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Abstract

Background: This paper provides an advance numerical algorithm to solve both ordinary and partial differential
equations of surface water quality models. It uses finite difference methods and structures explicit or implicit or
other process forms to solve the water quality model. This study also considers the stability of solutions to obtain
more accurate results among those numerical algorithms.

Results: Water quality modeling commonly manifests itself in ordinary and partial differential equations in a realistic
world. This study has applied numerical solutions to simulate the changing process of water quality in one and two
dimensional spaces or in multiple dimensional spaces. The solutions of these analytical methods are provided in
this paper to attest the justifiability of these numerical methods. It demonstrates that the 2-dimensional
Barakat-Clark numerical method can be a highly efficient tool in obtaining approximate results of ordinary and
partial differential equations, which may prove difficult in finding the accurate solution by using conventional
methods. At the same time, the stability analysis corroborated the convergence of those numerical solutions.

Conclusions: This study is the first attempt to compare the multiple numerical methods with the 2-D Barakat-Clark
method in the water quality modeling process. The results clearly suggest that the Barakat-Clark method is better in
reflecting the accuracy of the water quality modeling with stability for hydrological systems.
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Background
In the past few decades, the applications of surface water
quality models have been intensely studied as population
growth and economic development makes more increases
pollution in water resources, particularly in the surface
hydrological system. Streeter and Phelps have been pro-
gressed the water quality models in 1925. Since then, many
scientists (Kellogg 1964; Shampine et al. 1979; Stasa 1985;
Christie 1987; Hoffman 1992; Rudi et al. 1997; Cash 2003;
Shawgfeh 2004; Walter 2006) have carried out rigorous re-
search in this area. Many water quality models, for example,
the BOD model, are formed generally by ordinary or partial
differential equations (Davis 1962; Na 1979; Taylor 1982;
Evans 1985; Noye Noye 1992; Richard 1997; Moiianty 2004;
Liu et al. 2005; Munavalli 2004; Timo et al. 2013). For
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solving those equations, the traditional methods are using
the finite difference method and the finite element method.
In this paper, the application of an explicit and an impli-

cit method to solve the water quality equation includes
and tests the first order ordinary differential equation, the
second order ordinary differential equation and the sec-
ond order partial differential equation. To illustrate the
reasonability of these solutions, the stability of diffusion
equations are also provided in this article. The analytic
solutions obtained from these diffusion equations are
also compared with other numerical methods. The results
suggest that the numerical method can be as good to reflect
the accurate solution of water quality diffusion equation in
the real world condition.

Methods
Fundamental background of water quality modelling
The transference, diffusion, and degradation mathematical
equations of pollutants in the hydrological systems are
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roperly cited.
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three-dimensional in form. Therefore, according to the
mass balance equation, the initial water quality transfer
equation is as follows:

∂C
∂t

þ
X
i

V i
∂C
∂Xi

¼
X
i

∂
∂Xi

εT ;i
∂C
∂Xi

� �
�
X
k

Sk

ð1aÞ
where
Xi = the three axial X1, X2, X3;
Vi = the velocity of three axial V1, V2, V3;
Sk = the source and sink of contaminants;
C = the concentrate of contaminants;
t = time;

The C, Vi and εT,i are the function of Xi. In the left side
of the equation (1a), the first item indicates the change
rate of concentration of contaminants. The second item
on the left side shows the transfer rate of contaminants
along the stream axial. The first item, in the right hand
side of the equation, presents the dispersion of pollutants
along a different axial. There, we are assuming that there
is no molecular diffusion and turbulent diffusion of pollut-
ants. The second item in left side indicates the sources of
contaminants. The symbol +/− states the contaminants
increase or decrease in the hydrological systems. In (1a) is
a three-dimensional variable coefficient of the second-order
Partial Differential Equation (PDE). The parameters of mod-
eling require much information; especially the variable S on
the right side of equation, will cause a serious complication
in the solution process. It is difficult to get the analytic a so-
lution. Therefore, people usually simplified this modeling
process then used the numerical method to generate the
approximate solutions. This paper targets several simplified
water quality models and uses finite difference method and
structures simulate process forms to solve the problem. It
also considers the stability of the solutions to obtain more
accurate results among those numerical algorithms.

Numerical methods for water quality modeling
Application of least squares method
If the velocity of the stream is very high, the variable of
dispersion will be extremely low, so it can be ignored.
Thus, the water shift modeling is presented as follows:

V
dC
dX

¼ kC ð2aÞ

The equation (2a) is a first order ordinary differential
equation. The analytic solution of it can be obtained as follow:

C ¼ C0e
k
Vx ð3aÞ

Some of the parameters in (3a) can be solved by multiple
linear regression method. Concurrently it can use the least
squares method to establish the error function. To consider
the amount of biochemical oxygen demand (BOD) and
disintegration, we use L to indicate BOD, and K1 present
disintegration coefficient of BOD. Then, equation (2a)
can is presented as:

−
dL
dt

¼ K1L ð4aÞ

The solution of the above equation is L tð Þ ¼ L0e−K1t .
Therefore the oxygen consumption is y tð Þ ¼ L0−L tð Þ ¼ L0
1−e−k1t
� �

: By using experimental data, applying the least
squares method estimates the initial value of L0 and K1.
There let K1 = K ′ 1 + h then,

y tð Þ ¼ L0 1−e− K′1þhð Þt
h i

¼ L0 1−e−K′1te−ht
� � ð5aÞ

let y(t) = af1 + bf2, and a ¼ L0; b ¼ L0h; f 1 ¼ 1−e−K′1t ; f 2 ¼
te−K′1t . According to the least squares method to minimizeX
i

y tð Þ−y tð Þtesting
h i2

¼
X
i

af 1 þ bf 2−y tð Þtesting
h i2

then,

we can conclusion those coefficient a and b. The a and
b can be indicated as following,

a ¼
X

f 22
X

f 1y tð Þ−
X

f 1f 2
X

f 2y tð ÞX
f 21
X

f 22−
X

f 1
X

f 2
� �2 ;

b ¼
X

f 21
X

f 2y tð Þ−
X

f 1f 2
X

f 1y tð ÞX
f 21
X

f 22−
X

f 1
X

f 2
� �2

ð6aÞ
The L0 and step-size h can be obtained by the value of a

and b. If the h in the equation is larger than 0.001, the re-
sult are not stability. Otherwise, the solution is reliable.

Application of explicit and implicit methods
One-dimensional water quality modeling When the
geometry of stream varies greatly, for example the river
is very long but it is very shallow; the one-dimensional
water quality modeling can be expressed as follows:

E
∂2C
∂X2 −V

∂C
∂X

þ kC ¼ ∂C
∂t

ð7aÞ

Obviously, the function (8a) is a one-dimensional second-
order Partial Differential Equation (PDE). It is solved by
explicit and implicit methods as following.

Solution of explicit and implicit methods The equation
(8a) can be represented by finite difference. Those equa-
tions are expressed as follows:

∂2C
∂X2 ¼

Cl
iþ1−2C

l
i þ Cl

i−1

ΔX2 ð8aÞ
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∂C
∂X

¼ Cl
iþ1−C

l
i−1

2ΔX
ð8bÞ

∂C
∂t

¼ Clþ1
i −Cl

i

Δt
ð8cÞ

then the explicit method can solve them as follows,

Clþ1
i ¼ E

Δt

ΔX2 þ V
Δt
2ΔX

� �
Cl

i−1 þ kΔt−2E
Δt

ΔX2 þ 1

� �
Cl

i

þ E
Δt

ΔX2 −V
Δt
2ΔX

� �
Cl

iþ1

ð9aÞ
the solution of implicit methods can be shown as:

− E
Δt

ΔX2 þ V
Δt
2ΔX

� �
Clþ1

i−1 þ 2E
Δt

ΔX2 þ 1−kΔt
� �

Clþ1
i

− E
Δt

ΔX2 −V
Δt
2ΔX

� �
Clþ1

iþ1 ¼ Cl
i

ð10aÞ

Stability Analysis of explicit and implicit methods
In this section the stability of the equations, (10a) and (11a),
are examined. The stability of those methods are tested by
using the method of the Fourier stability analysis also known
as the von Neumann stability analysis. Let Cl

j ¼ uleijθ , and

then the equation (10a) can be written as:

ulþ1eijθ ¼ E
Δt

ΔX2 þ V
Δt
2ΔX

� �
ulei j−1ð Þθ

þ kΔt−2E
Δt

ΔX2 þ 1

� �
uleijθ

þ E
Δt

ΔX2 −V
Δt
2ΔX

� �
ulei jþ1ð Þθ ð11aÞ

The amplification factor λ equal to:

λ ¼ E
Δt

ΔX2 þ V
Δt
2ΔX

� �
cos θ−i sin θð Þ

þ kΔt−2E
Δt

ΔX2 þ 1

� �

þ E
Δt

ΔX2 −V
Δt
2ΔX

� �
cos θ þ i sin θð Þ

¼ −2E
Δt

ΔX2 1− cos θð Þ−V Δt
ΔX

i sin θ þ kΔt þ 1

ð12aÞ
subject to

λj j2 ¼ kΔt þ 1−2E
Δt

ΔX2 1− cos θð Þ
� 	2

þ V
Δt
ΔX

sin θ

� �2

ð13aÞ
Let s = 1 − cos θ, s ∈ [0, 2] then the equation (13b) can
be re-written as:

F sð Þ ¼ 4E2 Δt2

ΔX2 s
2−2E

Δt

ΔX2 kΔt þ 1ð Þsþ k2Δt2

þ2kΔt þ V 2 Δt2

ΔX2 sin2θ

ð14aÞTherefore

F′ sð Þ ¼ 8E2 Δt2

ΔX2 s−2E
Δt

ΔX2 kΔt þ 1ð Þ ð15aÞ

F″ sð Þ ¼ 8E2 Δt2

ΔX2 ≥0 ð16aÞ

F sð Þ≤0⇐
F″ sð Þ≥0
F 0ð Þ≤0
F 2ð Þ≤0

⇔

k2Δt2−2kΔt þ V 2 Δt2

ΔX2 sin2 θ≤0

16E2 Δt2

ΔX2 −4E
Δt

ΔX2 kΔt þ 1ð Þ þ k2Δt2

þ 2kΔt þ V 2 Δt2

ΔX2 sin2 θ≤0

8>>>>><
>>>>>:

8>>>>><
>>>>>:

ð17aÞ
The solution of the explicit is unstable.
On the other hand, the implicit equation (11a) is

also tested using the this Fourier analysis as follows.
Let Cl

j ¼ uleijθ , the equation can be re-written as:

− E
Δt

ΔX2 þ V
Δt
2ΔX

� �
ulþ1ei j−1ð Þθ þ 2E

Δt

ΔX2 þ 1−kΔt
� �

ulþ1eijθ

− E
Δt

ΔX2 −V
Δt
2ΔX

� �
ulþ1ei jþ1ð Þθ ¼ uleijθ

the amplification factor λ is equal to:

λ ¼ 1=

�
− E

Δt

ΔX2 þ V
Δt
2ΔX

� �
cos θ−i sin θð Þ

þ 2E
Δt

ΔX2 þ 1−kΔt
� �

− E
Δt

ΔX2 −V
Δt
2ΔX

� �
cos θ þ i sin θð Þ

	

¼ 1= 2E
Δt

ΔX2 1− cos θð Þ þ V
Δt
ΔX

i sin θ−kΔt þ 1

� 	

ð18aÞ
The results show |λ|2 ≤ 1. It indicates that the solution of

the implicit method is unconditionally stable. Therefore,
through analyzing the stability of equation (12a) and (13a),
it is can conclude that the solution of the implicit method
will be more accuracate than explicit method in the water
quality diffusion equation.

Application the explicit, ADI and Barakat-Clark methods
Two-dimensional water quality modeling The two-
dimensional water quality modeling is represented as
follows:

∂C
∂t

þ V 1
∂C
∂X

þ V 2
∂C
∂Y

¼ E1
∂2C
∂X2 þ E2

∂2C
∂Y 2 −kC ð19aÞ
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As it shows, this model is a second-order Partial
Differential Equation (PDE). It will be solved using
explicit, ADI and Barakat-Clark methods. The finite differ-
ence equation can substituted in the PDE as follows:

Clþ1
i;j −Cl

i;j

Δt=2
þ V 1

Cl
iþ1;j−C

l
i−1;j

2ΔX
þ V 2

Cl
i;jþ1−C

l
i;j−1

2ΔY

¼ E1

Cl
iþ1;j−2C

l
i;j þ Cl

i−1;j

ΔXð Þ2 þ E2

Cl
i;jþ1−2C

l
i;j þ Cl

i;j−1

ΔYð Þ2 −kCl
i;j

ð20aÞ

Solution of explicit, ADI and Barakat-Clark methods
Firstly, equation (20a) is solved by the explicit method.
While ΔX is equal to ΔY, the equation (20a) can be re-
written as:

Cl
i;j ¼ E1

Δt

2ΔX2 þ V 1
Δt
4ΔX

� �
Cl

i−1;j

þ 1−E1
Δt

2ΔX2 −E2
Δt

2ΔX2 −
kΔt
2

� �
Cl

i;j

þ E1
Δt

2ΔX2 −V 1
Δt
4ΔX

� �
Cl

iþ1;j

þ E2
Δt

2ΔX2 þ V 2
Δt
4ΔX

� �
Cl

i;j−1

þ E2
Δt

2ΔX2 −V 2
Δt
4ΔX

� �
Cl

i;jþ1

ð21aÞ

Secondly, equation (20a) is solved by the ADI method, a
two stage time method. At this point, each time step size
will be divided into two steps for calculation. The first
stage uses a half of step from tl to tl + 1/2 for calculating the
result; thus the equation (21a) can be written as:

− V 2
Δt
4ΔX

þ E2
Δt

2ΔX2

� �
Clþ1=2

i;j−1 þ 1þ E2
Δt

ΔX2

� �
Clþ1=2

i;j

þ V 2
Δt
4ΔX

−E2
Δt

2ΔX2

� �
Clþ1=2

i;jþ1 ¼ V 1
Δt
4ΔX

þ E1
Δt

2ΔX2

� �
Cl

i−1;j

þ 1−E1
Δt

ΔX2 −
kΔt
2

� �
Cl

i;j þ E1
Δt

2ΔX2 −V 1
Δt
4ΔX

� �
Cl

iþ1;j

ð22aÞ
the second step use anther step size from tl + 1/2 to tl for
calculating; the equation (21a) can be written as,

Clþ1
i;j −Clþ1=2

i;j

Δt=2
þ V 1

Clþ1
iþ1;j−C

lþ1
i−1;j

2ΔX
þ V 2

Clþ1=2
i;jþ1 −Clþ1=2

i;j−1

2ΔY

¼ E1

Clþ1
iþ1;j−2C

lþ1
i;j þ Clþ1

i−1;j

ΔXð Þ2

þE2

Clþ1=2
i;jþ1 −2Clþ1=2

i;j þ Clþ1=2
i;j−1

ΔYð Þ2 −kClþ1
i;j

ð23aÞ
While ΔX is equal to ΔY, the equation (23a) can be
re-written as,

− E1
Δt

2ΔX2 þ V 1
Δt
4ΔX

� �
Clþ1

i−1;j þ 1þ E1
Δt

ΔX2 þ
kΔt
2

� �
Clþ1

i;j

− E1
Δt

2ΔX2 −V 1
Δt
4ΔX

� �
Clþ1

iþ1;j ¼ E2
Δt

2ΔX2 þ V 2
Δt
4ΔX

� �
Clþ1=2

i;j−1

þ 1−E2
Δt

ΔX2

� �
Clþ1=2

i;j þ E2
Δt

2ΔX2 −V 2
Δt
4ΔX

� �
Clþ1=2

i;jþ1

ð24aÞ
Lastly, equation (20a) is solved using the Barakat-Clark

method. According the H. Z. Barakat, the solution of (19a)
can be written as (25a) and (25b),

unþ1
i;j −uni;j
Δt

þ V 1

uniþ1;j−u
n
i;j

ΔX
þ V 2

uni;jþ1−u
n
i;j

ΔY

¼ E1

uniþ1;j−u
n
i;j−u

nþ1
i;j þ unþ1

i−1;j

ΔX2

þE2

uni;jþ1−u
n
i;j−u

nþ1
i;j þ unþ1

i;j−1

ΔY 2 −kuni;j

ð25aÞ
vnþ1
i;j −vni;j
Δt

þ V 1

vni;j−v
n
i−1;j

ΔX
þ V 2

vni;j−v
n
i;j−1

ΔY

¼ E1

vnþ1
iþ1;j−v

nþ1
i;j −vni;j þ vni−1;j
ΔX2

þE2

vnþ1
i;jþ1−v

nþ1
i;j −vni;j þ vni;j−1
ΔY 2 −kvni;j

ð25bÞ
While ΔX is equal to ΔY, the equations (25a) and

(25b) can be re-written as,

unþ1
i;j ¼ V 1 þ V 2ð Þ Δt

ΔX
− E1 þ E2ð Þ Δt

ΔX2 −kΔt þ 1

� �
uni;j

þ E1
Δt

ΔX2 −V 1
Δt
ΔX

� �
uniþ1;j þ E2

Δt

ΔX2 −V 2
Δt
ΔX

� �
uni;jþ1

þ E1
Δt

ΔX2 u
nþ1
i−1;j þ E2

Δt

ΔX2 u
nþ1
i;j−1

	
= 1þ E þ E2ð Þ Δt

ΔX2

� 	

ð26aÞ

vnþ1
i;j ¼ − V 1 þ V 2ð Þ Δt

ΔX
− E1 þ E2ð Þ Δt

ΔX2 −kΔt þ 1

� �
vni;j

þ E1
Δt

ΔX2 −V 1
Δt
ΔX

� �
vni−1;j þ E2

Δt

ΔX2 −V 2
Δt
ΔX

� �
vni;j−1

þ E1
Δt

ΔX2 v
nþ1
iþ1;j þ E2

Δt

ΔX2 v
nþ1
i;jþ1�= 1þ E1 þ E2ð Þ Δt

ΔX2

� 	

ð26bÞ
The concentration Ci,j of equation (19a) at any time

level (n + 1) may be given as,

Cnþ1
i;j ¼ unþ1

i;j þ vnþ1
i;j

� �
=2 ð27aÞ
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Stability analysis of the explicit, ADI and Barakat-Clark methods
According to the above Fourier stability analysis, the solu-
tion of the explicit method (21a) is unstable. For a solution
using the ADI method, let Cl

j ¼ uleijθ and substitute it into

the equation (24a). This results in:

p ¼ − V 2
Δt
4ΔX

þ E2
Δt

2ΔX2

� �
cos θ−i sin θð Þ þ 1þ E2

Δt

ΔX2

� �

þ V 2
Δt
4ΔX

−E2
Δt

2ΔX2

� �
cos θ þ i sin θð Þ

¼ E2
Δt

ΔXð Þ2 1− cos θð Þ þ 1þ V 2
Δt
2ΔX

i sin θ

ð28aÞ

q ¼ E1
Δt

2ΔX2 þ V 1
Δt
4ΔX

� �
cos θ−i sin θð Þ þ 1−E1

Δt

ΔX2 −
kΔt
2

� �

þ E1
Δt

2ΔX2 −V 1
Δt
4ΔX

� �
cos θ þ i sin θð Þ

¼ −E1
Δt

ΔXð Þ2 1− cos θð Þ−V 1
Δt
2ΔX

i sin θ þ 1−
kΔt
2

ð28bÞ

When the amplification factor λ IS equal to λ ¼ q
p ,

s = 1 − cos θ, θ ∈ [0, 2] the equations of (28a) and (28b) can
be written as:

p ¼ E2
Δt

ΔX2 sþ 1þ V 2
Δt
2ΔX

i sin θ ð30aÞ

q ¼ −E1
Δt

2ΔX2 s−V 1
Δt
2ΔX

i sin θ þ 1−
kΔt
2

ð30bÞ

By considering |q|2 ≤ |p|2, it is concluded that the so-
lution of the ADI method is stable. The solution stabil-
ity of the Barakat-Clark method is unconditionally
stable because it has been proven by J. A. Clark and
H. Z. Barakat (1966).

A case study
The experimental data of 10 groups are showed in the
following table for the least squares method. It considers
the process which is mentioned in equation (6a) It de-
scribes the least squares method to estimate the initial
value of BOD and other parameters (Table 1).
Here it assumes that the h = 0.001 and K’1 = 0.1. The re-

sults show K1 = 0.3166, L0 = 175.5 by going through the
process. The L0 value is the initial value of BOD. Therefore,
the water quality model is L(t) = 175.5e− 0.3166t. It is a
one-dimensional BOD model.
Table 1 Experimental data of water samples

Time t (day) 1 2 3 4 5 6 7 8 9 10

BOD y (t) (mg/L) 50 85 107 125 138 148 155 161 167 170
Now, let’s use those other numerical methods including:
explicit, implicit, ADI and Barakat-clark to simulate
the degradation of contaminants in a section of stream
systems. Under natural conditions, the initial value of
concentration of pollutants is assumed to be 0 in this
stream section. The inflow from the upstream concen-
tration of contaminants is 150mg/L. At this point, the
equation (8a) is examined. This river section, it is
1000 m long. The water velocity is 17m/s. The diffu-
sion rate of pollutants E is 360. The degradation rate of
the pollutant k is 0.15 in this stream. There is a water
quality monitor state in every 200 meters. At the same
time, the concentration of pollution is consider to be 0
mg/L at the end of this river, the data is required by the
downstream management agencies. Under these con-
ditions, the Department of Environmental Protection
wants to know the background concentration of con-
taminants in this river in order to satisfy the require-
ment of those downstream cities. Therefore, by using
simulation methods, the concentration of pollutants is
estimated using the following methods.

The simulation of explicit method
The water quality modeling can be re-written as a standard
form of the explicit method.

Clþ1
i ¼ E

Δt

ΔX2 þ V
Δt
2ΔX

� �
Cl

i−1

þ −kΔt−2E
Δt

ΔX2 þ 1

� �
Cl

i

þ E
Δt

ΔX2 −V
Δt
2ΔX

� �
Cl

iþ1 ð31aÞ

By substituted the initial value, the solution of equations
is as follow,

E
Δt

ΔX2 ¼ 0:009; V
Δt
2ΔX

¼ 0:0425; kΔt ¼ 0:15

E
Δt

ΔX2 þ V
Δt
2ΔX

¼ 0:0515;−kΔt−2E
Δt

ΔX2 þ 1

¼ 0:832; E
Δt

ΔX2 −V
Δt
2ΔX

¼ −0:0335

then,
C1

1 ¼ 0:0515C0
0 þ 0:832C0

1−0:0335C
0
2 ¼ 7:725

C1
2 ¼ 0:0515C0

1 þ 0:832C0
2−0:0335C

0
3 ¼ 0

C1
3 ¼ 0:0515C0

2 þ 0:832C0
3−0:0335C

0
4 ¼ 0

C1
4 ¼ 0:0515C0

3 þ 0:832C0
4−0:0335C

0
5 ¼ 0

C2
1 ¼ 0:0515C1

0 þ 0:832C1
1−0:0335C

1
2 ¼ 14:1522

C2
2 ¼ 0:0515C1

1 þ 0:832C1
2−0:0335C

1
3 ¼ 0:3978
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The simulation of implicit method
Also, the water quality modeling can be re-written as a

standard form of the implicit method.

− E
Δt

ΔX2 þ V
Δt
2ΔX

� �
Clþ1

i−1 þ 2E
Δt

ΔX2 þ 1þ kΔt

� �
Clþ1

i

− E
Δt

ΔX2 −V
Δt
2ΔX

� �
Clþ1

iþ1 ¼ Cl
i ð32aÞ

Let substitute the value of initial condition. The equa-
tions of implicit method is as follow,

E
Δt þ V

Δt ¼ 0:0515; 2E
Δt þ 1þ kΔt
ΔX2 2ΔX ΔX2

¼ 1:168; E
Δt

ΔX2 −V
Δt
2ΔX

¼ −0:0335
then

1:168 0:0335 0 0
−0:0515 1:168 0:0335 0

0 −0:0515 1:168 0:0335
0 0 −0:0515 1:168

2
664

3
775

C1
1

C1
2

C1
3

C1
4

2
6664

3
7775

¼
7:725
0
0
0

2
664

3
775

then these C2
1; C2

2; C2
3; C2

4 values can be obtained by
using above results.

1:168 0:0335 0 0
−0:0515 1:168 0:0335 0

0 −0:0515 1:168 0:0335
0 0 −0:0515 1:168

2
664

3
775

C2
1

C2
2

C2
3

C2
4

2
66664

3
77775

¼

7:725þ C1
1

C1
2

C1
3

C1
4

2
6664

3
7775

The simulation of Barakat-Clark method
The water quality modeling can be re-written as (33a) to
(33c), as follows.
unþ1
i ¼ V

Δt
ΔX

−E
Δt

ΔX2 −kΔt þ 1

� �
uni þ E

Δt

ΔX2 −V
Δt
ΔX

� ��

1þ E
Δt

ΔX2

� �
vlþ1
i −E

Δt

ΔX2 v
lþ1
iþ1 ¼ −V

Δt
ΔX

−E
Δt

ΔX2 −kΔt þ
�

Cnþ1
i;j ¼ unþ1

i;j þ vnþ1
i;j

� �
=2 ð33cÞ
The parameters are E Δt
ΔX2 ¼ 0:009 V Δt

ΔX ¼ 0:0815 kΔt ¼ 0:15

. For u and v; each parameter can be solved as follows:

V
Δt
ΔX

−E
Δt

ΔX2 −kΔt þ 1 ¼ 0:926; E
Δt

ΔX2 −V
Δt
ΔX

¼ −0:076; 1þ E
Δt

ΔX2 ¼ 1:009

u11 ¼
0:926u01−0:076u

0
2 þ 0:009u10

1:009
¼ 1:338

u12 ¼
0:926u02−0:076u

0
3 þ 0:009u11

1:009
¼ 0:012

u13 ¼
0:926u03−0:076u

0
4 þ 0:009u12

1:009
¼ 0:0001

u14 ¼
0:926u04−0:076u

0
5 þ 0:009u13

1:009
¼ 0:0000008

u13 ¼
0:926u03−0:076u

0
4 þ 0:009u12

1:009
¼ 0:0001

u13 ¼
0:926u03−0:076u

0
4 þ 0:009u12

1:009
¼ 0:0001

u14 ¼
0:926u04−0:076u

0
5 þ 0:009u13

1:009
¼ 0:0000008

1þ E
Δt

ΔX2 ¼ 1:009; E
Δt

ΔX2 ¼ 0:009;−V
Δt
ΔX

−E
Δt

ΔX2

−kΔt þ 1 ¼ 0:756;−E
Δt

ΔX2 −V
Δt
ΔX

¼ −0:094

1:009 −0:009 0 0
0 1:009 −0:009 0
0 0 1:009 −0:009
0 0 0 1

2
664

3
775

v11
v12
v13
v14

2
664

3
775 ¼

−14:1
0
0
0

2
664

3
775

The simulation of the ADI Method for two-dimensional
water quality modeling
The initial condition of the stream has been given as 50
meters long and 40 meters wide. There is no pollution
at the beginning. The contaminants came from upstream.
This stream section has 4 monitoring points in every 10
meters. The concentrations of pollutants are 150 mg/L at
X direction and 150 mg/L at Y direction. The flow velocity
uniþ1 þ E
Δt

ΔX2 u
nþ1
i−1

	
=1þ E

Δt

ΔX2 ð33aÞ

1

�
vli− E

Δt

ΔX2 þ V
Δt
ΔX

� �
vli−1 ð33bÞ
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is 10 m/s in X direction and 5 m/s in Y direction. The dif-
fusion rate of pollutants E1 and E2 all are equaled to 100.
The degradation rate of the pollutant k is 0.15 in this
stream. The department of EPA wants to know this section’s
water quality every 10 meter long and every 8 meters
wide. Therefore, the simulation methods of pollutants
in two-dimensional water quality are tested as follows:
According to the ADI method, the two-dimensional

water quality equation can be re-written as follows by
considering the first half step as (l = 0.5).

− V 2
Δt
2ΔY

þ E2
Δt

ΔY 2

� �
Clþ1=2

i;j−1 þ 2þ 2E2
Δt

ΔY 2

� �
Clþ1=2

i;j

þ V 2
Δt
2ΔY

−E2
Δt

ΔY 2

� �
Clþ1=2

i;jþ1 ¼ V 1
Δt
2ΔX

þ E1
Δt

ΔX2

� �
Cl

i−1;j

þ 2−E1
2Δt

ΔX2 −kΔt
� �

Cl
i;j þ E1

Δt

ΔX2 −V 1
Δt
2ΔX

� �
Cl

iþ1;j

ð34aÞ

when i = 1, j = 1, 2, 3, 4

−1:197C0þ1=2
1;0 þ 3:56C0þ1=2

1;1 −0:363C0þ1=2
1;2

¼ 0:75C0
0;1 þ 0:925C0

1;1 þ 0:25C0
2;1

−1:197C0þ1=2
1;1 þ 3:56C0þ1=2

1;2 −0:363C0þ1=2
1;3

¼ 0:75C0
0;2 þ 0:925C0

1;2 þ 0:25C0
2;2

−1:197C0þ1=2
1;2 þ 3:56C0þ1=2

1;3 −0:363C0þ1=2
1;4

¼ 0:75C0
0;3 þ 0:925C0

1;3 þ 0:25C0
2;3

−1:197C0þ1=2
1;3 þ 3:56C0þ1=2

1;4 −0:363C0þ1=2
1;5

¼ 0:75C0
0;4 þ 0:925C0

1;4 þ 0:25C0
2;4

There C0þ1=2
1;1 :C0þ1=2

1;2 ;C0þ1=2
1;3 ;C0þ1=2

1;4 , they can be ob-
tained by above equations. Then, it substituted i = 2, j = 1,
2, 3, 4, the equation (34a) can be written as following,

−1:197C0þ1=2
2;0 þ 3:56C0þ1=2

2;1 −0:363C0þ1=2
2;2

¼ 0:75C0
1;1 þ 0:925C0

2;1 þ 0:25C0
3;1

−1:197C0þ1=2
2;1 þ 3:56C0þ1=2

2;2 −0:363C0þ1=2
2;3

¼ 0:75C0
1;2 þ 0:925C0

2;2 þ 0:25C0
3;2

−1:197C0þ1=2
2;2 þ 3:56C0þ1=2

2;3 −0:363C0þ1=2
2;4

¼ 0:75C0
1;3 þ 0:925C0

2;3 þ 0:25C0
3;3

−1:197C0þ1=2
2;3 þ 3:56C0þ1=2

2;4 −0:363C0þ1=2
2;5

¼ 0:75C0
1;4 þ 0:925C0

2;4 þ 0:25C0
3;4

C0þ1=2
2;1 :C0þ1=2

2;2 ;C0þ1=2
2;3 ;C0þ1=2

2;4 , they can be obtained by
above equations. Similarly, let substitute i = 3, 4, and
j = 1, 2, 3, 4.
The second half of the ADI method is based on the
results of the first step. By using i = 1, j = 1, 2, 3, 4, the
equation (34a) can be written as,

−0:0165C1
0;1 þ 2:218C1

1;1−0:0015C
1
2;1

¼ 50:5C0þ1=2
1;0 −98C0þ1=2

1;1 −49:5C0þ1=2
1;2

−0:0165C1
1;1 þ 2:218C1

2;1−0:0015C
1
3;1

¼ 50:5C0þ1=2
2;0 −98C0þ1=2

2;1 −49:5C0þ1=2
2;2

−0:0165C1
2;1 þ 2:218C1

3;1−0:0015C
1
4;1

¼ 50:5C0þ1=2
3;0 −98C0þ1=2

3;1 −49:5C0þ1=2
3;2

−0:0165C1
3;1 þ 2:218C1

4;1−0:0015C
1
5;1

¼ 50:5C0þ1=2
4;0 −98C0þ1=2

4;1 −49:5C0þ1=2
4;2

These C1
1;1:C

1
2;1;C

1
3;1;C

1
4;1 can be solved using above

equations. Substituting j = 1, i = 1, 2, 3, 4, the equation
(34a) can be written as,

− E1
Δt

ΔX2 þ V 1
Δt
ΔX

� �
Clþ1

i−1;j þ 2þ E1
2Δt

ΔX2 þ kΔt

� �
Clþ1

i;j

− E1
Δt

ΔX2 −V 1
Δt
2ΔX

� �
Clþ1

iþ1;j ¼ E2
Δt

ΔY 2 þ V 2
Δt
2ΔY

� �
Clþ1=2

i;j−1

þ 2−E2
Δt

ΔY 2

� �
Clþ1=2

i;j þ E2
Δt

ΔY 2 −V 2
Δt
2ΔY

� �
Clþ1=2

i;jþ1

ð34bÞ

−0:75C1
0;1 þ 3:075C1

1;1−0:25C
1
2;1

¼ 1:197C0þ1=2
1;0 þ 1:22C0þ1=2

1;1 þ 0:363C0þ1=2
1;2

−0:75C1
1;1 þ 3:075C1

2;1−0:25C
1
3;1

¼ 1:197C0þ1=2
2;0 þ 1:22C0þ1=2

2;1 þ 0:363C0þ1=2
2;2

−0:75C1
2;1 þ 3:075C1

3;1−0:25C
1
4;1

¼ 1:197C0þ1=2
3;0 þ 1:22C0þ1=2

3;1 þ 0:363C0þ1=2
3;2

−0:75C1
3;1 þ 3:075C1

4;1−0:25C
1
5;1

¼ 1:197C0þ1=2
4;0 þ 1:22C0þ1=2

4;1 þ 0:363C0þ1=2
4;2

Let substitute j = 2, i = 1, 2, 3, 4, the equation (34a) can
be written as,

−0:75C1
0;2 þ 3:075C1

1;2−0:25C
1
2;2

¼ 1:197C0þ1=2
1;1 þ 1:22C0þ1=2

1;2 þ 0:363C0þ1=2
1;3

−0:75C1
1;2 þ 3:075C1

2;2−0:25C
1
3;2

¼ 1:197C0þ1=2
2;1 þ 1:22C0þ1=2

2;2 þ 0:363C0þ1=2
2;3

−0:75C1
2;2 þ 3:075C1

3;2−0:25C
1
4;2

¼ 1:197C0þ1=2
3;1 þ 1:22C0þ1=2

3;2 þ 0:363C0þ1=2
3;3
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−0:75C1
3;2 þ 3:075C1

4;2−0:25C
1
5;2

¼ 1:197C0þ1=2
4;1 þ 1:22C0þ1=2

4;2 þ 0:363C0þ1=2
4;3

Thus, C1
1;2:C

1
2;2;C

1
3;2;C

1
4;2 can be obtained by above

equations. Similarly, the other C value is calculated by
substituting i =3, 4.

The simulation of Barakat-Clark method for two-dimensional
modeling
This model is similar to the one-dimensional water quality
modeling. If it considers the two different directions (x,y).
The group of equations can be written as,

ulþ1
i;j ¼


�
V 1

Δt
ΔX

þ V 2
Δt
ΔY

−E1
Δt

ΔX2 −E2
Δt

ΔY 2 −kΔt þ 1

� �
uli;j

þ E1
Δt

ΔX2 −V 1
Δt
ΔX

� �
uliþ1;j þ E2

Δt

ΔY 2 −V 2
Δt
ΔY

� �
uli;jþ1

þ E1
Δt

ΔX2 u
lþ1
i−1;j þ E2

Δt

ΔY 2 u
lþ1
i;j−1

	�
=

1þ E1
Δt

ΔX2 þ E2
Δt

ΔY 2

� 	

ð35aÞ

in this case, the u values are as follows

u11;1 ¼ 0:312u01;1 þ 0:25u02;1 þ 0:363u01;2 þ 0:5u10;1 þ 0:78u11;0
� �

=2:28

¼ 84:21

u11;2 ¼ 0:312u01;2 þ 0:25u02;2 þ 0:363u01;3 þ 0:5u10;2 þ 0:78u11;1
� �

=2:28

¼ 61:7

u11;3 ¼ 0:312u01;3 þ 0:25u02;3 þ 0:363u01;4 þ 0:5u10;3 þ 0:78u11;2
� �

=2:28

¼ 54

u11;4 ¼ 0:312u01;4 þ 0:25u02;4 þ 0:363u01;5 þ 0:5u10;4 þ 0:78u11;3
� �

=2:28

¼ 51:37

u12;1 ¼ 0:312u02;1 þ 0:25u03;1 þ 0:363u02;2 þ 0:5u11;1 þ 0:78u12;0
� �

=2:28

¼ 69:783

u12;2 ¼ 0:312u02;2 þ 0:25u03;2 þ 0:363u02;3 þ 0:5u11;2 þ 0:78u12;1
� �

=2:28

¼ 37:4

u12;3 ¼ 0:312u02;3 þ 0:25u03;3 þ 0:363u02;4 þ 0:5u11;3 þ 0:78u12;2
� �

=2:28

¼ 24:64

u12;4 ¼ 0:312u02;4 þ 0:25u03;4 þ 0:363u02;5 þ 0:5u11;4 þ 0:78u12;3
� �

=2:28

¼ 19:695
The rest of u values can be calculated by substituting
i =3, 4.

E1
Δt

ΔX2 v
lþ1
iþ1;j þ E2

Δt

ΔY 2 v
lþ1
i;jþ1− 1þ E1

Δt

ΔX2 þ E2
Δt

ΔY 2

� �
vlþ1
i;j

¼ V 1
Δt
ΔX

þ V 2
Δt
ΔY

þ E1
Δt

ΔX2 þ E2
Δt

ΔY 2 þ kΔt−1
� �

vli;j

− V 1
Δt
ΔX

þ E1
Δt

ΔX2

� �
vli−1;j− V 2

Δt
ΔY

þ E2
Δt

ΔY 2

� �
vli;j−1

ð35bÞ
The v values are calculated by the following process:

0:5v12;1 þ 0:78v11;2−1:022v
1
1;1

¼ 1:022v01;1−0:75v
0
0;1−1:197v

0
1;0 ¼ −292:05

0:5v12;2 þ 0:78v11;3−1:022v
1
1;2

¼ 1:022v01;2−0:75v
0
0;2−1:197v

0
1;1 ¼ −112:5

0:5v12;3 þ 0:78v11;4−1:022v
1
1;3

¼ 1:022v01;3−0:75v
0
0;3−1:197v

0
1;2 ¼ −112:5

0:5v12;4 þ 0:78v11;5−1:022v
1
1;4

¼ 1:022v01;4−0:75v
0
0;4−1:197v

0
1;3 ¼ −112:5

0:5v13;1 þ 0:78v12;2−1:022v
1
2;1

¼ 1:022v02;1−0:75v
0
1;1−1:197v

0
2;0 ¼ −179:55

0:5v13;2 þ 0:78v12;3−1:022v
1
2;2

¼ 1:022v02;2−0:75v
0
1;2−1:197v

0
2;1 ¼ −112:5

0:5v13;3 þ 0:78v12;4−1:022v
1
2;3

¼ 1:022v02;3−0:75v
0
1;3−1:197v

0
2;2 ¼ 0

0:5v13;4 þ 0:78v12;5−1:022v
1
2;4

¼ 1:022v02;4−0:75v
0
1;4−1:197v

0
2;3 ¼ 0

When these values of u and v were calculated, the final
solution of the Barakart-Clark method can be obtained
by using average value of those two matrixes.

Results and discussion
Figure 1 shows the solutions of explicit, implicit and
Barakat-Clark methods. It proves that the numerical
solution obtained by the Barakat-Clark method approached
the real world process even through the explicit and im-
plicit results are stable in this case. Figure 2 shows the
solutions obtained using the ADI and Barakat-Clark
methods for the 2-D water quality modelling process.
In Figure 2a, it is the results of ADI methods in three
different times. Similarly, Figure 2b shows the results
of the Barakat-Clark method. The ADI method clearly
shows that the results are not as stable as the results of
Barakat-Clark method. In fact, during the final time, the
ADI result is beyond of boundary conditions. However,



Figure 1 The results of explicit, implicit and barakat-clark methods for 1-D water quality modeling.
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it may have been caused by a large space of x or y.
However, under same steps and space of x and y, the
Barakat-Clark method obtained the better accuracy results.
The Barakat-Clark method uses less computing time to get
those results. This method has the advantage of solving
the three dimensions time-dependent equations which is
not convenient for ADI method.
The data results (Tables 2, 3, 4, 5 and 6) of the above

equations show the detailed numerical solutions of the
water quality modelling process. The findings in Table 4
show smoother curves of water quality because of different
method. Although the explicit method obtained stable
results in this case, when X value is changed to a smaller
value, the results will be extremely unstable. It means
that the stability of the solution is depends on the size
Figure 2 The ADI results of 2-D water quality simulation at begin, mi
simulation at begin, middle and final times.
of grid for explicit method. It is obvious to see that the
solution of the Barakat-Clark method is more stable, even
though the size of the grid was changed. This is because
the Barakat-Clark numerical method has been considered
average values or mean values of implicit and explicit
data. Therefore, the Barakat-Clark methodology is more
accurate than others in the case of the water quality
simulation process.

Conclusions
In this study, the finite difference numerical methods
are applied to the water quality modeling processes.
They simulate the concentration process of pollutants
in hydrological systems. As one of the existing numerical
methods, the Barakat-Clark has obtained higher accuracy
ddle and final times. The Barakak-Clark results of 2-D water quality



Table 2 Concentration results of pollutants using the
explicit method for 1-D water quality modeling

Initial
concentration

In 200
meters

In 400
meters

In 600
meters

In 800
meters

In 1000
meters

150 0 0 0 0 0

150 7.725 0 0 0 0

150 14.4303 0.397838 0 0 0

150 20.23717 1.088483 0.020489 0 0

150 25.2544 1.986332 0.073841 0.001055 0

150 29.57928 3.022264 0.166355 0.004719 0

150 33.29857 4.141085 0.299884 0.012663 0

150 36.48943 5.299292 0.473141 0.026436 0

150 39.2203 6.463141 0.682715 0.047313 0

150 41.5517 7.606981 0.923863 0.076227 0

150 43.53705 8.711823 1.191119 0.113744 0

150 45.22331 9.764117 1.47874 0.160073 0

150 46.65173 10.75472 1.781036 0.215098 0

150 47.85842 11.67799 2.092601 0.278429 0

150 48.8749 12.53111 2.408467 0.349445 0

150 49.72862 13.31337 2.724195 0.427354 0

150 50.44344 14.02577 3.035924 0.51124 0

150 51.04005 14.6705 3.340382 0.600106 0

150 51.5363 15.25066 3.634879 0.692922 0

150 51.94761 15.76992 3.917271 0.788652 0

150 52.28723 16.23236 4.185922 0.88629 0

150 52.56653 16.64226 4.439657 0.984874 0

150 52.79524 17.00393 4.677705 1.083513 0

150 52.98163 17.32166 4.899652 1.181391 0

150 53.13278 17.59962 5.105387 1.27778 0

150 53.25467 17.84177 5.295051 1.37204 0

150 53.35235 18.05189 5.468992 1.463626 0

150 53.4301 18.23348 5.627726 1.552081 0

150 53.49151 18.38978 5.771896 1.637034 0

150 53.53957 18.52378 5.902238 1.718198 0

Table 3 Concentration results of pollutants using the
implicit method for 1-D water quality modeling

Initial
concentration

In 200
meters

In 400
meters

In 600
meters

In 800
meters

In 1000
meters

150 0 0 0 0 0

150 6.605527 0.290887 0.01281 0.000565 0

150 12.24669 0.787725 0.045628 0.002495 0

150 17.05822 1.423646 0.101648 0.006618 0

150 21.15694 2.146537 0.181281 0.01366 0

150 24.64405 2.916286 0.283099 0.024177 0

150 27.60703 3.70248 0.404526 0.038536 0

150 30.12146 4.482505 0.542353 0.056907 0

150 32.2525 5.239974 0.693113 0.079283 0

150 34.05628 5.96343 0.853335 0.105505 0

150 35.58104 6.645285 1.019722 0.135292 0

150 36.86826 7.280959 1.189259 0.168269 0

150 37.95349 7.868175 1.359277 0.204 0

150 38.86719 8.406391 1.527482 0.242008 0

150 39.63541 8.896348 1.691955 0.281801 0

150 40.28042 9.339706 1.851141 0.322889 0

150 40.82121 9.738758 2.003824 0.3648 0

150 41.27396 10.09621 2.149094 0.407088 0

150 41.65245 10.415 2.286313 0.449343 0

150 41.96837 10.69817 2.41508 0.491198 0

150 42.23167 10.94878 2.535196 0.53233 0

150 42.45075 11.1698 2.64663 0.572458 0

150 42.63275 11.36411 2.749488 0.61135 0

150 42.78369 11.53442 2.843985 0.648814 0

150 42.90865 11.68326 2.930424 0.684701 0

150 43.01191 11.81298 3.009169 0.718899 0

150 43.09709 11.92575 3.08063 0.751328 0

150 43.16721 12.02354 3.145246 0.781942 0

150 43.22482 12.10814 3.203473 0.81072 0

150 43.27204 12.18115 3.255771 0.837664 0
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results with stability than the other methods. By compar-
ing the solution of Barakat-Clark method with the other
numerical methods, its results better reflect the reality of
the simulation without oversimplify solving the process.
The water quality modeling process, which estimates the
real world conditions, can be effectively solved by means
of the Barakat-Clark method. It enables the managers of
water authorities to know the concentration of pollution
in surface water systems and to conveniently use those so-
lutions as a reference in their hydrological systems. Conse-
quently, the accurate of water quality simulation processes
can be enhanced. The results of the case study indicates
that the solution of Barakat-Clark method has proved that
this method is better by comparison than the others
for water quality modeling. Solutions of the numerical
method actually reflect a compromise between the finite
difference method and requirement of accuracy.
In the real world, administrators of water management

agencies are paying a high price for water quality to
guarantee the safe conditions of environmental water.
This means that authorities desire to accurate monitor-
ing data to determine the stream or river situations.
This may cause a higher economic cost. However, simu-
lation values of water quality are reliable within the
Barakat-Clark method. Its advantages have been clearly
shown in the above case study. It shows that the results



Table 4 Concentration results of pollutants using the
Barakat-Clark method for 1-D water quality modeling

Initial
concentration

In 200
meters

In 400
meters

In 600
meters

In 800
meters

In 1000
meters

150 0 0 0 0 0

150 37.5 16.82825 7.971279 3.775869 0

150 52.48305 31.93705 18.66957 10.53269 0

150 60.00174 41.99309 28.2431 18.08965 0

150 63.00452 48.05255 35.37834 24.85119 0

150 64.50276 51.40358 40.16946 30.14466 0

150 65.10873 53.22341 43.16784 33.9338 0

150 65.4055 54.16237 44.95798 36.47639 0

150 65.52848 54.64781 45.98663 38.10145 0

150 65.587 54.88959 46.56245 39.101 0

150 65.61204 55.01092 46.87698 39.69728 0

150 65.62356 55.07013 47.04599 40.04403 0

150 65.62865 55.09924 47.13527 40.24148 0

150 65.63092 55.11326 47.18191 40.35188 0

150 65.63195 55.12005 47.20596 40.41268 0

150 65.6324 55.12329 47.21827 40.4457 0

150 65.63261 55.12484 47.22451 40.46343 0

150 65.6327 55.12558 47.22765 40.47285 0

150 65.63274 55.12592 47.22922 40.47781 0

150 65.63276 55.12609 47.23 40.4804 0

150 65.63277 55.12617 47.23038 40.48174 0

150 65.63277 55.1262 47.23057 40.48243 0

150 65.63278 55.12622 47.23067 40.48278 0

150 65.63278 55.12623 47.23071 40.48296 0

150 65.63278 55.12623 47.23073 40.48305 0

150 65.63278 55.12623 47.23075 40.48309 0

150 65.63278 55.12623 47.23075 40.48312 0

150 65.63278 55.12623 47.23075 40.48313 0

150 65.63278 55.12624 47.23075 40.48313 0

150 65.63278 55.12624 47.23075 40.48314 0

Table 5 Results of ADI method for 2-D water quality
modeling in final time (x/y direction)

Initial
concentration

In 200
meters

In 400
meters

In 600
meters

In 800
meters

In 1000
meters

150 150 150 150 150 150

150 124.9046 133.1181 96.9082 77.9531 0

150 117.1522 96.6831 60.7363 54.3516 0

150 102.0593 74.4782 34.3785 31.6676 0

150 80.1334 54.9374 21.4405 13.6352 0

150 0 0 0 0 0

Table 6 Results of Barakat-Clark method for 2-D water
quality modeling in final time (x/y direction)

Initial
concentration

In 200
meters

In 400
meters

In 600
meters

In 800
meters

In 1000
meters

150 150 150 150 150 150

150 119.8325 127.1802 125.1696 101.3011 0

150 107.2249 110.1196 104.7594 77.7571 0

150 101.0918 99.1784 90.7855 64.4765 0

150 97.8035 92.4481 81.7728 56.4511 0

150 0 0 0 0 0
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of the Barakat-Clark method is more reliable and more
accurate with process stability. On the other hand,
other numerical methods such as ADI method produced a
different results under same circumstances. Therefore, the
Barakat-Clark method can be considered as a better finite
method in the 2-D water modeling system, and this paper
is the first attempt to compare the Barakat-Clark 2-D
method with other multiple numerical algorithms in the
water quality modeling process. From the above applica-
tions, it is obvious that the Barakat-Clark method shares
higher stability results with the same environmental condi-
tions. However, in this study, the boundary conditions have
been pre-defined. Therefore, further studies of this method
have to correspond to the variation of boundary conditions
in real world. Finally, this the 2-D Barakat-Clark method
well reflects the accuracy of simulation process, and thus, it
can provide an exact reference for water quality modeling
in hydrological systems.
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