execution flows, such as: simple, 
sequential and parallel executions, as well as com-
posed and loop executions. It also allows the definition 
of a new type of execution if necessary and the re-
usage of an existing one. The actual execution of the 
model is done through instantiation, i.e. binding the 
described concepts to specific application resources, 
which are different for each application and for each 
execution use case. Using this approach, we managed 
to conceptualize an application and to disconnect it 
from the low-level implementation details of an execu-
tion environment.

As specified before, the proposed conceptual model is 
a key component in a general methodology for easily and 
efficiently porting environmental applications on differ-
ent parallel and distributed infrastructures.

Following the availability of this conceptual model, the 
next step in our future work would be to develop a sched-
uling and execution component that would allow the user 
to easily submit an instantiated conceptual model (a spe-
cific environmental application bind to the conceptual 
model) to one or more available computing infrastruc-
tures. This component will also estimate which of the 
available computing infrastructure is more appropriate 

for execution based on several criteria such as: number of 
parallel jobs, user preferences, history, etc.

To be able to evaluate and verify the correctness and 
the interoperability of the proposed conceptual model as 
well as the efficiency of an application execution based 
on the conceptual model, we also have to develop a set 
of metrics and a validation component. The development 
of this methodology is still a work in progress but we 
have the confidence that it will bring important contri-
butions to the urgent need of environmental community 
in using parallel and distributed infrastructures for better 
processing and analyzing the large amounts of data that 
is collected daily. The proposed conceptual model and its 
mapping to different computational infrastructures will 
allow many environmental applications to be more effi-
ciently used. The hope is therefore that better-informed 
decision-making will follow, responding more effectively 
to the changes that are threatening our environment and 
the society at large.
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